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ABSTRACT
Objective was to assess the relationship between task demand, mental effort, task difficulty, and
performance during physicians’ interaction with electronic health records (EHRs). Seventeen physicians
performed three EHR-based scenarios with varying task demands. Mental effort was measured using eye
tracking measures via task evoked pupillary responses (TEPR), blink frequency, and gaze speed; task
difficulty (or user behavior) was measured using frequent mouse click patterns and task flow; user
performance was quantified using two types of omission errors: (i) omission errors with no evidence of
trying to complete the task and (ii) omission error with evidence of trying but unable to complete the
task. The results indicated that task demand significantly increased mental effort, but not task difficulty.
Task demand, mental effort, and task difficulty all predicted performance. Specifically, there was a
significant relationship between (i) task demand, TEPR and omission errors with no evidence of trying
to complete the task, and (ii) blink frequency, repeated search clicks and omission error with evidence of
trying but unable to complete the task. In concert, results suggest that physicians’ performance during
EHR interaction was negatively affected by task demands and increase in mental effort. This highlight
the need for implementation of appropriate quality assurance (QA) measures, in addition to EHR
usability improvement, to minimize omission errors and improve physician’s performance.
Additionally, the lack of relationship between task demand and task difficulty highlights a need for
further methodological and empirical studies to advance our understanding from theory to application
during physician–EHR interaction.

1. Introduction

In healthcare, electronic health records (EHRs) offer the
potential to improve patient care and decrease cost; however,
serious unintended consequences from the implementation of
these systems have emerged (Bowman, 2013). Poor usability
of EHR design can “create new hazards in the already com-
plex delivery of health care” (Lin & Stead, 2009), by increasing
task demands, mental effort, and task difficulty that in turn
negatively affects healthcare professionals’ performance and
patient safety (Elliott, Young, Brice, Aguiar & Kolm, 2014;
Peute & Jaspers, 2007; Russ et al., 2014; Vicente, 1999). For
example, Hill, Sears, and Melanson (2013) found that provi-
ders seeing (on average per hour) 2.4 patients require about
4,000 mouse-clicks in EHRs during a 10-hour shift. Further,
more than 1,000 adverse events associated with EHRs were
reported to the Pennsylvania Patient Safety Authority in 2011
(Sparnon & Marella, 2012). Recent reports that focused on
EHR-related medical malpractice identified over 80% of the
reported events involve patient harm: many deaths, strokes,
missed and significantly delayed cancer diagnoses, massive

hemorrhage, 10-fold overdoses, ignored or lost critical lab
results, etc. (Graber, Siegal, Riah, Johnston, & Kenyon, 2015).

Overall, the relationship between task demands, mental
effort, task difficulty (as experienced by the user due to inter-
action between user and task), and performance, has been
vigorously studied in many domains including human–com-
puter interaction (Hancock & Szalma, 2003; Merat, Antilla, &
Luoma, 2005; Szalma & Hancock, 2007), but not much work
have been done in physician–EHR interaction arena. Specific
task (e.g., information structure and information rate), indi-
vidual (e.g., cognitive capabilities, knowledge, experience),
and technology (e.g., usability, functionality) characteristics
were related to mental effort (perceived and physiological),
behavior (e.g., strategies used to perform the task), and per-
formance (Fairclough, Venables, & Tattersall, 2005; Goodhue
& Thompson, 1995; Hancock, Williams, & Manning, 1995;
Merat et al., 2005; Szalma & Hancock, 2007; Zhang & Galletta,
2006). For example, in air-traffic control (ATC) setting,
increased rate of information (i.e., increased number of air-
crafts under control) significantly increased mental effort and
degraded performance (Chen, Epps, Ruiz, & Chen, 2011;
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Edward et al., 2017). In web search setting, Brennan, Kelly,
Arguello, (2014) indicated that individuals with high cognitive
capabilities experienced less perceived effort and improved
search strategy. In healthcare setting, technological factors
like poor usability increased experienced task demand and
perceived effort (workload) leading to degraded performance
(Mazur et al., 2016). Many of the above discussed learnings
could be applied to improve physician–EHR interaction in
healthcare setting. Therefore, there is an opportunity and
need to quantify and better understand physicians’ interaction
with EHRs.

