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Abstract

We present a method for adapting an event-based vir-
tual reality application originally implemented for shared-
memory-based rendering systems to a cluster rendering sys-
tem. We use a master/slave model: the master node pro-
vides synchronized event streams for consumption in dupli-
cated application instances on each slave node. Our main
contribution is a simple, MPI-based approach to achieve
robust synchronization of an event-based VR application in
a cluster. Though polling-based synchronization methods
exist, they cannot readily support an event-based paradigm.
Our method helps resolve this dilemma.

1 Introduction

Event-based models for developing interactive applica-
tions are well known in computer graphics [4]. In an event-
based application, user input generates events, which are
records of state changes for a given user-controlled device.
Events can also be generated by system resources such as
timers. Events are stored in a queue and dispatched to
event listeners, objects that have registered with the event
dispatcher to be notified when a particular class of event
is dispatched. The event listeners in turn update the appli-
cation state based on each event notification. Event-based
applications contrast with polling-based models where the
application queries a device’s state periodically to deter-
mine whether its state has changed since it was last queried.
VR researchers at Brown have found the event-based model
compelling for both conceptualizing and developing inter-
active applications, and many of the applications driving our
4-walled Cave [3] utilize such a model. These applications
were originally developed for a multi-pipe, shared-memory
graphics system.

Over the past several years, much work has been devoted
to driving multi-display VR setups with distributed, com-
modity graphics nodes rather than a shared-memory system.
The reasons for migrating from high-end, shared-memory

graphics architectures to commodity-based cluster architec-
tures for VR applications running on multi-display systems
are well-documented [12] [13]. Nonetheless, transitioning
code from a shared-memory system to a cluster is not with-
out its challenges. Regardless of architectural approach,
drawing to multiple displays requires some mechanism of
sharing information amongst each graphics subsystem. For
a coherent image based on a consistent application state to
be rendered across all displays, this sharing is necessary.

Combined with their specialty hardware, Silicon Graph-
ics’ IRIX TM operating system solves this issue with an in-
trinsically shared memory model. Only for a few specific
instances (e.g. OpenGL display list calls) must the pro-
grammer ever acknowledge the existence of multiple graph-
ics cards; most often the mode of ensuring synchronization
between pipes is transparent. In clusters, the burden of in-
formation sharing is shifted to the programmer. The explicit
synchronization of information across all nodes is the major
issue in adopting a cluster for multi-display rendering.

Our method seeks to easily adapt an event-based VR
application originally implemented for the single shared-
memory node case to a cluster environment. We accomplish
this by duplicating instances of the application across all
cluster nodes and inserting several stages into the event dis-
patching mechanism to distribute events to each application
instance and to synchronize their consumption. These ad-
ditional stages in the event pipeline are encapsulated within
Message Passing Interface (MPI) based [8] code, which we
then interpose in the original applications and which con-
ceals the intricacies of MPI from the application imple-
mentation. Though this software is not yet available pub-
licly, we hope that our description serves as a beneficial
model for others attempting to implement event-based ap-
plications for VR clusters. It should be noted that a com-
plete multi-display VR system has additional requirements,
such as configuring viewing projections for individual tiles,
that will not be treated here.

The structure of this paper is as follows. A discussion of
alternative methods for synchronization in rendering clus-
ters is given in Section 2. The description of our general



approach and implementation details is given in Section 3.
Section 4 describes several applications that we adapted to
the cluster successfully. Finally, our conclusions and ideas
for future research are presented in Section 5.

2 Related Work

Several methods for synchronizing applications in a clus-
ter graphics environment have been proposed. These range
from an extremely low-level approach of transmitting ren-
dering primitives across the cluster, to a master/slave ap-
proach whereby one master node controls the execution of
many slave nodes, to a distributed scenegraph approach in
which all or part of a scenegraph object is stored on each
node and changes to this scenegraph are propagated syn-
chronously across the cluster.

Chromium [7] takes the first of these tacks. It replaces
the OpenGL library on a given node and forwards an appli-
cation’s GL calls to one or more nodes in the graphics clus-
ter. This technique is astonishingly elegant as any arbitrary
OpenGL-based program can theoretically be run across
multiple displays. Unfortunately, the network bandwidth
requirements for applications with large amounts of chang-
ing geometry are prohibitive. To address this, Chromium
can employ sort-first parallelism whereby each primitive is
sent (in the ideal case) only to the node(s) that ultimately
must display it. While effective for spatially well-organized
geometry, in the worst case, data may need to be sent to all
nodes [13].

