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Abstract— We present a method for clustering diffusion tensor
imaging (DTI) integral curves into anatomically plausible bun-
dles. An expert rater evaluated the anatomical accuracy of the
bundles. We also evaluated the method by applying an exper-
imental cross-subject labeling method to the clustering results.
Our approach is guided by assumptions about the proximity of
fibers comprising discrete white-matter bundles, and proceeds
as follows. We first employ a sampling and culling strategy for
generating DTI integral curves and then constrain the curves so
that they terminate in gray matter. This approach seems likely to
retain anatomically plausible fibers. We then employ a clustering
method based on a proximity measure calculated between every
pair of curves. We interactively selected a proximity threshold
to achieve visually optimal clustering in models from four DTI
datasets. An expert rater then assigned a confidence rating
about bundle presence and accuracy for each of 12 target
fiber bundles of varying calibers and type (i.e., commissural,
association, projection) in each dataset. The interactiveclustering
and evaluation information was incorporated to create a fiber-
bundle template. We then used the template to cluster and label
the fiber bundles automatically in new datasets. According to
expert evaluation, the automated proximity-based clustering and
labeling algorithm consistently yields anatomically plausible fiber
bundles, although fiber bundles with smaller calibers and those
that are not highly directionally coherent are identified with lower
confidence. This work has the potential to provide an automatic
and robust way to find and study neural fiber bundles within
DTI.

Index Terms— cluster, clustering, diffusion tensor imaging, DT-
MRI, DTI

I. I NTRODUCTION

Diffusion-tensor imaging (DTI) is a magnetic resonance imag-
ing (MRI) technique that provides three-dimensionalin vivo
information about the structural integrity of cerebral white matter
based on the diffusion of water molecules. DTI tractography
is a method for visualizing white-matter fiber structure [3].
Tractography essentially involves producing, within the image
volume, a set of integral curves that follow the principal direc-
tion of diffusion. The resulting tractography models produce a
dense set of “fibers” that bear a close resemblance to known
white-matter pathways [17]. These models provide a potentially
valuable tool for understanding white-matter anatomy and for
testing hypotheses about the cognitive and behavioral correlates
of specific white-matter tracts in both healthy and diseasedbrains.

Such tests require the ability to identify and segment white-matter
tracts-of-interest (TOI). Once segmented, the structuralintegrity
of a TOI can be quantified by a variety of scalar metrics (e.g.,
average fractional anisotropy, length) [10]. However, accurately
identifying and isolating specific bundles in the visually dense
tractography models is a challenge. Manual segmentation ofthe
fiber bundles is often time consuming, typically requires anexpert
rater with detailed knowledge of white-matter anatomy, andis
prone to human error and experimenter bias. A method that auto-
matically clusters and labels the integral curves into anatomically
plausible pathways could vastly improve the efficiency of data
processing and facilitate hypothesis testing.

Our approach builds on the assumption that a proximity mea-
sure that compares fiber trajectories can represent anatomical
relationships and that there exists a threshold that segregates
a set of trajectories into discrete clusters that are anatomically
significant. This assumption has been demonstrated for somefiber
structures in Mobertset al. [13] and Corougeet al. [6]. This
paper presents a method that will, in such cases, automatically
cluster integral curves into anatomically plausible bundles. Our
method extends previous work in this area in that it enables
an expert to interactively specify a proximity threshold between
tracts-of-interest and ensures that this proximity threshold is
satisfied between the resulting clusters. Another contribution is
our evaluation of the clustering method by rating the presence of
a pre-specified set of bundles on the resulting fiber clusters.

In section II, we review prior work in this area. Section III-A
outlines the acquisition and preparation of DTI data. In section III-
B, we describe the proximity measures we used for culling
integral curves and for clustering. In section III-C, we describe
our sampling method and its constraints and the culling methods
used for generating a set of DTI integral curves. In section III-D,
we describe our clustering algorithm and the proximity threshold
used to group these integral curves into anatomically related
bundles. In section III-E, we demonstrate an interactive interface
by which an expert achieves visually optimal clustering results in
four datasets. The rater then assigns confidence ratings foreach
of 12 target white-matter fiber bundles of varying calibers and
type (i.e., commissural, association, projection) in eachdataset
(section III-F.1). We describe the construction of a fiber bundle
template with the expert’s clustering and rating results and use this
template for fully automated clustering and labeling of a subset of



the 12 selected fiber bundles on two new subjects in section III-
F.2. We show the results in section IV.

II. RELATED WORK

A number of methods have been developed for classifying,
clustering, and labeling fiber bundles in DTI.