1.1. Theoretical foundation

According to limited resource theory, increase in task
demands increases mental effort necessary for task perfor-
mance and thus falters or fails performance (Kahneman,
1973; Moray, 1967). Specifically, the theory suggests that the
effect on performance is both due to mental effort and task
difficulty (i.e., how the task is experienced) and it is depen-
dent on the context, state, capacity, and strategy of allocation
of mental resources (De Waard, 1996; Kantowitz, 1987;
Parasuraman & Hancock, 2001), which seems relevant during
physicians’ interaction with EHRs.

The concept of mental effort and task difficulty has been
broadly studied to assess the effect of task demand on perfor-
mance in other domains. This was done by associating task
difficulty with operator’s adaptive strategies (or behaviors) of
resource allocation that enable them tomanage overall workload
and regulate their performance (Merat et al., 2005; Moray,
Dessouky, Kijowski, & Adapathya, 1991; Parasuraman &
Hancock, 2001; Szalma, 2002). Task demand is determined by
the goal that must be attained by means of task performance and
it is independent of the individual (De Waard, 1996;
Parasuraman & Hancock, 2001). Mental effort is defined as the
amount of cognitive resources supplied to perform a task and is
reflected in manifestation of physiological arousal such as pupil-
lary dilations (Kahneman, 1973). Task difficulty is the regulated
behavior or adaptable strategies used to cope with increased task
demand to mitigate mental effort required to perform the task
(Kantowitz, 1987; Parasuraman & Hancock, 2001).

For example, under suboptimal driving conditions, drivers
adapted task difficulty by reducing driving speed as a behavior
strategy to optimize their mental effort and improve performance
(Da Silva, 2014; DeWaard, 1996). In aviation, Boehm-Davis et al.
(2007) found that under high task demands (e.g., steep descent
angles and low visibility conditions) and high perceived workload,
pilots managed to safely land their aircraft by using a creative
strategy of speed control and glide path in order to gain time to
control the landing. Similar findings were drawn from the ATC
(Athènes, Averty, Puechmorel, Delahaye, & Collet, 2002; Hilburn,
2004; Histon & Hansman, 2002; Loft, Sanderson, Neal, & MooiJ,
2007; Sperandio, 1971) and human–computer interaction
domains (Hancock & Szalma, 2003; Hertzum & Holmegaard,
2013, Szalma & Hancock, 2007).

Given the raising number of errors within the EHR
ecosystem, and relatively limited work done in the healthcare
domain, it seems prudent that we quantify task difficulty and
assess the relationship between task demand, mental effort,

task difficulty, and performance during physicians’ interaction
with EHRs (Figure 1). Results from our study may help guide
practitioners, users, researchers, developers, and vendors to
choose/design proper EHR systems and improve training
protocols to enhance patient safety in rapidly evolving EHR
ecosystem.

2. Methods

2.1. Study and participants

The study was conducted within the Human Factors (HF)
laboratory in the department of radiation oncology at
University of North Carolina, Chapel Hill, where we have cre-
ated a simulated environment that closely mirrors the real clin-
ical environment of physician–EHR interactions. The
Institutional Review Board (IRB) approved the study.
Seventeen resident physicians and medical students’ (6 post
graduate year (PGY)-3+, 4 PGY-1, and 7 final year medical
students) participated in the study. Eye movements and screen
activities (computer mouse clicks) were monitored and captured
using Tobii X-60 (60 Hz frequency) and Eyeworks©, while
participants performed one baseline and three clinical scenarios.

