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Abstract— We present a method for clustering diffusion tensor
imaging (DTI) integral curves into anatomically plausible bun-
dles. An expert rater evaluated the anatomical accuracy ofte

bundles. We also evaluated the method by applying an exper-

imental cross-subject labeling method to the clustering rsults.
Our approach is guided by assumptions about the proximity of
fibers comprising discrete white-matter bundles, and proceds
as follows. We first employ a sampling and culling strategy fo
generating DTI integral curves and then constrain the curve so
that they terminate in gray matter. This approach seems lik¢y to
retain anatomically plausible fibers. We then employ a clustring
method based on a proximity measure calculated between ewer
pair of curves. We interactively selected a proximity thresold
to achieve visually optimal clustering in models from four DTl

datasets. An expert rater then assigned a confidence rating

Such tests require the ability to identify and segment winitgter
tracts-of-interest (TOI). Once segmented, the structunaigrity
of a TOI can be quantified by a variety of scalar metrics (e.g.,
average fractional anisotropy, length) [10]. However,unately
identifying and isolating specific bundles in the visuallgnde
tractography models is a challenge. Manual segmentatidheof
fiber bundles is often time consuming, typically requireeapert
rater with detailed knowledge of white-matter anatomy, @&nd
prone to human error and experimenter bias. A method that aut
matically clusters and labels the integral curves into @mitally
plausible pathways could vastly improve the efficiency ofada
processing and facilitate hypothesis testing.

Our approach builds on the assumption that a proximity mea-

about bundle presence and accuracy for each of 12 target sure that compares fiber trajectories can represent aratbmi

fiber bundles of varying calibers and type (i.e., commissura
association, projection) in each dataset. The interactivelustering
and evaluation information was incorporated to create a fibe-
bundle template. We then used the template to cluster and lad
the fiber bundles automatically in new datasets. According d
expert evaluation, the automated proximity-based clustdng and
labeling algorithm consistently yields anatomically plawsible fiber
bundles, although fiber bundles with smaller calibers and tlose
that are not highly directionally coherent are identified with lower
confidence. This work has the potential to provide an automat
and robust way to find and study neural fiber bundles within
DTI.

Index Terms— cluster, clustering, diffusion tensor imaging, DT-
MRI, DTI

I. INTRODUCTION

relationships and that there exists a threshold that satpeg
a set of trajectories into discrete clusters that are ariatdiy
significant. This assumption has been demonstrated for §bere
structures in Mobertet al. [13] and Corougeet al. [6]. This
paper presents a method that will, in such cases, autoriiatica
cluster integral curves into anatomically plausible besdlOur
method extends previous work in this area in that it enables
an expert to interactively specify a proximity thresholdvieen
tracts-of-interest and ensures that this proximity thokshis
satisfied between the resulting clusters. Another corttdbuis
our evaluation of the clustering method by rating the presesf
a pre-specified set of bundles on the resulting fiber clusters

In section Il, we review prior work in this area. Section Al-
outlines the acquisition and preparation of DTI data. IrtisedlI-
B, we describe the proximity measures we used for culling

Diffusion-tensor imaging (DTI) is a magnetic resonancegma integral curves and for clustering. In section IlI-C, we ciédse

ing (MRI) technique that provides three-dimensional vivo
information about the structural integrity of cerebral tehinatter

our sampling method and its constraints and the culling odzh
used for generating a set of DTI integral curves. In sectibb)

based on the diffusion of water molecules. DTI tractographye describe our clustering algorithm and the proximity shied
is a method for visualizing white-matter fiber structure.[3Jused to group these integral curves into anatomically edlat

Tractography essentially involves producing, within timeage
volume, a set of integral curves that follow the principaledi
tion of diffusion. The resulting tractography models proeua

bundles. In section IlI-E, we demonstrate an interactiterface
by which an expert achieves visually optimal clusteringifissin
four datasets. The rater then assigns confidence ratingsafdr

dense set of “fibers” that bear a close resemblance to knowh12 target white-matter fiber bundles of varying calibensl a

white-matter pathways [17]. These models provide a paibiyti

type (i.e., commissural, association, projection) in edakaset

valuable tool for understanding white-matter anatomy amd f(section IlI-F.1). We describe the construction of a fibendie

testing hypotheses about the cognitive and behaviorakledes
of specific white-matter tracts in both healthy and disedwaths.

template with the expert’s clustering and rating results @se this
template for fully automated clustering and labeling of bssi of



the 12 selected fiber bundles on two new subjects in section lin a feature space and then calculated the distance bethveénd