Fiber bundles can be generated by first manually selecting one
or more regions-of-interest (ROIs) and then grouping the integral
curves that pass through these ROIs (Cataniet al. [5], Wakanaet
al. [17], and Maddahet al. [12]). Maddahet al. [12] used hand-
selected ROIs in white matter to construct a bundle templateto
which curves from a new subject can be registered. Our methodis
similar to Maddahet al.’s in that we use an expert rater to identify
the clusters and use the result to build a template; however,instead
of manually specifying ROIs, our method automatically clusters
and labels fiber bundles, which may improve the efficiency of the
process.

Recently, automatic DTI fiber clustering methods have been
developed on DTI fibers by Dinget al. [7], Corougeet al. [6],
Brun et al. [4], O’Donnell et al. [14], [15], Maddahet al. [11],
and Mobertset al. [13]. Mobertset al. [13] evaluated different
fiber clustering methods by manually constructing a set of fiber
bundles as “ground truth” and using that to test the results of
different similarity measures and clustering algorithms.They con-
cluded that the single-link algorithm used in our earlier technical
report [21] gives the best results in the clustering methodsthey
tested. We build on and expand the methods in [21].

O’Donnell et al. [14] applied a spectral clustering method on
DTI fibers from a population of brains to generate a white-matter
atlas automatically. In another work [15], they had the experts
label clusters in the atlas and used the labeled atlas to cluster new
subjects. Our method is similar to O’Donnellet al. in that we also
build a template of fiber bundles from automatic clustering results
and use the template for clustering new subjects. However, instead
of using the expert to label the clustering results, our method
incorporates the expert’s anatomical knowledge into the clustering
by implementing a minimal proximity threshold set by the expert
(see also section V-A). We also ask our expert to evaluate
the clustering results after incorporating the expert’s minimum
proximity threshold in the method. Our method also incorporates
anatomical assumptions to constrain both the curve generation and
clustering algorithms (section III-C). We have presented some of
the preliminary results as conference abstracts [19], [22].

The measure used to define the spatial proximity between inte-
gral curves is of fundamental importance for clustering. Proximity
measures represent the similarity between two data elements and
therefore can be used to determine the geometric similarityof the
two curves. A number of proximity measures have been used to
describe the geometric similarity between two curves. In general,
proximity measures can be categorized into two varieties: those
that measure the Euclidean distance between two selected points
on two curves and those that summarize all points along two
curves as the mean Euclidean distance along their arc lengths.
Examples of the former type of proximity measure include the
closest point measure, the Hausdorff distance [6], and the Fréchet
distance [2]. Examples of the latter type include the average
point-by-point distance between corresponding segments defined
by Ding et al. [7], the mean of closest distances defined by
Corougeet al. [6], and the mean of thresholded closest distances
defined by Zhanget al. [20]. Brun et al. [4] embedded the curves

in a feature space and then calculated the distance between the two
curves in the feature space. Our clustering method uses a variation
of the proximity measure defined in Zhanget al. [20], which
captures any difference between two curves while considering the
spatial proximity of the two curves along their entire arc length.
Moberts et al. [13] implemented several previously published
distance measures in their evaluation of fiber clustering methods
and concluded that the mean of closest distances performs better
than closest point distance, Hausdorff distance, and end points
distance.

III. M ETHOD

A. Data acquisition and preparation

Siemens MDDW protocol was used to collect three
co-registered sagittal double-spin-echo, echo-planar diffusion-
weighted volumes of the entire brain in 5 healthy adults (2 males,
3 females; mean (± standard deviation) age = 56. 8±10. 23). All
subjects provided written informed consent to participatein a
DTI research project approved by the Institutional Review Board
at Butler Hospital in Providence, RI.

The volumes were spatially offset in the slice direction by
0. 0mm, 1. 7mm, and 3. 4mm. Parameters for each acquisition were
as follows: 5mmthick slices, 0. 1mm inter-slice spacing, 30 slices
per acquisition,matrix = 128× 128, FOV = 21. 7cm× 21. 7cm,
TR = 7200, TE = 156, no partial echoes,NEX = 3. Diffusion
encoding gradients (b = 0, 1000mm/s2) were applied in 12 non-
collinear directions. Total time for the three acquisitions was
slightly less than 15 minutes. A vacuum pillow was used to limit
subject motion. The three acquisitions were interleaved toachieve
1. 7mm3 resolution images and then up-sampled (equivalent to
zero-filling) to 0. 85mm3 isotropic voxels for analysis.

Diffusion tensors were calculated with a non-linear sequential
quadratic programming (SQP) method [1].