2.2. Procedure

A brief introduction to the experiment/procedure, including
eye tracking, was provided to the participants. First, to gauge
participants’ physiological baseline and responses, a basic
working memory task of 3-letter memorization-recall
(repeated 10 times) was administered. Next, three stimulated
clinical scenarios involving test patients with (urinary tract

Figure 1. A conceptual model representing the relationship between task
demand, mental effort, task difficulty and performance.
Dotted lines indicate univariate analysis to test the effect of task demand on
mental effort and task difficulty respectively. The solid lines indicate multi-
variable relationship testing between task demand, mental effort, task difficulty
and performance.
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infection [UTI], pneumonia [PN], and heart failure [HF])
were presented in the Epic© EHR playground environment
(used at University of North Carolina at Chapel Hill). A 2-
minute break was provided after the baseline and between the
three clinical scenarios. Printed instructions describing pre-
specified tasks on three routine clinical scenarios were pro-
vided next to the participant display monitor (Table 1).

2.3. Measures and assessment

Data collection
Task demand. The three clinical scenarios involved EHR task
management for patients with UTI, PN, and HF,
having variable range of tasks demands were presented in
the same sequence (Mazur et al., 2016). These medical con-
ditions were chosen because they represents some of the most
common admission diagnoses to U.S. hospitals (Pfuntner,
Wier, & Stocks, 2013) and therefore their management should
be familiar to most practicing physicians. The UTI scenario
was relatively straightforward and task demands were mini-
mal as it required fewer decisions (4), followed by the HF (10)
and PN (14) scenarios, both requiring more clinical decision
making to design care for patients. Per experimental design
and medical experts’ opinion, task demand was considered as
nominal independent variable with 3 levels (UTI, PN, and
HF); and per analysis of computer mouse clicks and perceived
workload (Mazur et al., 2016) task demand was also consid-
ered as nominal independent variable with 2 levels (UTI, PN,
& HF). Thus, data analysis was conducted with task demands
set at 3- and 2-levels respectively.

Mental effort. Mental effort was quantified physiologically using
pupillary data based on task evoked pupillary response (TEPR),
blink frequency, and gaze velocity using recommended

procedures (Beatty & Lucero-Wagoner, 2000; Poole & Ball,
2006). The pupillary data was averaged to 1 sample/sec for all the
experiments. A baseline pupil size was computed based on the
basic 3-lettermemorization-recall experiment (repeated 10 times),
and consisting of 1 second pupillary data prior to the recall of the
memorized letters (averaged across 10 trials). TEPRwas calculated
by subtracting the baseline pupil size from clinical task pupil size.
Blink frequency was calculated by dividing the total number of
blinks in a given task by the task time. Gaze velocity was computed
as the distance (measured in degrees) of gaze travelled between
two consecutive samples (data collected at 60 samples per second)
divided by the inter-sample time, as recommended by Holmqvist
et al. (2011). Mental effort was considered as continuous variable
in data analysis.

Task difficulty. Task difficulty was quantified based on par-
ticipant’s behavior (strategic approach) to perform the task,
i.e., by identifying and counting repeated patterns of mouse
clicks and task flow analysis. Two researchers independently
watched the recorded videos of each scenario captured using
Eyeworks© software and coded mouse clicks into following
three categories: (1) navigation clicks (e.g., moving from one
tab to another for navigational purposes); (2) decision clicks
(e.g., selecting a test or medication to order or cancelling a
selected order or search result); and (3) Input clicks (e.g.,
placing the mouse cursor into the search box to type search
terms). Any discrepancies (e.g., in some instances, navigation,
and decision click codes were swapped) were resolved during
our weekly meetings. Commonly occurring click patterns
were extracted from the sequences using two-pass approach
adapted from Guo, Gomez, Ziemkiewicz, and Laidlaw (2016).
The first pass finds the most frequently occurred and possibly
overlapping patterns, while the second pass segments each
sequence into a series of patterns found in the first pass or

Table 1. Description of three clinical scenarios and list of instructed tasks for each scenario.