F.2. We show the results in section IV. curves in the feature space. Our clustering method usesaioar
of the proximity measure defined in Zharmg al. [20], which
Il. RELATED WORK captures any difference between two curves while consigetie

A number of methods have been developed for classifying?atial proximity of t_he two curves along their _entire arngt_dn.
clustering, and labeling fiber bundles in DTI. oberts et al. [13] implemented several previously published

Fiber bundles can be generated by first manually selectieg Oqistance measures in their evaluation of f!ber clusterinthaus
or more regions-of-interest (ROIs) and then grouping thegiral and concluded t.hat the mean of closest qlstances perfom be
curves that pass through these ROIs (Cagarl. [5], Wakanaet than closest point distance, Hausdorff distance, and eimtspo
al. [17], and Maddaet al. [12]). Maddahet al. [12] used hand- distance.
selected ROIs in white matter to construct a bundle temptate
which curves from a new subject can be registered. Our meathod Ill. METHOD
similar to Maddatet al's in that we use an expert rater to identifys  pata acquisition and preparation
the clusters and use the result to build a template; howmstead
of manually specifying ROIs, our method automatically tdus

2?:0Lasbsels fiber bundies, which may improve the efficiencyhef ¢ weighted volumes of the entire brain in 5 healthy adults (Zesya

Recently, automatic DTI fiber clustering methods have beésnfe_males; me_anj{ sta_ndarq deviation) age = 56i8l0'.23).' Al
developed on DTI fibers by Dingt al. [7], Corougeet al. [6], subjects provided written informed consent to participetea

Brun et al. [4], O’'Donnell et al. [14], [15], Maddahet al. [11], DTI research project approved by the Institutional Revievaisi

and Mobertset al. [13]. Mobertset al. [13] evaluated different at Butler Hospital in Prowdgnce, RI. . . N
fiber clustering methods by manually constructing a set arfib The volumes were spatially offset in the slice q”.e.ctlon by
bundles as “ground truth” and using that to test the resuits %.Onm L. mm an.d 3.4@m Paramgters fOT each a(.:qU|S|t|onlwere
different similarity measures and clustering algorithifisey con- as fOIIOW$:.$nmth'CK slices, 0. nminter-slice spacing, 30 slices
cluded that the single-link algorithm used in our earliehtacal per acquisitionmatrix = 128 x ]?28’ FOV = 21. em x 2.1' 7c_m,
report [21] gives the best results in the clustering methibey TR = _7200’ TE. = 156, no partial echoesiEX - 3. _D|fqu|on
tested. We build on and expand the methods in [21]. enclodlng grad|§ntsb(: 0, 1OQOnm/sz) were applied n 12 non-
O'Donnell et al. [14] applied a spectral clustering method Ors:olllnear directions. Total time for the three acquisiSowas

DTI fibers from a population of brains to generate a whiteterat sllghtly Iess_ than 15 minutes. A vacuum p|||(_)w was used.totllm
atlas automatically. In another work [15], they had the ete subject motion. The three acquisitions were interleaveattoeve

label clusters in the atlas and used the labeled atlas tteclnew 1.7mn¥ resolution images and then up-sampled (equivalent to

subjects. Our method is similar to O’'Donnetial.in that we also zero.-f|lllrlg) to 0.85nn? isotropic voxel; for analy§|s. .
build a template of fiber bundles from automatic clusteriespits D|ﬁu§|on tensors were calculated with a non-linear seqaen
and use the template for clustering new subjects. Howewsead quadratic programming (SQP) method [1].

of using the expert to label the clustering results, our weth

incorporates the expert's anatomical knowledge into thsteting B. Proximity measure

by implementing a minimal proximity threshold set by the estp The integral curves in the cerebral white matter can be quite

(see also section V-A). We also ask our expert to evaluqtéeng (in this paper curves are defined as a set of 3D points).