B. Proximity measure

The integral curves in the cerebral white matter can be quite
long (in this paper curves are defined as a set of 3D points).
An ideal proximity measure should consider the matching on the
whole arc lengths of the two curves. Measuring proximity by the
Euclidean distance between two selected points on two curves
ignores all but these two points on those two curves. Therefore,
it is not surprising that the mean of closest distances defined by
Corougeet al. [6] is found to give better clustering results than the
closest points measure or the Hausdorff distance [13]. Corougeet
al. defined the mean of closest distances between curvesQ and
R as:

dMC(Q, R) =
dm(Q, R) + dm(R, Q)

2
,

where dm(Q, R) = mean
a∈Q

minb∈R ‖ a−b ‖, a andb are vertices on

Q andR respectively, and‖.‖ is the Euclidean norm. Note thatdm

is not symmetric whiledMC is. Symmetry is a desirable property
for a proximity measure since it removes the inconsistency of
a proximity value between two curves when the order of the
two curves is switched, and subsequently results in symmetric
proximity matrices. We can also define two other symmetric
proximity measures based ondm: the shorter mean of closest
distancesdSC(Q, R) = min(dm(Q, R), dm(R, Q)) and the longer
mean of closest distancesdLC(Q, R) = max(dm(Q, R), dm(R, Q)).



Fig. 1. (a) shows the motivation behind the mean of thresholded closest
distances.Q and R are considered different if they branch for a portion of
their lengths. Without the threshold, the mean of closest distances between
Q and R is low if they stay close for a large part of their lengths. (b)and
(c) show the difference betweendSt(Q, R, t) and dLt(Q, R, t). The arrows are
samples of distances to the other curve from the selected curve (Q in (b) and
R in (c)). Note the distance from the top ofR to Q in (c) is missing in (b).
Also note the different arrow orientations at similar locations between (b) and
(c).

When two curves form a boundary between two branching fiber
bundles, they might run very closely together for a long course,
and then diverge abruptly for a relatively short course. Although
two such fibers should be grouped into different clusters, the
mean closest distances might be low due to their long overlapping
course and they may end up being considered to be part of the
same cluster (see Fig. 1(a)). To mitigate this problem, we modify
dm by using a threshold on the minimum contributing distance
for the mean of closest distances between curvesQ andR:

dt(Q, R, t) = meana∈Q,(minb∈R‖a−b‖)>t min
b∈R

‖ a− b ‖,

where t is the minimum threshold so that distances below it are
not counted toward the mean.a andb are the vertices onQ and
R respectively.

We then define two symmetric proximity measures by replacing
dm with dt in dSC anddLC: the shorter mean of thresholded closest
distances

dSt(Q, R, t) = min(dt(Q, R, t), dt(R, Q, t)),

and the longer mean of thresholded closest distances

dLt(Q, R, t) = max(dt(Q, R, t), dt(R, Q, t)),

dSt is a discrete approximation ofDt defined in [20]:

Dt =

R s1

s0
max(dist(s) − Tt, 0)ds

R s1

s0
max( dist(s)−Tt

| dist(s)−Tt |
, 0)ds

,

wheres parameterizes the arc length of the shorter curve,s0 and
s1 are the starting and end points ofs, and dist(s) is the shortest
distance from locations on the shorter curve to the longer curve.

dSt and dLt are the proximity measures implemented in this
paper. Fig. 1 (b) and (c) show the difference betweendSt and

dLt. If a shorter curveQ runs along a longer curveR, dSt(Q, R, t)
is usually smaller thandLt(Q, R, t) since the unmatched part of
R only counts indLt. We useddSt in our integral curve culling
scheme in section III-C because partial-volume effect or noise
might result in broken short curves along a long curve and we
wanted to cull out those curves. On the other hand, once we
culled those short curves along their longer neighbors, we used
dLt to make sure any difference between two curves, including the
unmatched part, was captured when we applied the single linkage
clustering algorithm in section III-D.

We can also define the mean of closest thresholded distances
by replacingdm with dt in dMC. This measure is not used in
this paper since it has no apparent advantage overdSt anddLt in
our approach to culling curves or capturing differences between
remaining curves.

C. Generating DTI integral curves

The integral curves that make up our tractography models were
generated by solving the following equation:

p(r) =
Z r

0
~v(p(s))ds,

where r is the arc length of the generated streamline,p(r) is
the generated streamline and~v corresponds to the vector field
generated from the major eigenvector~e1 of the diffusion tensor.
p(0) is set to the initial point of the integral curve, often called
seed point. The integral curve was extended to both~e1 and
−~e1 directions from the seed point using a second-order Runge-
Kutta integration method [16], [3] with a stepsize of 1mm. The
integration stopped when the curve went out of the data boundary,
or went into a region of low linear anisotropy or low signal-to-
noise ratio. We used the linear anisotropy defined by Westinet
al. [18]:

λ1 − λ2
q

λ2
1 + λ2

2 + λ2
3

,

whereλ1, λ2, and λ3 are the three eigenvalues of the diffusion
tensor. A T2-weighted image that was coregistered with DTI
data was used to identify low signal-to-noise regions such as air.
These regions result in lower intensities in T2-weighted images
compared to water, gray matter, and white matter. A threshold on
the T2-weighted image was set to be lower than the intensities of
water, white matter, and gray matter, but higher than the intensity
of air. At any point within the data volume, tricubic B-spline
functions were used to interpolate the tensor field [3].