Scenario Instructed tasks to be performed

(1) Urinary tract infection (UTI) (1) Review the clinical and physical exam notes
(2) Specify low risk for venous thromboembolism (VTE) prophylaxis
Note: Ambulatory, out-of-bed and Education are sufficient prophylaxis
(3) Order any necessary urine test(s)
(4) Check results of test(s)
(5) Order the appropriate treatment for the patient

(2) Pneumonia (PN) (1) Review the clinical and physical exam notes
(2) Specify low risk for venous thromboembolism (VTE) prophylaxis
Note: Ambulatory, out-of-bed and Education are sufficient prophylaxis
(3) Write admission orders:

- Admit to Med wing “G”
- Supplemental O2/nasal cannula, wean per nursing
- IV antibiotics; arterial blood gas (ABG); blood and sputum cultures; Posterior-anterior and Lateral chest
X-ray (PA/Lat CXR)

- AM Labs; Complete blood count with differential, basic metabolic pane (BMP)

(5) Check results of tests and PA Lat CXR
(6) Order Computed Tomography (CT) of chest w/o contrast
(7) Check results of CT
(8) Change to oral antibiotics and write discharge order; schedule for follow-up to Medicine clinic in 1 week

(3) Heart failure (HF) (1) Review the History and Physical. This contains pertinent clinical history as well as physical exam
(2) Specify high risk for venous thromboembolism (VTE) prophylaxis
(3) Sub cutaneous heparin
(4) Order labs: complete blood count (CBC), Chemistry, trans thoracic echocardiogram (TTE)
(5) Check results of labs
(6) Write admission orders including daily weights and low salt diet
(7) Restart meds
(8) Tobacco cessation consult
(9) Order intravenous (IV) Lasix

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 469



singleton actions. The algorithm merges patterns with clicks
appearing in the same order but for different number of time
windows during the task. For example, a stream of three
decision clicks is considered the same as a stream of four
decision clicks, and their occurrences are combined when
ranking patterns by frequency during the first pass. Patterns
that are mutually exclusive (i.e., end of one pattern not the
same as the beginning of another pattern) were considered for
analysis. The patterns included in the study were (1) editing
order details that involved a decision click (to select the
order), multiple input clicks (to provide details like, dose,
start date, frequency, comments, reason for order, etc.), and
a decision click to accept the edits (represented as DImD); (2)
making orders that involved multiple navigation clicks while
reviewing notes or admission orders and then navigating to
place (or select) multiple orders (represented as NmDm); (3)
reviewing/exploration of orders that involved navigating to
orders to review placed/selected orders or explore hidden
sub-orders by expanding the listed orders (represented as
NDNm); (4) searching for orders that involved navigating to
the search page, then searching for an order using keyword(s),
followed by multiple selection (or cancellation of returned
search results followed by a new keyword search) of the
orders (represented as (NIDm).

Task difficulty was also quantified using task flow, mea-
sured as number of deviation from the instructed task
sequence as presented in Table 1. For example (e.g., UTI
scenario), if participant revisited (repeated) task 2 after per-
forming (or during performance of) task 3, the deviation was
counted as ‘1’. The task flow was quantified by counting total
number of repeated tasks obtained via video analysis. Task
difficulty was considered as nominal variable in data analysis.

Performance. Performance was quantified using two types of
omission errors, (1) omission error with no evidence of trying to
complete the task, and (ii) omission error with evidence of trying
but unable to complete the task (e.g., tried but failed to complete
the task like could not findmedication or test; incorrectly/partially
performed the tasks like ordering incorrect/insufficient medica-
tion or test). Two researchers evaluated performance and categor-
ization of errors via video analysis. This was further reviewed and
confirmed by an expert physician using the registry of completed

orders and video recordings. If participant made both types of
omission errors in a given scenario, their performance was coded
as ‘error’ accordingly in each of the categories for relationship
testing. Performance was considered as nominal dichotomous
variable (no error versus omission error with no evidence of trying
to complete the task; and no error versus omission error with
evidence of trying but unable to complete the task) in data
analysis.