the (.:Iu.ster;]ng rr]ei;]lf[s z:]fter mr:o(rjpocr)atlng trr;edex:oertl’sumum An ideal proximity measure should consider the matchinghen t
proximity threshold in the method. Our method also INCORES |, 16 5rc lengths of the two curves. Measuring proximity kg t

alnatom|cal ?ssgrrr:pnons to_con“sltrgln\t/)\;)thhthe curve geo:\rzm? Euclidean distance between two selected points on two surve
clustering algorithms (section 1Il-C). We have presentedis o ignores all but these two points on those two curves. Thezgefo

the preliminary results as cpnference qbstract; [_19]" [22] . it is not surprising that the mean of closest distances d&fine
The measure used to define the spatial proximity between InE,eorougeet al.[6] is found to give better clustering results than the

gral curves is of fundamenltal. im.portance for clusteringxi®nity closest points measure or the Hausdorff distance [13]. @met
measures represent the similarity between two data elsnagk al. defined the mean of closest distances between cu@vesd
therefore can be used to determine the geometric similafitiie

two curves. A number of proximity measures have been used to

describe the geometric similarity between two curves. Imegal, duc(Q,R) =
proximity measures can be categorized into two varietiegse . .
that measure the Euclidean distance between two selectets poVhere  dn(Q R) = meaminer || a-b |, aandbare vertices on
on two curves and those that summarize all points along tv@andR respectively, andl. || is the Euclidean norm. Note thd#
curves as the mean Euclidean distance along their arc kngik not symmetric whiledyc is. Symmetry is a desirable property
Examples of the former type of proximity measure include thier a proximity measure since it removes the inconsisterfcy o
closest point measure, the Hausdorff distance [6], and thehét a proximity value between two curves when the order of the
distance [2]. Examples of the latter type include the aweragwo curves is switched, and subsequently results in synenetr
point-by-point distance between corresponding segmegfisatl proximity matrices. We can also define two other symmetric
by Ding et al. [7], the mean of closest distances defined bgroximity measures based an: the shorter mean of closest
Corougeet al. [6], and the mean of thresholded closest distancelistancesdsc(Q,R) = min(dn(Q, R),dn(R,Q)) and the longer
defined by Zhanget al. [20]. Brun et al. [4] embedded the curves mean of closest distancelsc(Q, R) = max@n(Q, R), dn(R, Q)).

Siemens MDDW protocol was used to collect three
co-registered sagittal double-spin-echo, echo-plandfusithn-

dm(Q,R) + dm(R, Q)
5 ,



di;. If a shorter curveQ runs along a longer curvi, ds(Q, R, t)

is usually smaller thard +(Q, R,t) since the unmatched part of

R only counts ind;. We usedds; in our integral curve culling

Q R scheme in section llI-C because partial-volume effect dseo
might result in broken short curves along a long curve and we
wanted to cull out those curves. On the other hand, once we

Q R Q R culled those short curves along their longer neighbors, sexu

d.: to make sure any difference between two curves, includiag th

unmatched part, was captured when we applied the singlagdiak

/ clustering algorithm in section IlI-D.

THERRET < We can also define the mean of closest thresholded distances

by replacingdm with d: in dyc. This measure is not used in

this paper since it has no apparent advantage dyeainddy; in

our approach to culling curves or capturing differencesvben

remaining curves.

C. Generating DTI integral curves

Fig. 1. (a) shows the motivation behind the mean of thresiwbldosest The integral curves that make up our tractography modelg wer
distances.Q and R are considered different if they branch for a portion of g b grapny

their lengths. Without the threshold, the mean of closestadces between generated by solving the following equation:

Q andR is low if they stay close for a large part of their lengths. énd r

(c) show the difference betweets(Q, R, t) and d.¢(Q, R,t). The arrows are p(r) = / V(p(s))ds,

samples of distances to the other curve from the selectea ¢Qrin (b) and 0

Rin (c)). Note the distance from the top Bfto Q in (c) is missing in (b). \wherer is the arc length of the generated streamlip&) is

Also note the different arrow orientations at similar lecas between (b) and ; )

©. the generated streamline andcorresponds to the vector field
generated from the major eigenvectrof the diffusion tensor.

p(0) is set to the initial point of the integral curve, oftenlled

When two curves form a boundary between two branching fibgfed point. The integral curve was extended to bejthand
bundles, they might run very closely together for a long seur —€i directions from the seed point using a second-order Runge-
and then diverge abruptly for a relatively short coursehaiigh Kutta integration method [16], [3] with a stepsize ahth The
two such fibers should be grouped into different clusters, titegration stopped when the curve went out of the data barynd
mean closest distances might be low due to their long ovgiigp ©" Went into a region of low linear anisotropy or low signet-t
course and they may end up being considered to be part of {HiS€ ratio. We used the linear anisotropy defined by Wesdtin
same cluster (see Fig. 1(a)). To mitigate this problem, weifyio al. [18]:

A1 — A
dm by using a threshold on the minimum contributing distance %
for the mean of closest distances between cufyemdR: VAT A+ A
where \1, )2, and A3 are the three eigenvalues of the diffusion
_ ; tensor. A T2-weighted image that was coregistered with DTI
t(Q, R 1) = Meancq min,crl|a—b)>t min || a— b, 9 9 9

data was used to identify low signal-to-noise regions sichia

wheret is the minimum threshold so that distances below it arBhese regions result in lower intensities in T2-weightecdges
not counted toward the meaa.andb are the vertices o and compared to water, gray matter, and white matter. A thresbol
R respectively. the T2-weighted image was set to be lower than the intersifie
We then define two symmetric proximity measures by replacivgater, white matter, and gray matter, but higher than theniity
dm with d; in dsc andd,c: the shorter mean of thresholded closedf air. At any point within the data volume, tricubic B-spin

distances functions were used to interpolate the tensor field [3].
. We first generated seed points on a fine regular grid in the
ds(Q R, 1) = min(c(Q. R, 1), k(R Q, 1)), data volume and then jittered their locations. This produce
and the longer mean of thresholded closest distances a dense set of seed points that ensured there is no place in
the image volume that was under-sampled. To reduce artificia
die(Q, R 1) = max(@(Q, R, 1), (R, Q. 1)), clusters among integral curves and maintain some spaceéetw
ds: is a discrete approximation @ defined in [20]: these curves, we culled the shorter member of any two pairs of
curves that exceeded a pre-specified threshold for proxidait
B f;" max(dist§) — Tt, 0)ds Curves with errant trajectories that seem anatomicallylaonp
.= _ , ) ) : . .
f;l max(‘cg;tt%:al J0)s sible might also be generated due to noise, low image reso|ut

or partial volume effects. To limit the number of spuriousves

wheres parameterizes the arc length of the shorter cusy@nd and maximize the anatomical correctness of our integralesyr

s are the starting and end points gfand dist§) is the shortest we also culled these curves based on a minimum linear aofsotr

distance from locatios on the shorter curve to the longer curveof the curve and a minimum length of the integral curve since
dst and di; are the proximity measures implemented in thisurves running in low linear anisotropy regions and veryrsho

paper. Fig. 1 (b) and (c) show the difference betweenand curves are often affected by partial-volume effects anden{R20].



4fps Proximity Threshold

Min Mean Linear Anisotropy
Cluster Size Limit

Fig. 2. Integral curve models generated from a ¥2B28x 90 dataset with
a voxel size of 1.ihmx 1. 7mmx 1. 7mm (a) shows 438, 042 integral curves [#
generated from a jittered regular grid of 256256 x 180, with minimum
length set to 18im and minimum linear anisotropy set to 0.15. (b) shows
the model generated from the same dataset and the samedjitegular grid
sampling, and with the added culling and gray matter primectonstraints.
The culling threshold orls; is set to 1. @ mwith t = 0.5mm The model in
(b) has 6, 113 integral curves. Color is mapped to the line@o&opy value.
Redder means higher linear anisotropy.

We also set a constraint that an integral curve should projez
the gray matter. This constraint removes incoherent fibeas t
break in the white matter due to the partial-volume effetisTs
desirable since we focus our effort in this paper on clusteri
coherent fiber structures. We accomplished this constitaynt
segmenting the brain into white matter, gray matter, ane-cer

; ; ; eomati Fig. 3. The clustering result of the model in 2(b) using thegke linkage
brospinal fluid compartments using the FAST [23] segm U algorithm andd,; as the proximity measure with a threshold of 8w The

tOO_I. The _segmentation was performed using the non-ddfusi top jeft comer of the interactive interface contains thséigers for adjusting
weighted image as well as scalar maps of the trace of tthe proximity threshold, minimum mean fractional anispyrovalues, and

diffusion tensor and fractional anisotropy. We then didedrthe minimum number of curves in a cluster.
integral curves that would not have extended into the graifema
within 3mm We extended a curve by following the direction
of each curve at its two end points. We estimated them3 retain anatomically meaningful fibers by visually examgithe
threshold based on the observation of the gaps between tise esffect of different settings on these thresholds.
of some curves that appear to project into the gray matter and
the segmented gray matter. The estimation was also derrenqgn
on the minimum linear anisotropy threshold and the parammete
on the FAST segmentation algorithm that affect the shapeiseof ~We used the agglomerative hierarchical clustering meti&d [
segmented areas. We colored and rendered the resunamcuﬁﬂd defined the distance between two clusters as the minimum
and superimposed them on background anatomical imagesPfgximity value (i.e., nearest) between any two curves ftom
provide context. clusters (e.g., one curve from cluster X and its closesthim®igin