We first generated seed points on a fine regular grid in the
data volume and then jittered their locations. This produced
a dense set of seed points that ensured there is no place in
the image volume that was under-sampled. To reduce artificial
clusters among integral curves and maintain some space between
these curves, we culled the shorter member of any two pairs of
curves that exceeded a pre-specified threshold for proximity dSt.

Curves with errant trajectories that seem anatomically implau-
sible might also be generated due to noise, low image resolution,
or partial volume effects. To limit the number of spurious curves
and maximize the anatomical correctness of our integral curves,
we also culled these curves based on a minimum linear anisotropy
of the curve and a minimum length of the integral curve since
curves running in low linear anisotropy regions and very short
curves are often affected by partial-volume effects and noise [20].
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Fig. 2. Integral curve models generated from a 128× 128× 90 dataset with
a voxel size of 1. 7mm×1. 7mm×1. 7mm. (a) shows 438, 042 integral curves
generated from a jittered regular grid of 256× 256× 180, with minimum
length set to 13mm and minimum linear anisotropy set to 0.15. (b) shows
the model generated from the same dataset and the same jittered regular grid
sampling, and with the added culling and gray matter projection constraints.
The culling threshold ondSt is set to 1. 0mm with t = 0. 5mm. The model in
(b) has 6, 113 integral curves. Color is mapped to the linear anisotropy value.
Redder means higher linear anisotropy.

We also set a constraint that an integral curve should project into
the gray matter. This constraint removes incoherent fibers that
break in the white matter due to the partial-volume effect. This is
desirable since we focus our effort in this paper on clustering
coherent fiber structures. We accomplished this constraintby
segmenting the brain into white matter, gray matter, and cere-
brospinal fluid compartments using the FAST [23] segmentation
tool. The segmentation was performed using the non-diffusion-
weighted image as well as scalar maps of the trace of the
diffusion tensor and fractional anisotropy. We then discarded the
integral curves that would not have extended into the gray matter
within 3mm. We extended a curve by following the direction
of each curve at its two end points. We estimated the 3mm
threshold based on the observation of the gaps between the ends
of some curves that appear to project into the gray matter and
the segmented gray matter. The estimation was also dependent
on the minimum linear anisotropy threshold and the parameters
on the FAST segmentation algorithm that affect the shapes ofthe
segmented areas. We colored and rendered the resultant curves
and superimposed them on background anatomical images to
provide context.

Fig. 2 shows the difference between two integral curve models
without and with the culling and gray matter projection con-
straints. Both sets of the integral curves were generated ona
128× 128× 90 dataset with a voxel size of 1. 7mm× 1. 7mm×

1. 7mm. Both sets of the integral curves were generated from a
jittered regular grid of 256× 256× 180, with minimum length
set to 13mmand minimum linear anisotropy set to 0.15. Without
the culling and gray matter projection constraints, Fig. 2(a) shows
438, 042 integral curves. With the constraints, Fig. 2(b) shows the
generated model of 6, 113 integral curves. The culling threshold
on dSt was set to 1. 0mm. The minimum thresholdt was set
to 0. 5mm, much smaller than the resolution along each of the
data dimensions, to remove the distance contribution from the
parts of the two curves that ran very closely and were likely
from the same feature in the data. Some of the thresholds for
generating the curves such as minimum length, minimum linear
anisotropy and minimum thresholdt were set empirically. We
tried to cull the spurious fibers from noise and other artifacts and

Fig. 3. The clustering result of the model in 2(b) using the single linkage
algorithm anddLt as the proximity measure with a threshold of 3. 5mm. The
top left corner of the interactive interface contains threesliders for adjusting
the proximity threshold, minimum mean fractional anisotropy values, and
minimum number of curves in a cluster.

retain anatomically meaningful fibers by visually examining the
effect of different settings on these thresholds.

D. Single linkage clustering algorithm

We used the agglomerative hierarchical clustering method [8]
and defined the distance between two clusters as the minimum
proximity value (i.e., nearest) between any two curves fromtwo
clusters (e.g., one curve from cluster X and its closest neighbor in
cluster Y). This is called a single-linkage algorithm because any
two clusters with a single link (pairs of similar curves) between
them are clustered together. If we define the distance between two
clusters as the maximum proximity value (i.e., farthest) between
any two curves for two clusters, we have a complete linkage
algorithm. The rationale for choosing a single linkage algorithm
over a complete linkage algorithm is that some fiber bundles,
such as some parts of the corpus callosum and corona radiata,
may spread out in a sheet-like structure, although we still consider
them to be coherent fiber bundles. The complete linkage algorithm
would likely break them into smaller pieces while the single
linkage algorithm would group them as whole bundles.