Data analysis. Before data analysis, we completed tests for
normality and equal variance for all study variables using
Shapiro-Wilk’s and Bartlett test respectively. Results indicated
that assumptions were satisfied (normality: all p > 0.05; equal
variance: all p > 0.05).

A series of univariate least square (or nominal logistic) regres-
sion analyses were performed to assess the relationship between
task demand (3- and 2-levels), mental effort, and task difficulty,
as represented in Figure 1. Task demand was considered as
independent variable, whereas mental effort and task difficulty
were considered as dependent measures. Participants were
included in the analysis and considered as random factor. A
post-hoc analysis using Tukey’s HSD was performed to assess
the significance between the three levels of task demand. Next,
all variables (task demand, mental effort, and task difficulty)
were included in a multivariable binomial logistic regression
analysis to assess the relationship with performance. An alpha
level of 0.05 was set for significance testing. All analyses were
performed using JMP© 13 software and SPSS version 23©.

3. Results

Descriptive statistics of mental effort, task difficulty, and
performance for three clinical scenarios (UTI, PN, HF) are
provided in Table 2.

3.1. Task demand

Relationship with mental effort
There was a significant negative effect of task demands on
blink frequency (3-levels: F(2,29) = 7.4, p = 0.003; 2-levels: F
(1,29) = 15, p < 0.001), indicating that blink frequency was

Table 2. Descriptive statistics of Mental Effort, Task and Performance for the three clinical scenarios.

Measures UTI PN HF

Mental effort TEPR in mm1 [mean(sd)] 0.15 (0.14) 0.16 (0.17) 0.14 (0.16)
Blink Freq. as #/min 1 [mean(sd)] 8.7 (3) 4.3 (2) 4.2 (3)
Gaze Speed in degrees/sec 1 [mean(sd)] 138 (46) 134 (29) 139 (43)

Task difficulty Editing order details
(Patter: DImD) [count]

2 6 3

Making orders
(Pattern: NmDm) [count]

32 64 36

Reviewing/exploration of orders
(Pattern: NDNm) [count]

14 20 14

Searching for orders
(Pattern: NIDm) [count]

8 19 12

Task flow [count] 8 13 10
Performance Omission error with no evidence of trying to complete the task [count] 1 8 2

Omission error with evidence of trying but unable to complete the task [count] 2 8 7
1The eye data on one participant was discarded due to excessive loss of data (>40%) for the three clinical scenarios.
N: navigation clicks; D: Decision clicks; I: Input clicks; Nm: two or more consecutive navigation clicks; D m: two or more consecutive decision clicks; I m: two or
more consecutive input clicks.
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significantly lower in PN and HF compared to UTI scenario
(p < 0.05).

Relationship with task difficulty
There was no significant effect of task demand (both 3- and 2-
levels) on task difficulty (p > 0.05).

3.2. Performance

Relationship with task demands, effort, and task difficulty
There was a significant positive relationship between omis-
sion errors with no evidence of trying to complete the task
and task demand, and mental effort measured by TEPR
(with 3-level task demand: χ2(9,n=51) = 25, p = 0.003; with
2-level task demand: χ2(8,n=51) = 14, p = 0.05). The odds of
making an error in PN case was 15 and 10 times more
likely compared to HF and UTI cases respectively for 3-
levels of task demand; whereas the odds of making an error
in PH & HF case grouped together was 16 times more
likely compared to UTI case for 2-levels of task demand.
Also, TEPR was 110% more dilated in participants who
made an error compared to participants with no error
(p = 0.002) (Table 3).

There was a significant negative relationship between omis-
sion errors with evidence of trying but unable to complete the
task and mental effort measured by blink frequency and a
significant positive relationship with click pattern, specifically
with searching for orders (NIDm) (with 3-level task demand: χ2

(9,n=51) = 21, p = 0.01; with 2-level task demand: χ2(8,n=51) = 19,
p = 0.01). The odds of making an error by participants who
performed repeated searching for orders (NIDm) was 19 (when
task demand was included at 3-levels) and 17 (when task
demand was included as 2-levels) times more likely compared
to participants with no error (p = 0.03). Blink frequency was
50% lower in participant who made an error compared to the
participants with no error (p < 0.001) (Table 3).

