
In the November/December 2000 issue of IEEE
Computer Graphics and Applications,1 Vicki Interrante

posed a visualization problem she and I have been inter-
ested in for several years. The problem is that of visually
representing a 2D field of data that has multiple data
values at each point. For example, 2D fluid flow has a
vector value at each location and derived values are
often available at each location. Interrante suggests
using natural textures to attack this problem, because
the textures can potentially encode lots of information.
She provides some intriguing examples and proposes
a psychology-based approach for developing an under-
standing of how we perceive natural textures, like those
Brodach photographed.2 Understanding this helps us
build better visualizations.

Based on Interrante’s suggestions, I would like to posit
and explore what is, perhaps, a less well-defined
approach. Through evolution, the human visual system
has developed the ability to process natural textures.
However, in addition to natural textures, humans also
visually process man-made textures—some of the rich-
est and most compelling of which are in works of art.
Art goes beyond what perceptual psychologists under-
stand about visual perception and there remain funda-
mental lessons that we can learn from art and art history
and apply to our visualization problems.

The rest of this article describes and illustrates some
of the visualization lessons we have learned studying
art. I believe that these examples also illustrate some of
the potential benefits of further study. While this
approach is more open-ended than a perceptual psy-
chology approach, both approaches are worthy of pur-
suit, and the potential benefits of using the less
structured approach outweigh any risk of failure.

How humans see and understand
Scientific visualization, a term coined only a little over

10 years ago, is the process of using the human visual
system to increase our understanding of phenomena
studied in various scientific disciplines. While the term
is young, the process (modulo the computer) has been
used since the beginning of science. Many scientists have
created drawings or built 3D models to understand and
communicate their science. The history of science and
art can provide us with lessons for using computers
effectively. Over time, artists have developed techniques
to create visual representations in particular communi-
cation goals. Art history provides a language for under-

standing and communicating that knowledge.
Historically, two disciplines approach the human visu-

al system from different perspectives. Art history pro-
vides a phenomenological view of art—painting X
evokes response Y. Art history, however, doesn’t decon-
struct the perceptual and cognitive processes underlying
responses. Perceptual psychology, on the other hand,
strives to explain how humans understand those visual
representations. There’s a gap between art and percep-
tual psychology—we don’t know how humans combine
visual inputs to arrive at the responses art evokes. Shape,
shading, edges, color, texture, motion, and interaction
are all components of an interactive visualization. But
how do these components interact and how can they
most effectively be deployed for a particular scientific
task? Answers to these questions are likely to fill some of
the gap between art and perceptual psychology. As an
example, the human-computer interaction (HCI) com-
munity is using and extending knowledge about per-
ception to test and develop better user interfaces. We
can find analogous inspiration for improved methods
for scientific visualization in the gap between art and
perceptual psychology. Many of these lessons will
impact the visual representation of multivalued data.

Looking up from our monitors 
A number of times over the last few years I’ve shep-

herded my students to art museums for guided tours by
my artist collaborator davidkremers, the Caltech
Distinguished Conceptual Artist in Biology. After ini-
tially searching for scientific visualization inspiration in
art, these visits let us formulate a plan for finding and
applying the concepts. Our initial focus was on oil paint-
ing, particularly from the Impressionist period, because
these paintings are so visually rich. The multiple layers
of brush strokes in these paintings provide a natural
metaphor for constructing visualizations from layers of
synthetic “brush strokes.” Some of my colleagues look at
me askance when I describe our research field trips, as
if to say, “This is research?” But stepping out of the lab
helps students build a new picture of what they can
accomplish when they come back to the computer. It
trains their eyes and minds to see differently.

During these field trips, we studied, in particular, the
works of three painters: 

■ Van Gogh, whose large, expressive, discrete strokes
carry meaning both individually and collectively.
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■ Monet, whose smaller strokes are often meaningless
in isolation—the relationships among the strokes give
them meaning, far more than in van Gogh.

■ Cezanne, who combined strokes into cubist facets,
playing with 3D perspective and time within his paint-
ings more then either van Gogh or Monat. His layering
also incorporates more atmospheric effects. In a sense,
his work shifts from surface rendering toward volume
rendering.

The three artists’ work in this sequence builds in com-
plexity and subtlety. In our field trips, we studied all
three, but most of our experiments thus far are limited
to ideas we learned from van Gogh’s work.

Van Gogh introduced us to the concept of under-
painting, or laying down a rough value sketch of the
entire painting. The underpainting shows through the
overlying detailed brush strokes to define the anatomy
of the painting. Figure 1b shows underpainting for
Figure 1a. It divides the canvas into two parts—a primed
lower region of hillside, rocks, and ground cover and a
darker upper region of tree, sky, and distant hills.
Underpainting helped us present some overall parts of
our data. We found that an analogous underlying form
in our visualizations anchors and literally gives shape
to disparate data components. Outlines around regions
provide separation and emphasis, lending definition to
our sea of data.