Distributed Open Inventor [6] and OpenSG [15] imple-
ment a scenegraph structure that can be distributed across
the nodes of the graphics cluster. Once this data structure
exists on the nodes of the cluster, network messages invok-
ing scenegraph updates maintain its synchronization across
all nodes. If the scenegraph changes are minimal, this ap-
proach is very efficient as network traffic is proportionally
minor. Of course, such proportionality becomes a serious
disadvantage if continuous and major changes are needed,
especially if new geometric objects are often added and re-
moved.

Adapting an existing event-based, shared-memory appli-
cation to a cluster environment using Chromium or OpenSG
eliminates the need to synchronize events across the cluster
as the synchronization occurs at the level of graphics prim-
itives instead (OpenGL streams and scene graph nodes, re-
spectively). From the API users’ point of view, application
state is, in both cases, only maintained on one node. Never-
theless, the aforementioned bandwidth considerations ren-
der these approaches infeasible for some applications.

A good balance of transitional simplicity and synchro-
nization efficiency is achieved in the master/slave model,
implemented in both the VR Juggler [2] and Syzygy [12]
APIs. VR Juggler is a complete VR system that includes

device drivers, windowing support, a math library, runtime
reconfiguration capabilities, and clustering support. The
support for running in a cluster environment is provided
by NetJuggler [1] in VR Juggler 1.0 and is built in to the
second version of VR Juggler as Cluster Juggler [10]. The
master/slave approach achieves synchronization by running
an identical copy of the rendering application on each of
the cluster nodes. The master node (which could also be
a rendering node) is responsible for regulating these du-
plicated application instances, such that at any given time
each instance is in the same state. In contrast to our frame-
work, both APIs employ a polling-based model for sup-
porting user interaction. User interface code periodically
queries current values of device data. Thus, synchroniza-
tion is accomplished by specifying a strict application loop
employing network barriers to ensure that each duplicated
application instance will have the same user-inputted device
data available for polling prior to the rendering calls for the
next frame. We borrow from these approaches by mandat-
ing synchronization of input at a specific point in the appli-
cation loop. Where the polling-based methods use this step
to update the referents of device data objects, during syn-
chronization, our method dispatches any queued events for
consumption by registered event listeners.

For the VR programmer who already has stable appli-
cations in a non-cluster rendering environment, the mas-
ter/slave model represents the simplest transition. Running
many copies of the same application on many nodes should
be trivial for an application that runs on one node. The
internals of the application require no changes other than
the mechanisms to maintain input synchronization. Correct
rendering only requires adjustments to the viewport trans-
form based on the physical geometry and arrangement of
the display tiles. Network traffic is very reasonable as typi-
cal input types needed for interactive VR applications have
very small space requirements.

Several features unique to Syzygy deserve mention. In
addition to a master/slave model, Syzygy also provides a
distributed scenegraph, which runs on the same infrastruc-
ture, but maintains synchronization in a very different man-
ner (as was discussed in regards to OpenSG). Syzygy can
also robustly handle the expected or unexpected entry and
exit of nodes into the cluster.

3 Method

3.1 Goals

Our primary goal was to transition event-based appli-
cations originally written for shared-memory, multi-pipe
SGITM architecture to a cluster of commodity rendering
nodes. This overarching goal in turn produced several
corollary goals:



1. Minimize changes to applications and underlying
event framework

2. Support interactive VR applications

3. Robustly manage processes on all cluster nodes

3.2 Approach

In accordance with our first goal, we chose to employ the
master/slave approach for synchronization. Because in the
event-based model application state is controlled by event
listeners, our problem became one of guaranteeing the syn-
chronization of event notification in the duplicated applica-
tion instances.

On an abstract level, an event-based application behaves
as follows. A device handler executes asynchronously to
the application and generates events whenever the state of
a user-controlled input device changes. These events are
stored in a queue that is accessible by the application. In
an interactive VR application, devices continuously gener-
ate events (e.g. head tracking); hence we refer to an event
stream that feeds into this queue. At some convenient point,
the application transfers execution to an event dispatcher.
The job of the dispatcher is to notify event listeners that
have registered interest in the particular class of event being
dispatched. These listeners in turn update the application
state based on the event’s information. For example, the
viewpoint update code in a VR application would register
to be notified of events generated by the head tracker de-
vice. Once registered, each event generated by a change in
that tracker’s state (i.e. position and/or orientation) would
be dispatched to that code, and the viewpoint would be
changed accordingly. Figure 1(a) depicts this event-based
model for the single node case.