4. Discussion

There are number of key contributions of our study to the
body of knowledge of human–computer interaction, espe-
cially to healthcare domain. First, we found that EHR-related
task demands significantly increases mental effort, which is in

line with previous findings including aviation (Ayaz et al.,
2010; Colle & Reid, 2005; De Rivecourt, Kuperus, Post, &
Mulder, 2008; Hancock et al., 1995; Hoffman, Pene, Rognin,
& Zeghal, 2003; Lee, Kerns, Bone, & Nickelson, 2001), nuclear
power (Byun & Choi, 2002; Liang et al., 2009), human–com-
puter interaction (Cullen, Dan, Rogers, & Fisk, 2014;
Hertzum, & Holmegaard, 2013), and in healthcare (Carswell,
Clarke, & Seales, 2005; Mazur et al., 2016; Young, Zavelina, &
Hooper, 2008; Yurko, Scerbo, Prabhu, Acker, & Stefanidis,
2010; Zhang, Padman, & Levin, 2012). Specifically, we found
blink frequency to be a predictor of mental effort as evoked by
task demands. Similar findings have been reported by other
studies in various domains, commonly indicating that a lower
blink frequency is assumed to indicate a higher visual work-
load (Brookings, Wilson, & Swain, 1996; Bruneau, Sasse, &
McCarthy, 2002; May, Kennedy, Williams, Dunlap, &
Brannan, 1990; Mosaly, Mazur, & Marks, 2016; Poole &
Ball, 2006; Zheng et al., 2012).

Second, we found that both task demands and mental
effort as measured by TEPR to be predictors of performance,
specifically omission errors with no evidence of trying to
complete the task (Table 3). We found that participants
made more omission errors in PN case, followed by HF case
when compared to UTI case, and had their TEPR dilated
110% more than participants that had no errors. These find-
ings are in line with previous findings indicating that higher
task demands lead to increase in mental effort that increases
errors in various domains (Da Silva, 2014; Stetina, Groves, &
Pafford, 2005) including physician–EHR interactions (Ariza,
Kalra, & Potts, 2015; Mazur et al., 2016; Mosaly et al., 2016;
Zhang & Walji, 2011).

Third, we found the increase in mental effort and task
difficulty (click pattern) to be predictors of performance,
specifically omission errors with evidence of trying but unable
to complete the task (Table 3). We found that participants
who made errors had significantly lower blink frequency
(decreased by 50%) and exhibited frequent searching for
orders (NIDm) click pattern behavior.

To further understand the task difficulty based on click
behavior, we assessed the videos and found that participants
utilized two different procedures, i.e., templated versus non-
templated, while making orders within computerized physi-
cian order entry (CPOE). Templated procedure enabled

Table 3. Summary of the study results that had significant relationship with performance.

Performance

No Errors
Omission Errors with
no evidence of trying

Omission Error with
evidence of trying

Variable Levels/Measures 3-level 2-level 3-level 2-level 3-level 2-level

Task Demand (3- or 2-level)* [count] UTI 14 14 1 1 2 2
PN 4 } 13 8+ } 10 8 } 15HF 9 2 7

Mental Effort [mean (SD)] Blink Freq. (#/minute) 6.1(4) 5.3 (4) 3.2 (3) + ++

TEPR (mm) 0.12 (0.13) 0.25 (0.14) + ++ 0.19 (0.13)
Task Difficulty [count] Searching for orders (NIDm) 11 12 23+ ++

*3-levels: UTI, PN, HF; 2-levels: UTI, PN&HF
+ 3-level task demand: p<0.05
++ 2-level task demand: p<0.05
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participants to access custom “Order Sets” via “Admissions”
module (listing only the orders relevant to the selected reason
[diagnosis] for admission). On the other hand, non-templated
procedure enabled participants to access “Order Sets” directly,
which required “free text search”, for orders to be placed
(thus, frequent search pattern). We found that participants
who followed templated procedure had more omission errors
with no evidence of trying to complete the task than partici-
pants who followed non-templated procedure; whereas parti-
cipants who followed non-templated procedure had more
omission errors with evidence of trying but unable to com-
plete the task, than participants who followed templated pro-
cedure (Table 4).