We applied the single linkage algorithm to our curves using the
proximity measuredLt. The algorithm followed the three general
broad steps to generate any number of clusters from a set of
curves:

1) Obtain a set ofn singleton clusters.
2) Merge the two nearest clusters.



3) Repeat step two while the distance between the two merged
clusters in the last step is less than a pre-specified proximity
threshold.

We chosedLt, the longer mean of thresholded closest distances,
as the proximity measure between two integral curves. We chose
this measure to help ensure that any local difference in shape
between two curves was captured. In section III-C, we showed
how we useddSt to cull the short curves that are likely to result
from the partial volume effect. Here, we assumed all those short,
spurious curves had already been removed from the tractography
model and therefore chosedLt for clustering.

We modified the original algorithm in [8], which pre-specified
the number of clusters. The number of clusters generated is
inversely related to the proximity threshold. That is, the greater
the distance selected for identifying a single cluster, thefewer the
number of clusters. When the nearest-neighbor threshold isset to
a high value, there will be fewer but larger clusters; when the
threshold is set to a low value, the number of clusters increases.

Fig. 3 shows a clustering result of the model in Fig. 2(b) using
the single linkage algorithm and thedLt proximity measure with
the proximity threshold set to 3. 5mm.

E. Interactive exploration of clustering models

We built an interactive interface for exploring the clustering
results and achieving an optimal representation of white-matter
fiber bundles.

The interface is shown in Fig. 3. The model in the picture
was generated with methods described in section III-C. Single
linkage clustering was pre-computed on the model with a range
of proximity thresholds set from 0mm to 10mm with 0. 1mm
intervals. In the top left corner, three sliders were used tochange
the values of the proximity threshold, minimum mean linear
anisotropy along an integral curve, and the cluster size threshold.
The interactive system runs about 10 frames per second with a
30MB VRML model on a desktop PC with 2GhzAMD CPU and
1GB memory.

F. Evaluation

To evaluate our interactive clustering method, experts rated
their level of confidence in identifying a pre-specified set of
fiber bundles in the clustering results in section III-F.1. We then
designed a preliminary fiber bundle labeling system based onour
clustering method in section III-F.2 to evaluate the effectiveness of
our clustering method in matching fiber bundles across subjects.

1) Expert evaluation: To evaluate our interactive clustering
method, an expert rater interactively selected a proximitythresh-
old to achieve visually optimal clustering in models from four
datasets: S1, S2, S3, and S4. Datasets S2 and S4 are the same
individual scanned on different occasions. For each model,the
expert rater interactively selected a proximity thresholdthat
produced a set of color-labeled bundles that provided the “best”
clustering result, i.e. a solution that appeared to be the most
accurate representation of known white-matter anatomy when
considered globally in whole-brain models. After selecting an
optimal threshold, the rater used a four-point scale to assign
confidence ratings for identifying each of 12 target white-matter
tracts (bilaterally when applicable). To avoid circularity, the target
white matter tracts were pre-specified; that is, they were selected
as rating targets prior to viewing the models. We chose these

particular tracts because they vary in terms of their calibers
and type (i.e., commissural, association, projection) andas such
were thought to provide a fairly robust test of our method’s
ability to cluster pathways that are generally readily identified
and are reasonably consistent in their location and shape inmost
individuals. Points on the scale were 0=unlikely located ornot
located, 1=possibly located, 2=likely located, and 3=verylikely
located. The confidence ratings are listed in Table 1 in the Results
section.

2) Cross-subject fiber bundle labeling:We constructed a
white-matter bundle template based on the interactive results
presented in the previous section, and then attempted to match
integral curve bundles from two new subjects automaticallyto this
template. First, we registered the non-diffusion-weighted image
from all six datasets (i.e., the four datasets used in the previous
section and two new datasets) to one particular dataset chosen
at random using FLIRT [9]. The registration was constrainedto
translation, rotation, and scaling operations only. We then used
the transformation matrices to register all the cluster models.
Note that the clustering is done on separate subjects before
the registration. Compared to an alternative that registers all
the integral curves in the same space and then clusters these
curves, our method of clustering in individual subjects preserves
the gaps between the fiber bundles that otherwise may be filled
by curves from other subjects due to the variation in anatomy
among different subjects. For each integral curve clusterX, the
centroids of the starting pointsCs(X), middle pointsCm(X), and
end pointsCe(X) were calculated. Integral curve clusters from the
two subjects were then aligned and compared according to The
sum of the distances between these centroids:

dM(X, Y) =‖ Cs(X)−Cs(Y) ‖ + ‖ Cm(X)−Cm(Y) ‖ + ‖ Ce(X)−Ce(Y) ‖,

where X and Y are clusters of integral curves from two subjects.
To be matched as a pair, two clustersX andY from two subjects