Fundamentally, our approach for adapting to the clus-
ter is to interpose an event distribution scheme between the
event dispatcher and the event listeners. To this end, the
event stream is queued at one node as before (we refer to
this as the master node). The master node executes an event
dispatcher and registers a single event listener that listens
for all events. On each event notification, the listener se-
rializes the event and stores it in a buffer. Prior to render-
ing, this serialized event data buffer is broadcast to the mul-
tiple rendering nodes (we refer to these as client nodes).
Each client receives the serialized event data, reconstructs
the event objects from their serialized form, and dispatches
these events locally. Because the applications on the clients
are duplicates of the original single-node case, the same
event mechanisms are present, and this dispatch will no-
tify the same listeners and update the state in an identical
manner to the application running on a single node. Figure
1(b) depicts the additional components we implement for
the cluster.
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Figure 1. (a) Illustrates typical event based
model. (b) The additions needed to this model
for synchronization in a cluster. New pieces
are interposed between the original event
stream arrival and consumption points.

3.3 Implementation

As mentioned above, our implementation introduces sev-
eral steps between the event dispatcher and event listeners
of an existing shared-memory VR application. To achieve
our first goal of minimizing changes to the existing appli-
cation, we first implemented most of the code for these ad-
ditional steps in a group of MPI processes running on all
nodes. Second we created a new modular device driver
for the original rendering application that communicates
with the MPI client process via inter-process communica-
tion (IPC).

We chose to use MPI as it has become thede factostan-
dard for cluster-based computation, and, moreover, is op-
timized to perform with very low latency when communi-
cating with the MyrinetTM [9] networking hardware in our
cluster. This low latency is a requirement for our second
goal of running VR applications interactively.

The MPI root process receives the event stream gener-
ated by the same device handler module used in the original
application. This root process loads the same device config-
uration as the single-node case, and thus registers to listen
for identical event classes. The primary sources of events
for this handler are a VRPN [11] server and a custom in-
terface to listen for TCP/IP network messages. When the
MPI root process begins, it allocates a buffer into which
its single event listener will serialize all events. After all
available events are dispatched and subsequently serialized
on the root node, the buffer is broadcast to each client and
stored in IPC shared-memory.

After this broadcast, each MPI client process blocks un-
til its associated rendering process is ready to dispatch new
events. The readiness of a given rendering node is com-
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Figure 2. Our solution to event synchronization interposes MPI code to regulate the distribution of
events to each rendering node. The event stream is received by the root MPI process, which serializes
and broadcasts the stream to the MPI client processes. These processes supply the event stream
along with synchronization barriers to the rendering processes via IPC. The dotted line represents
the division between the original application and the new device handler piece we added to generate
events from the shared-memory buffer.

municated via an IPC shared-memory segment storing a
Boolean value, referred to as the “ready flag.” The render-
ing process sets the ready flag to true immediately after its
OpenGL buffer swap.

After this ready flag is set to true, the rendering processes
block until the MPI clients pass an MPI barrier and set an-
other IPC Boolean, the “all-ready flag,” to true. At this point
the serialized event data is “deserialized.” The reconstituted
event objects are then dispatched into the unaltered event
distribution module from the original application. An anal-
ogous handshake using a pair of IPC Booleans (referred to
as “done flag” and “all-done flag”) combined with an MPI
barrier forces each rendering process to finish the event re-
ceiving code, and thus, start the rendering code, simultane-
ously. These modifications are implemented by adding new
device handler code. The new code replaces, but adheres to
the same interface, as the original application’s device han-
dlers, thus making its inclusion transparent to the rest of the
rendering program. Figure 2 depicts the entire system of the
rendering and MPI processes.

3.4 Timing

As explained above, the MPI and rendering processes
execute in lockstep while the rendering node is dispatch-
ing events from the serialized buffer. After this is com-
pleted, the rendering nodes make their graphics calls, and

the MPI nodes serialize and broadcast new events. We as-
sume that the rendering always takes significantly longer
than the event broadcast for reasons described below. Fig-
ure 3 illustrates the timing of the system along with pseu-
docode for each step.

Serialization involves tightly packing raw event data into
the broadcast buffer. Each serialized event begins with one
byte signifying the type of event followed by the data spec-
ifying the particular event of that type. Tracking events,
for example, comprise a four-by-four matrix, hence 16 dou-
bles are stored in addition to a string indicating the specific
tracker that generated the event. Most events require around
100 bytes of storage. Our tracking system updates at ap-
proximately 100 Hz. If we assume a minimal interactive
framerate of 20 fps, then each tracker will generate about 5
events per frame. Thus, each event broadcast is on the order
of 1000 bytes. Our MyrinetTM interconnects can transmit at
250 MB/s with a latency of 5µs with the MPICH GM im-
plementation of MPI [9]. Therefore, the total time needed
for the synchronized distribution of events is of order 10
µs. Contrasted with an average time to render one frame of
order 10 ms, the overhead of the cluster is negligible.