Interestingly, these findings could be related back to the
concepts of limited resource theory (Broadbent, 1958;
Kahneman, 1973; Meister, 1976; Sperandio, 1971). That is,
we believe that participants who used templated procedure
experienced more mental effort (i.e., increased TEPR) that
potentially contributed to omission errors as they “stopped”
paying attention to our instructed list of tasks (attention
tunneling or narrowing), and instead focused their attention
on the listed orders presented in the Epic EHR system after
they admitted the patient using “Admissions” module. For
example, in PN case, 3 of the 17 participants using templated
procedure checked “high risk for venous thromboembolism
(VTE) prophylaxis” (high risk of blood clots) instead of “low
risk for venous thromboembolism (VTE) prophylaxis” as
instructed. These orders were presented in the EHR as a list
format as “VTE Risk Category – High” being listed first
followed by “Low Risk of VTE”, with a check box in front
of them. Participants chose the first box on the list by seeing
the term VTE and not reading the complete phrase (term
“High” was presented at the end of the phrase and term
“Low” was presented at the beginning of the phrase for VTE
risk), thus leading to an unconscious human error. Similar
issues were also seen for orders like “sputum culture” (to find
bacteria or fungi that are cause infection of the lungs or the
airways leading to the lungs) for PN. Such challenges might be
especially relevant during handoffs and cross-cover situations
(Mazur et al., 2016; Mosaly et al., 2013). Our findings empha-
size that some task-related characteristics that must be exer-
cised by physicians when using templates in EHRs (e.g.,
decision rate per EHR display space, complexity of decisions,
relationship between decisions) could enhance or constrain
creative clinical thinking and promote automaticity
(Hartzband & Groopman, 2008). In addition to task charac-
teristics, our findings also highlight some technological char-
acteristics (e.g., usability, functionality, search engines) to
minimize mental effort as well as implementation of proper
quality assurance (QA) check to assure self-regulation (or

slow-down) of physicians’ behavior to facilitate careful check
of their work before approval.

On the other hand, participants who followed non-tem-
plated procedure were unable to complete instructed tasks
despite the use of variety of keywords and multiple searches,
which resulted in lower blink frequency due to increased
mental effort via visual load. It is possible that these partici-
pants lacked proper training on keyword searches to effec-
tively interact with EHR’s database and/or sub-optimal
functionality of EHR’s search databases itself. For example,
when using search keywords like “VTE”, “high VTE, or “high
risk venous”, database would return only “low risk for VTE
prophylaxis”, resulting in a conscience human error (e.g.,
giving up search effort and selecting low instead of high
VTE; which, itself seemed to some degree as a surprising
behavior that compels further investigation). Similar beha-
viors were also seen for orders like “subcutaneous heparin”
(used as anticoagulant injection to minimize blood clots),
“Trans thoracic echocardiogram (TTE)” (a type of echocar-
diogram), and “IV Lasix” (to treat acute pulmonary edema),
all exhibiting frequent multiple loops of repeated search beha-
vior. Such challenges are often evident in real clinical settings
where physicians, when unable to finds orders in EHRs,
would delegate the task to their subordinates (i.e., to nurses
or resident physicians) to complete the task. Zhang, Padman,
and Levin (2014) also found similar issues with Epic EHR
system while using templated versus non-templated proce-
dures for order sets. They discussed advantages and disadvan-
tages of one procedure over the other and recognize that
usability improvement for the design of the order sets may
not be the best solution in all applications. Our findings
highlight the opportunity to use click patterns as a QA metric
(e.g., flagging some interactions [great number of search pat-
terns] as suboptimal with likelihood of error) in addition to
usability improvement may improve performance. Similar
efforts were done by Zheng, Padman, Johnson, and
Diamond (2009) where they found that some of the naviga-
tional patterns in EHRs significantly deviated from the ideal
patterns and therefore understanding these task difficulties or
undesirable user behaviors characteristics may help in inform-
ing corrective actions such as focused user training or con-
tinued system reengineering.