Fig. 2 shows the difference between two integral curve nedéfuster Y). This is called a single-linkage algorithm besmany
without and with the culling and gray matter projection contWo clusters with a single link (pairs of similar curves) ween
straints. Both sets of the integral curves were generatec offhem are clustered together. If we define the distance bettves
128 % 128 x 90 dataset with a voxel size of Inimx 1. 7mmx  clusters as the maximum proximity value (i.e., farthestiMeen
1.7mm Both sets of the integral curves were generated from@®y two curves for two clusters, we have a complete linkage
jittered regular grid of 256« 256 x 180, with minimum length algorithm. The rationale for choosing a single linkage &tgm
set to 13nmand minimum linear anisotropy set to 0.15. WithoupVver a complete linkage algorithm is that some fiber bundles,
the culling and gray matter projection constraints, Fig) 2hows such as some parts of the corpus callosum and corona radiata,
438,042 integral curves. With the constraints, Fig. 2(jwehthe May spread out in a sheet-like structure, although we stilsitler
generated model of 6,113 integral curves. The culling tiokes them to be coherent fiber bundles. The complete linkage itthigor
on ds; was set to 1.8m The minimum threshold was set would likely break them into smaller pieces while the single
to 0.5mm much smaller than the resolution along each of tHékage algorithm would group them as whole bundles.
data dimensions, to remove the distance contribution froe t Ve applied the single linkage algorithm to our curves usirey t
parts of the two curves that ran very closely and were likejroximity measured ;. The algorithm followed the three general
from the same feature in the data. Some of the thresholds f§Ppad steps to generate any number of clusters from a set of
generating the curves such as minimum length, minimum fine@Urves:
anisotropy and minimum thresholdwere set empirically. We 1) Obtain a set ofi singleton clusters.
tried to cull the spurious fibers from noise and other antffand 2) Merge the two nearest clusters.

Single linkage clustering algorithm



3) Repeat step two while the distance between the two mergeatticular tracts because they vary in terms of their cadibe
clusters in the last step is less than a pre-specified proximand type (i.e., commissural, association, projection) ascduch
threshold. were thought to provide a fairly robust test of our method’s

We chosedl, the longer mean of thresholded closest distance®ility to cluster pathways that are generally readily tefesd
as the proximity measure between two integral curves. Weehdnd are reasonably consistent in their location and shapeost
this measure to help ensure that any local difference ineshdpdividuals. Points on the scale were O=unlikely locatedhot
between two curves was captured. In section 1l-C, we showé@fated, 1=possibly located, 2=likely located, and 3=vitkgly
how we useds; to cull the short curves that are likely to resul{ocated. The confidence ratings are listed in Table 1 in theife
from the partial volume effect. Here, we assumed all thosetsh Section.
spurious curves had already been removed from the tragiogra 2) Cross-subject fiber bundle labelingiWe constructed a
model and therefore chosk; for clustering. white-matter bundle template based on the interactivelteesu
We modified the original algorithm in [8], which pre-speaifie presented in the previous section, and then attempted tohmat
the number of clusters. The number of clusters generatedingegral curve bundles from two new subjects automatidalighis
inversely related to the proximity threshold. That is, threager template. First, we registered the non-diffusion-weightmage
the distance selected for identifying a single clusterféweer the from all six datasets (i.e., the four datasets used in theique
number of clusters. When the nearest-neighbor threshadtito section and two new datasets) to one particular dataseechos
a high value, there will be fewer but larger clusters; whea that random using FLIRT [9]. The registration was constraited
threshold is set to a low value, the number of clusters irsgga translation, rotation, and scaling operations only. Wenthsed
Fig. 3 shows a clustering result of the model in Fig. 2(b) gsinthe transformation matrices to register all the cluster emd
the single linkage algorithm and thig; proximity measure with Note that the clustering is done on separate subjects before
the proximity threshold set to 3nEm the registration. Compared to an alternative that registdr
the integral curves in the same space and then clusters these
curves, our method of clustering in individual subjectssprees
the gaps between the fiber bundles that otherwise may be filled
by curves from other subjects due to the variation in anatomy
among different subjects. For each integral curve cluXtethe
) ) o ) . __centroids of the starting point8s(X), middle pointsCm(X), and
The interface is shown in Fig. 3. The model in the picturg,y ,ointec,(X) were calculated. Integral curve clusters from the
was generated with methods described in section I1I-C. I8ing,,, 5 niects were then aligned and compared according to The
Ilnkage_cll_Jsterlng was pre-computed on the modgl with aeang . of the distances between these centroids:
of proximity thresholds set fromrOm to 10mm with 0.1mm
intervals. In the top left corner, three sliders were usedhange du(X,Y) =[| Cs(X)—Cs(Y) || + || Cm(X)—Cm(Y) || + || Ce(X)—Ce(Y) ||,
the values of the proximity threshold, minimum mean linear . .
: . . where X and Y are clusters of integral curves from two sulject
anisotropy along an integral curve, and the cluster sizestiold. . .
The interactive system runs about 10 frames per second witrélaT 0 be matched as a pair, two clusterandY from two subjects