It should be noted that our synchronization scheme only
ensures that rendering of the current frame begins simulta-
neously, not that the vertical retrace or OpenGL buffer swap
of the rendering nodes is synchronized. To address these is-
sues we respectively use the genlock and framelock features
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	 kill rendering
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Figure 3. The serialization and broadcast of events occurs in parallel to the rendering of the scene.
After rendering completes, handshaking using MPI barriers and IPC Boolean flags forces the ren-
dering process to dispatch waiting events before the MPI Root is allowed to begin serializing and
broadcasting again. Time is not to scale, as we assume rendering always takes much longer than
event serialization and broadcast.

of our 3DLabs Wildcat IIITM 6210 graphics hardware [14].

3.5 Issues

Because our guarantee of image coherence is predicated
on the fact that application state does not change based on
anything other than the event listeners, several special cases
are considered that could reasonably be ignored in shared-
memory systems. As is discussed in [12] [13], using dupli-
cated application instances requires that each instance have
an identical conception of time and generate random num-
bers based on the same seed. We introduce a new event
into our framework to explicitly deal with time. The root
MPI node generates a time event at the beginning of each
event broadcast. It is crucial for synchronization that any
update to application state based on time use this event’s in-
formation rather than querying an individual node’s internal
clock.

An additional complication we encountered in our tran-
sition was the proper management of processes and memory
across the cluster nodes. We expect our cluster to be highly
reliable, and we therefore did not attempt to robustly handle
random failures as Syzygy does; after six months of use,

this expectation has not introduced any problems. If a ren-
dering process unexpectedly dies, we, at the very least, want
every other rendering process to exit in addition to the MPI
processes. Also, if the user wants to quit, the same must
occur. After each broadcast the client MPI code checks to
see if its associated rendering process is still alive. Using an
MPI AllReduce with an “or” operation, we communicate
this condition to all nodes. If the result of this global “or” is
true, then each node signals its rendering process to exit.

4 Results

We employed our approach to adapt several existing VR
research applications written for an SGITM Onyx2 IR 4-
pipe machine to our new cluster of four IntelTM-based ma-
chines with 3DLabsTM Wildcat graphics hardware. There
was no noticeable slowdown in running these examples on
one node or all nodes of the cluster. In practice, the render-
ing of our scenes always takes much longer than the event
broadcast, and because these are performed in parallel, the
overhead of the cluster is only the deserialization and re-
dispatch of the events, which is very fast.



4.1 Fluid Flow Visualization

Our driving application for adapting an existing VR pro-
gram to cluster-based rendering was an air flow visualiza-
tion around the wings of a bat. Many particles are added,
deleted, and advected each frame, thus the master/slave
model is ideal since it would be unrealistic to distribute ge-
ometric updates and maintain an interactive framerate. In-
stead, updates to the geometry on each rendering node are
based on the elapsed simulation time. Thus, the effective-
ness of the time event was crucial. We observed no discon-
tinuity as particles flowed across different display tiles.

4.2 WorldToolkit TM Applications

We had previously integrated our event model into a
WorldToolkitTM [16] shell such that we could utilize WTK
for rendering and window creation. At the same time, we
were still able to use our same event-based methodology.
We were able to run duplicated instances of these WTK
applications and use the event stream to update their state
synchronously.

4.3 Trauma Surgery

A point-cloud dataset consisting of approximately
100,000 points had been collected to immersively visualize
the hands of a surgeon practicing on a dummy. The size of
the data made distribution of geometric changes infeasible.
Synchronization relied heavily on the timing events which
enabled each node to load the correct timestep of the data.
Again we were unable to detect any discrepancy between
nodes.

4.4 Glut Event Model

To prove the generality of our approach beyond our in-
house event implementation, we adapted a simple Glut [5]
desktop demo to run synchronously across five nodes. Glut
employs an event-based model for desktop user-input. In
Glut the programmer handles events by registering function
callbacks that can update the application state. This adapta-
tion was achieved by adding event serialization to the event
callback functions on the master node, distributing the se-
rialized event data via MPI, and dispatching the events on
each client by invoking the same callbacks as on the mas-
ter, but without the serialization additions. Our approach
proved to be simple and effective, requiring the addition
of approximately 50 lines of code and not showing any
visually perceivable discrepancy between application state
across the nodes.

5 Conclusions and Future Work

We have presented a framework for adapting an event-
based VR application running in a shared-memory envi-
ronment to a commodity cluster rendering system. Nev-
ertheless, this framework could certainly be employed in
new cluster-based implementations. Unlike VR Juggler
or Syzygy, we do not present a full-featured VR system.
Though we chose to work on in-house software for our ini-
tial attempts, given the open-source and extensible nature of
the aforementioned implementations, future work should be
considered in integrating an event-based application model
into a more complete VR system. Other future work will
include testing the scalability of our event distribution on
much larger clusters.
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