S1 andS2 were compared to all the clusters from the other subject,
and they needed to be mutually closest to each other. That is,
dM(X, Y) should be the smallestdM(X, Z), for all Z in subjectS2,
and dM(X, Y) should also be the smallestdM(Z, Y), for all Z in
subjectS1.

From our expert evaluation of the interactive clustering results
(section III-F.1), we know that large and distinct fiber bundles are
usually well identified in all four subjects, and we believe these
four instances should match well against each other. Accordingly,
we selected six fiber bundle types that matched in pairs across
subjects to construct a color-labeled fiber bundle template. This
group of fiber bundle types includes the left and right cingulum
bundles, the left and right uncinates, the forceps minor, and the
forceps major. Fig. 6 shows four of the six fiber bundle types in
the template. Since each fiber bundle type had one instance for
each of the four subjects, there were a total of 24 fiber bundles
in the template.

With the fiber bundle template, we can automatically cluster
and label target fiber bundles from new subjects. The matching
score between a fiber bundleX in a new subject and one fiber
bundle typeY was set to

M(X, Y) =

8

<

:

mini∈S
dM(X,Yi )

|X| if there exists a matched pair
betweenX and an instance ofY,

infinity otherwise,

where |X| is the number of curves inX, S is the set of subjects



in the template whose instances ofY matchX as pairs, andYi is
the instance ofY in subjecti. M is designed to favor big clusters
in X that are close toY because small clusters in the same region
are more likely to come from partial-volume effect.

The algorithm searched for a proximity threshold on the new
subject that minimizes the sum of the six minimum matching
scores between the new subject clusters and the six types of fiber
bundles in the template.

IV. RESULTS

To demonstrate our interactive interface described in sec-
tion III-E, Fig. 4 shows snapshots of clustering results of the
model shown in Fig. 3 with different proximity thresholds and
cluster size thresholds.

This interface is convenient for qualitatively evaluatingnew
clustering methods or proximity measures. This capabilityis
shown again in Fig. 5, wheredSt instead ofdLt is chosen as
the proximity measure in the single linkage algorithm. The four
pictures show the resulting clusters with proximity threshold set
to 0. 5mm, 1. 4mm, 1. 5mm, and 1. 9mm. It is clear that using
dSt as the proximity measure resulted in an abrupt change in
cluster structures around the proximity threshold of 1. 5mm. This
is becausedSt deems short and long curves as being similar
provided that the short curve lies close to a portion of the long
curve, usually resulting in big clusters with curves of different
lengths.

The expert confidence ratings assigned to the various bundles
after automatic clustering as described in section III-F.1are shown
in Table 1. Each row represents one of the target white-matter
tracts. Each rating pair within a row shows the ratings for that
feature in both hemispheres of the brain. A comparison across
the subjects shows that long, thick, coherent white-mattertracts,
or those whose geometry is distinct from their neighbors (e.g.
the uncinate fasciculus, cingulum bundles, and forceps major)
are identified with high confidence in the fiber bundle models.
In contrast, shorter, thinner white-matter tracts like theanterior
commissure are almost completely missing from these optimally
thresholded models. The difficulty in identifying these smaller
structures in the bundle models may be due to the combined
effects of their small calibers, and the limited resolutionof the
images. Other tracts were identified with intermediate confidence.
For example, some tracts like the forceps minor are rated with
reasonably good confidence in most subjects but are missing or
rated somewhat lower in one subject, suggesting a possible error
in the model due to image artifacts. Some tracts, such as the
superior longitudinal fasciculus, inferior longitudinalfasciculus,
arcuate fasciculus, and inferior cerebellar peduncle, received in-
consistent ratings. It is important to note that the rater incidentally
noticed that some models contained some clusters that appeared
spurious or at least anatomically questionable.

Despite these limitations, the results show that our methodhas
promise as a means for interactive clustering of DTI integral
curves into anatomically plausible clusters, at least for some of the
more prominent white-matter structures. Improvement in image
quality, in motion reduction, and in the algorithm itself may
provide better results in the future.