30MB VRML model on a desktop PC withGhzAMD CPU and and<2 were compared to all the clusters from the other subject,
1GB memory and they needed to be mutually closest to each other. That is,

du (X, Y) should be the smallesk, (X, Z), for all Z in subject<2,
and dy (X,Y) should also be the smalledi;(Z,Y), for all Z in
F. Evaluation subjectS.

To evaluate our interactive clustering method, expertedrat From our expert evaluation of the interactive clusteringutes
their level of confidence in identifying a pre-specified sét qsection IlI-F.1), we know that large and distinct fiber blasdare
fiber bundles in the clustering results in section Ill-F.1e Wen ysually well identified in all four subjects, and we belietese
designed a preliminary fiber bundle labeling system baseouon four instances should match well against each other. Aatgiyd
clustering method in section llI-F.2 to evaluate the effertess of we selected six fiber bundle types that matched in pairs sicros
our clustering method in matching fiber bundles across stthje subjects to construct a color-labeled fiber bundle templaités

1) Expert evaluation: To evaluate our interactive clusteringgroup of fiber bundle types includes the left and right cingul
method, an expert rater interactively selected a proxirhitgsh- bundles, the left and right uncinates, the forceps minod, e
old to achieve visually optimal clustering in models fronufo forceps major. Fig. 6 shows four of the six fiber bundle types i
datasets: S1, S2, S3, and S4. Datasets S2 and S4 are the sagémplate. Since each fiber bundle type had one instamce fo
individual scanned on different occasions. For each matiel, each of the four subjects, there were a total of 24 fiber bndle
expert rater interactively selected a proximity threshofdt in the template.
produced a set of color-labeled bundles that provided tlest’d  wth the fiber bundle template, we can automatically cluster
clustering result, i.e. a solution that appeared to be thstm@ng |abel target fiber bundles from new subjects. The majchin

accurate representation of known white-matter anatomynwhgcore between a fiber bundk in a new subject and one fiber
considered globally in whole-brain models. After selegtian pyndle typey was set to

optimal threshold, the rater used a four-point scale togassi ] QXY ) .
confidence ratings for identifying each of 12 target whitatier M(X,Y) = { mincg 25— if there exists a matched pair

E. Interactive exploration of clustering models

We built an interactive interface for exploring the clustgr
results and achieving an optimal representation of whiatten
fiber bundles.

tracts (bilaterally when applicable). To avoid circulgrithe target infinit b;ahtwee_nx and an instance of,
white matter tracts were pre-specified; that is, they welectsd infinity otherwise,
as rating targets prior to viewing the models. We chose thestere|X| is the number of curves i, S is the set of subjects



in the template whose instancesYimatchX as pairs, and/; is WMF | S1 S2 S3 sS4

the instance ofy in subjecti. M is designed to favor big clusters fmajor | 3 3 3 3
in X that are close t& because small clusters in the same region uf 33 33 33 33
are more likely to come from partial-volume effect. cb |33 33 33 33
The algorithm searched for a proximity threshold on the new cst |33 33 33 33
subject that minimizes the sum of the six minimum matching fminor | 3 3 2 3
scores between the new subject clusters and the six typeseof fi sif123 23 23 11
bundles in the template. ilf 21 23 12 22

af 23 03 13 11
ac 1 0 2 0

. . ) . . scp 00 11 22 11
To demonstrate our interactive interface described in sec- 22 33 33 33

mc

tion llI-E, Fig. 4 shows snapshots of clustering results o t icpp 11 00 01 11
model shown in Fig. 3 with different proximity thresholdsdan ’ ’ ' ’

ClUSI?r Size threshdds- . o . Table 1:Confidence ratings for the 12 white-matter features in thsteling

This interface is convenient for qualitatively evaluatingw models of four datasets, S1-S4. 3 indicates very likely teia2 indicates

clustering methods or proximity measures. This capability likely located, 1 indicates possibly located, and O indisainlocated. A rating