Other highly reliable industries monitor and model human
behaviors and interaction with computers to ensure safety
(Loft et al., 2007; Parasuraman & Hancock, 2001; Sperandio,
1971). Thus, tracking users’ behavior during EHR interaction
could be useful to improve human performance (e.g., via
constructive feedback) (Mazur et al., 2017), offer suggestions
regarding suboptimal usability and functionality (Zhang et al.,
2014) of EHRs and increase patient safety (Edwards, Moloney,

Table 4. Describes the %(n) of participants who followed templated vs. non-templated procedure and made (or not made) omission errors.

Errors No Errors
Omission Errors with
no evidence of trying

Omission Errors with
evidence of trying

Followed Templated Procedure
(63% [n=32])

50% (16/32) 28% (9/32) 22% (7/32)

Followed Non-templated Procedure
(37%[n=19])

36% (7/19) 11% (2/19) 53% (10/19)
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Jacko, & Sainfort, 2008; Middleton et al., 2013). Overall, we
found that most of our investigated relationships to be in line
with previously established relationship within the HCI
domain. However, the lack of relationship between task
demands and task difficulty suggests that further methodolo-
gical and empirical studies are needed to advance our knowl-
edge on ways to quantify task difficulty during physicians’
interactions with EHRs. Future research could also explore
the ways to examine the relationship between mental effort
and task difficulty, while considering potential tradeoffs
between interaction speed and accuracy.

There are some limitations to this study, and thus caution
should be exercised in generalizing our findings. First, study
findings are based on 17 participants (resident physicians and
medical students) and three clinical scenarios that are consid-
ered to be the most commonly performed tasks in the hospital
environment (Pfuntner et al., 2013). However, all participants
in the study were knowledgeable in performing these common
tasks. Second, techniques employed to calculate TEPR, blink
frequency and gaze velocity are challenging and are not perfect.
For example, pupillary dilation is affected by change in illumi-
nation of the display, gaze etc. Any loss of the pupillary mea-
sures is coded as ‘0’ in the raw data and hence the software has
over or under estimated eye blinks, and change in participants’
position (leaning toward and away from the display monitor),
and repeatedly looking at the keyboard to perform typing may
have affected the eye gaze, pupil and blink data. Therefore, we
performed visual inspection of raw pupillary data to identify
potential outliers and data that was considered invalid was
discarded (and linearly interpolated for pupillary data), based
on the recommendation provided by Beatty and Lucero-
Wagoner (2000), Holmqvist et al. (2011) and Marshall (2005).
Third, quantifications of task difficulty and performance are
challenging and could be inexact. Therefore, two researchers
independently reviewed the videos and coded mouse clicks
(with discrepancies resolved during weekly meetings) before
computerized sequences algorithms were used (Guo et al.,
2016). We also had an experienced physician verifying our
performance coding.

4.1. Conclusion

We found that physicians’ performance during EHR interac-
tion was negatively affected by task demands and increase in
mental effort. The results also suggest that tracking task diffi-
culty based on users’ behavior (e.g., click patterns) could be
used as a QA metric to predict performance. Overall, our
findings are aligned with prior research indicating that high
task demands evoke high mental effort and affect performance.
However, the lack of relationship between task demand and
task difficulty highlights a need for further methodological and
empirical studies to advance our understanding of physicians’
interactions with EHRs. In concert, our findings might bring
the necessary knowledge, and urgency to help designers
improve usability of EHRs, and healthcare organizations to
choose appropriate EHRs and develop training methods to
improve quality and patient safety.
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