Using the matching and labeling algorithm from section III-F.2,
the matching scores for two new subjects S5 and S6 are shown
in Fig. 7. The search for a proximity threshold that minimized
the sum of the matching scores between the new subject fiber

WMF S1 S2 S3 S4
fmajor 3 3 3 3

uf 3,3 3,3 3,3 3,3
cb 3,3 3,3 3,3 3,3
cst 3,3 3,3 3,3 3,3

fminor 3 3 2 3
slf 2,3 2,3 2,3 1,1
ilf 2,1 2,3 1,2 2,2
af 2,3 0,3 1,3 1,1
ac 1 0 2 0
scp 0,0 1,1 2,2 1,1
mcp 2,2 3,3 3,3 3,3
icp 1,1 0,0 0,1 1,1

Table 1:Confidence ratings for the 12 white-matter features in the clustering
models of four datasets, S1-S4. 3 indicates very likely located, 2 indicates
likely located, 1 indicates possibly located, and 0 indicates unlocated. A rating
pair shows the ratings for the same tract in each cerebral hemisphere: the first
number indicates the tract in the left hemisphere, and the second number
indicates the tract in the right hemisphere. WMF – white-matter fiber tract;
fmajor – forceps major; uf – uncinate fasciculus; cb – cingulum bundle; cst
– cortico–spinal tract; fminor – forceps minor; slf – superior longitudinal
fasciculus; ilf – inferior longitudinal fasciculus; af – arcuate fasciculus; ac
– anterior commissure; scp – superior cerebellar peduncle;mcp – middle
cerebellar peduncle; icp – inferior cerebellar peduncle

bundles and the fiber bundle types in the template is easy since
the range of clustering proximity thresholds for a good match
is rather narrow. Note, for example, that the whole curve in
Fig. 7 spans 1. 0mm. Besides automatically searching for the
proximity threshold, we also ask our expert to select a proximity
threshold that is visually optimal using the method in section III-
F.1. For S5, the proximity threshold is 3. 6mm for the optimal
match and 3. 9mm for the expert-selected threshold. ForS6, the
proximity threshold is 3. 2mm for the optimal match, while the
expert-selected threshold is 3. 5mm. The small 0. 3mmdifference
in both cases suggests that the optimal match emulates the expert’s
choices in these cases adequately.

We then matched the automatically thresholded clustering result
to the fiber bundle template. Fig. 8 shows the matched bundles
for S5 and S6. The expert rated these bundles as very likely or
likely to be labeled correctly.

Apart from all the spurious or missing curves in the cluster
model due to noise, partial-volume effects, etc., the accuracy of
the labeling results is also likely to be affected by the anatomical
variation of a fiber bundle type across the subjects and the
registration errors. Including a large number of subjects in the
template should mitigate the impact of anatomical variation. Our
labeling results are also biased toward large fiber bundles due to
the normalization factor inM.

V. D ISCUSSION

We discuss our choice of the clustering methods in section V-A
and compare it to optimization-based methods. The expert’seval-
uation of the fiber bundles is based on the fiber bundles selected
a priori by the same expert. We discuss the potential circularity
in the fiber bundle selection and evaluation in section V-B. The
fiber bundles in the human brain take various sizes and shapes.
We discuss the fact that big, coherent, distinct fiber bundles are
better identified in the expert evaluation in section V-C.
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Fig. 4. Snapshots of exploring the clustering models shown in Fig. 3. (a), (b), (c), (d), and (e) show the clustering results with proximity threshold set to
1. 5mm, 2. 5mm, 3. 5mm, 4. 5mm, and 5. 5mm respectively. (f), (g), (h), (i), and (j) show the same model/threshold with minimum cluster size threshold set to
10.

a b c d e

Fig. 5. The interactive interface can be used to evaluate a new clustering algorithm or proximity measure quickly. (a), (b), (c), (d), and (e) show the same
model used in Fig. 4 with the same single linkage algorithm, but different proximity measure (dSt instead ofdLt). (a), (b), (c), (d), and (e) show the clustering
results with the proximity threshold set to 0. 5mm, 1. 4mm, 1. 5mm, 2. 1mm, and 2. 5mmrespectively. The abrupt change of cluster structures around proximity
threshold 1. 5mmsuggests thatdSt is more prone to this kind of jump thandLt.

a b c d

Fig. 6. Four of the fiber bundles in the template: (a) left cingulum bundle, (b) right cingulum bundle, (c) left uncinate, and (d) forceps minor. The blue
surface represents the ventricles.



(a) S5 sagittal (b) S5 coronal (c) S6 sagittal (d) S6 coronal

Fig. 8. The matched bundles for subjects S5 and S6. Color is fixed on each label. Blue surface represents the ventricles. There is correspondence between
the same bundles across the two subjects.