S | : : pair shows the ratings for the same tract in each cerebraispbere: the first

shown "3?96_"” in Fig. 5’_ Wherd_s’t mSt?ad of it 'S_ chosen as number indicates the tract in the left hemisphere, and tltensk number

the proximity measure in the single linkage algorithm. Tharf indicates the tract in the right hemisphere. WMF — whiteterafiber tract;

pictures show the resulting clusters with proximity thielshset fmajor — forceps major; uf — uncinate fasciculus; cb — cingulbundle; cst

to 0.5mm 1.4nm 1.5mm and 1.9nm It is clear that using - cortico—spinal tract; fminor — forceps minor; sIf — superlongitudinal
’ ’ ’ ) fasciculus; ilf — inferior longitudinal fasciculus; af —arate fasciculus; ac

ds; as the proximity measure res_,ul_ted in an abrupt chapge AManterior commissure; scp — superior cerebellar pedumats — middle
cluster structures around the proximity threshold ofrin® This cerebellar peduncle; icp — inferior cerebellar peduncle

is becauseds; deems short and long curves as being similar

provided that the short curve lies close to a portion of theglo

curve, usually resulting in big clusters with curves of elint bundles and the fiber bundle types in the template is easg sinc

lengths. the range of clustering proximity thresholds for a good matc
The expert confidence ratings assigned to the various beindie rather narrow. Note, for example, that the whole curve in

after automatic clustering as described in section Illedfelshown Fig. 7 spans 1.@m Besides automatically searching for the

in Table 1. Each row represents one of the target white-matjsroximity threshold, we also ask our expert to select a pnityi

tracts. Each rating pair within a row shows the ratings fat ththreshold that is visually optimal using the method in sectil-

feature in both hemispheres of the brain. A comparison acrgs1. For S5, the proximity threshold is 3rém for the optimal

the subjects shows that long, thick, coherent white-mattets, match and 3.8mfor the expert-selected threshold. F88, the

or those whose geometry is distinct from their neighborg.(e.proximity threshold is 3.8m for the optimal match, while the

the uncinate fasciculus, cingulum bundles, and forcepsomajexpert-selected threshold is 3nf The small 0. Bxmdifference

are identified with high confidence in the fiber bundle modelf both cases suggests that the optimal match emulatespleetex

In contrast, shorter, thinner white-matter tracts like #rgerior choices in these cases adequately.

commissure are almost completely missing from these ofifima e then matched the automatically thresholded clustegaglt

thresholded models. The difficulty in identifying these #B1a tg the fiber bundle template. Fig. 8 shows the matched bundles

structures in the bundle models may be due to the combingf S5 and S6. The expert rated these bundles as very likely or
effects of their small calibers, and the limited resolutiminthe |ikely to be labeled correctly.

images. Other tracts were identified with intermediate clemite. Apart from all the spurious or missing curves in the cluster

For example, some tracts like the forceps minor are ratel Witogel due to noise, partial-volume effects, etc., the ammuof
reasonably good confidence in most subjects but are missingyQy |apeling results is also likely to be affected by the amatal
rated somewhat lower in one subject, suggesting a possittle e\ ariation of a fiber bundle type across the subjects and the
in the_ model_dut_a to image artif_acts: Some tracts, SPCh as trlé‘éjistration errors. Including a large number of subjeatghie
superior longitudinal fasciculus, inferior longitudintdsciculus, template should mitigate the impact of anatomical varat@ur

arcuate fasciculus, and inferior cerebellar pedunclegived in- labeling results are also biased toward large fiber bundiesta
consistent ratings. It is important to note that the rateidentally he normalization factor ifv.

noticed that some models contained some clusters that i@gapea
spurious or at least anatomically questionable.
Despite these limitations, the results show that our mettaxd V. DISCUSSION
promise as a means for interactive clustering of DTI integra
curves into anatomically plausible clusters, at least éone of the We discuss our choice of the clustering methods in sectién V-
more prominent white-matter structures. Improvement iagen and compare it to optimization-based methods. The exparés
quality, in motion reduction, and in the algorithm itself yna uation of the fiber bundles is based on the fiber bundles select
provide better results in the future. a priori by the same expert. We discuss the potential cirityla
Using the matching and labeling algorithm from sectiorA2; in the fiber bundle selection and evaluation in section V-Be T
the matching scores for two new subjects S5 and S6 are shdioer bundles in the human brain take various sizes and shapes
in Fig. 7. The search for a proximity threshold that minincize We discuss the fact that big, coherent, distinct fiber bundle
the sum of the matching scores between the new subject filbetter identified in the expert evaluation in section V-C.

IV. RESULTS
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Fig. 4. Snapshots of exploring the clustering models shawRig. 3. (a), (b), (c), (d), and (e) show the clustering ressulith proximity threshold set to
1.5mm 2.5mm 3. 5mm 4.5mm and 5. Snmrespectively. (f), (g), (h), (i), and (j) show the same mdtieéshold with minimum cluster size threshold set to

10.

Fig. 5. The interactive interface can be used to evaluatenadhestering algorithm or proximity measure quickly. (a),((c), (d), and (e) show the same
model used in Fig. 4 with the same single linkage algorithat,different proximity measured§; instead ofd,). (a), (b), (c), (d), and (e) show the clustering
results with the proximity threshold set to Gnf 1.4mm 1. 5mm 2. Imm and 2. Jnmrespectively. The abrupt change of cluster structuresnarguoximity

threshold 1. Bimsuggests thadls; is more prone to this kind of jump thagh;.

b c d

a

Fig. 6. Four of the fiber bundles in the template: (a) left alngh bundle, (b) right cingulum bundle, (c) left uncinateida(d) forceps minor. The blue
surface represents the ventricles.



(a) S5 sagittal (b) S5 coronal

(c) S6 sagittal (d) S6 coronal

Fig. 8. The matched bundles for subjects S5 and S6. Coloresl fin each label. Blue surface represents the ventriclesreTib correspondence between

the same bundles across the two subjects.
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Fig. 7. The sum of matching scores from the clustering restilh new
subject to all the fiber bundles in the template. (a) showsréiselt of S5.

matching score

Successful modeling of this implicit physical proximity lve
should provide a means for parsing individual curves intodbes
that accurately reflect the true state of the underlying evimiatter.
Compared to optimization-based clustering methods sudk-as
means and spectral clustering in Bren al. [4], O’'Donnell et
al. [14], [15], and Maddatet al.[11], a single linkage algorithm
ensures that one distance threshold is always satisfiedcebata
fiber A and its clustelX; namely there is always another fiberXn
whose distance té is smaller than the threshold. Optimization-
based clustering often involves trade-offs among clusterthat
while the goal function is optimized, the proximity betwean
specific pair of clusters may not satisfy a particular thodsh
One advantage of an optimization-based clustering methtuht

it may be more flexible in adjusting to different bundle sizes
or different lengths of the fibers. On the other hand, thelsing
linkage algorithm might be useful if a physically-basedximaty
threshold between the tracts-of-interest can be identliiedhe
experts. Finding a physically-based proximity threshotdoag
fiber bundles is out of the scope of this paper and is a topic
of future work. In reality, noise, motion, and partial volam
effect also limit our ability to meet our anatomical assuimm.
Therefore, our method incorporates an interactive seleaif the
proximity threshold to maximize the accuracy of the cluster
the face of these artifacts.

B. Target bundle selection

One potential concern of our method is that the interactive
clustering performed by the expert rater cannot be fullyasaied

Proximity threshold is 3.®@mfor the optimal match, while the expert-selectedfrom the 12 target bundles identified for confidence ratifigss

threshold is 3. im (b) shows the result of S6. Proximity threshold is 32
for the optimal match, while the expert-selected thresli®Id. 5nm

A. Choice of clustering methods
The rationale for using a single linkage algorithm in sectit-

is because some of the 12 bundles are large and generally easi
identified and as such would be nearly impossible to ignore
visually when trying to achieve an optimal global white-teat
clustering solution. However, this potential confusionghti be
unavoidable, even if different experts did the threshadand
rating, because it seems inherently related to visual ipatte

D to achieve optimal clustering is rooted in our anatomicaletection; that is, some anatomical structures are likelgerve
assumption that in cerebral white matter there exists ariéginp implicitly as visual anchors in determining an initial estite of
physical proximity value between neural fibers within a tdus the optimal proximity threshold, followed by fine-tuning tife
and between clusters. We assume that a scientist with exgéreshold to obtain more and more accurate results. A gatent
knowledge of cerebral white matter anatomy can make thisst for achieving finer clustering is that clusters of lakgewn

implicit value explicit by interactively selecting a prowity value

and easily identified tracts break down into too many comptne

that produces a set of clusters that best represents thisnayia The fact that the first four tracts in Table 1 are all well idéed
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