(a) S5

(b) S6

Fig. 7. The sum of matching scores from the clustering resultof a new
subject to all the fiber bundles in the template. (a) shows theresult of S5.
Proximity threshold is 3. 6mmfor the optimal match, while the expert-selected
threshold is 3. 9mm. (b) shows the result of S6. Proximity threshold is 3. 2mm
for the optimal match, while the expert-selected thresholdis 3. 5mm.

A. Choice of clustering methods

The rationale for using a single linkage algorithm in section III-
D to achieve optimal clustering is rooted in our anatomical
assumption that in cerebral white matter there exists an implicit
physical proximity value between neural fibers within a cluster
and between clusters. We assume that a scientist with expert
knowledge of cerebral white matter anatomy can make this
implicit value explicit by interactively selecting a proximity value
that produces a set of clusters that best represents this anatomy.

Successful modeling of this implicit physical proximity value
should provide a means for parsing individual curves into bundles
that accurately reflect the true state of the underlying white matter.
Compared to optimization-based clustering methods such asK-
means and spectral clustering in Brunet al. [4], O’Donnell et
al. [14], [15], and Maddahet al. [11], a single linkage algorithm
ensures that one distance threshold is always satisfied between a
fiber A and its clusterX; namely there is always another fiber inX
whose distance toA is smaller than the threshold. Optimization-
based clustering often involves trade-offs among clustersso that
while the goal function is optimized, the proximity betweena
specific pair of clusters may not satisfy a particular threshold.
One advantage of an optimization-based clustering method is that
it may be more flexible in adjusting to different bundle sizes
or different lengths of the fibers. On the other hand, the single
linkage algorithm might be useful if a physically-based proximity
threshold between the tracts-of-interest can be identifiedby the
experts. Finding a physically-based proximity threshold among
fiber bundles is out of the scope of this paper and is a topic
of future work. In reality, noise, motion, and partial volume
effect also limit our ability to meet our anatomical assumptions.
Therefore, our method incorporates an interactive selection of the
proximity threshold to maximize the accuracy of the clusters in
the face of these artifacts.

B. Target bundle selection

One potential concern of our method is that the interactive
clustering performed by the expert rater cannot be fully separated
from the 12 target bundles identified for confidence ratings.This
is because some of the 12 bundles are large and generally easily
identified and as such would be nearly impossible to ignore
visually when trying to achieve an optimal global white-matter
clustering solution. However, this potential confusion might be
unavoidable, even if different experts did the thresholding and
rating, because it seems inherently related to visual pattern
detection; that is, some anatomical structures are likely to serve
implicitly as visual anchors in determining an initial estimate of
the optimal proximity threshold, followed by fine-tuning ofthe
threshold to obtain more and more accurate results. A potential
cost for achieving finer clustering is that clusters of largeknown
and easily identified tracts break down into too many components.
The fact that the first four tracts in Table 1 are all well identified



suggests they might have been used by the expert as visual
anchors for the initial threshold approximation.

C. Sizes and shapes of fiber bundles

In this paper we employ a single proximity threshold on the
clustering algorithm. In our evaluation, the bundles we chose
were rather distinct in shape and location and, apart from the
cerebellar peduncles, do not lie in close proximity to one another.
These big and coherent fiber bundles are likely the most consistent
ones across subjects and thus may serve as tracts-of-interest in
cross-subject studies more reliably. A more challenging test might
have been to determine if the method could accurately segment
more proximal fiber bundles, for example, the inferior longitudinal
fasciculus vs. the fronto-occiptal fasciculus. We plan to capture
a variety of the fiber bundles better by developing a clustering
method that detects the local size and shape of the fiber bundles
from the data and adapts the proximity threshold accordingly,
possibly with prior knowledge from the experts.

VI. CONCLUSION

We present a method for clustering DTI integral curves into rel-
evant bundles and then automatically labeling them. Our method
enables an expert to interactively specify a proximity threshold
between tracts-of-interest and ensures that this proximity thresh-
old is satisfied between the automatically generated clusters. By
doing that, the method applies the expert’s anatomical knowledge
during the clustering process instead of on the clustering results –
a key factor that distinguishes our method from prior automated
clustering methods. In this sense, our automatic clustering method
may be more strongly “anatomically motivated” than the previ-
ous ones and therefore has the potential to produce clustering
solutions that have high anatomical accuracy while limiting the
amount of human effort. An expert rater evaluated the anatomical
accuracy for these bundles. The results of this proof-of-concept
study suggest that anatomically motivated methods for integral
curve generation and clustering can reliably identify large and
coherent fiber bundles that bear close qualitative correspondence
with known white-matter anatomy across subjects. The results for
these large and coherent tracts are good both when the algorithm
is guided with interactive input from an expert rater and when
it is implemented automatically. This work has the potential to
provide a relatively fast, automatic, and accurate way to identify
and study neural fiber bundles in large numbers of DTI datasets.
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