In van Gogh’s The Mulberry Tree (1889, oil on canvas),
brush strokes represent the solid trunk of the tree, bend-
ing branches, leaves blowing in the wind, and tufts of grass
(Figure 1a). We learned many shorthand ways of depict-
ing complexity using icons, geometric shapes, or textures
that evoke a characteristic of the subject, or the data—and
with that comes the responsibility of choosing brush
strokes that don’t create opposing or unwanted secondary
impressions. Beyond this direct representation, they also
invite the viewer to experience the scene, not just view it
passively. Similarly, brush-stroke size and proximity depict

density, weight, and velocity. In our visualizations, we
want to capture this marriage between direct representa-
tion of independent data and the overall intuitive feeling
of the data as a whole.

Back in the lab 
Returning to our computer lab, we tried to use some

of the ideas we had gleaned, once again drawing most-
ly from van Gogh’s work. We experimented with brush
stroke shapes and ways of layering them. Our initial
attempts were free–form and produced interesting
results. Our next attempts were more directly applied
to scientific problems. We show two of the images we
generated in Figures 2 and 3 (next page). The problem-
directed approach led us to iconic-looking strokes. 

In Figure 2, we show one 2D slice of a 3D second-
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1 (a) Van Gogh’s The Mulberry Tree (1889, oil on canvas) illustrates the visual shorthand that van Gogh used with
his expressive strokes. Multiple layers of strokes combine to define regions of different ground cover, aspects of
the hillside, and features of the tree. (b) An underpainting shows the “anatomy” or composition of the scene in
broad strokes. (Image of The Mulberry Tree granted by the Norton Simon Foundation, Pasadena, California. Gift of
Norton Simon, 1976.)

(a) (b)

2 Visualization of half of a section through a mouse spinal cord. The data is
a symmetric 3D second-order tensor field, with the equivalent of six inde-
pendent scalar values at each point. The detail on the right shows the
lower right part of the section. 



order tensor field, which has about six different data val-
ues at each point in the image. The image shows the
right half of a section through a mouse spinal cord. To
create the visualization, we used a layer resembling
underpainting with ellipse-shaped strokes on top of it.
On each of the strokes, a texture represents more of the
data. For more details on the scientific interpretation
and the visualization, see Laidlaw et al.3

In Figure 3, we show 2D fluid velocity together with
a number of derived quantities. About nine values are
represented at each spatial location in this visualization.
We again used a layer resembling underpainting with
layers of ellipse, wedge, and box strokes on top. The
ellipse strokes have a subtle texture superimposed. More
details on the visualization appear in Kirby et al.4

Space
We learned that paintings (and, in some cases, visu-

alizations) are multiscale. They can be viewed from dif-
ferent distances and seen and understood differently.
This raises interesting issues about the definition of tex-
ture. Let’s consider van Gogh’s Mulberry Tree (Figure 1a).

From a few inches away (look closely at Figure 4b), you
can see shapes from the bristles of the brush as well as
colors mixed within a stroke. At this distance, the shape
and color features might be considered texture, but they
could also be interpreted individually. At a distance of
18 inches (Figure 4b at a normal reading distance of 18
inches), these features appear smaller and resemble a
texture on each stroke. The strokes themselves are still
individual. At a distance of five feet (Figure 4a), the
strokes merge together to appear more like a texture.
Finally, at 15 feet (Figure 1a), the strokes blend togeth-
er and become almost invisible individually. 

We can use this lesson by encoding different informa-
tion at different scales. Iconic information at one scale
can turn into texture information at another scale. With
care, we can design features at different scales into the

same images. In the scientific visual-
izations of Figures 2 and 3, we design
visual features at different scales. The
texture on strokes is at a much finer
scale than the strokes themselves,
and the dark box strokes of Figure 3
are at a different scale than the other
strokes. 

To take full advantage of the mul-
tiscale nature of paintings and visu-
alizations we have to have ways of
interacting with them—that is, ways
of changing our viewing distance.
We rarely change the distance from
which we view our monitors—only
a bit more frequently do we do so
with paper publications. That’s why
the same image is shown at differ-
ent scales in Figure 4 and in some of
the other detailed figures. However,
we do view images hung on a wall
from different distances. And some
images on paper—often artistic—
inspire that sort of study. Projection

systems like PowerWalls and CAVEs may be good
options for encouraging this sort of exploration, as may
other hangable large-format output media.

Time
We also learned that paintings (and, in some cases,

visualizations) have a temporal component. For
instance, we see different aspects of an image at differ-
ent viewing times. Some parts stand out quickly, like the
overall composition or palette of a painting, and some
take more time to become apparent, like the texture or
shape of individual strokes. The scale and speed of
recognition correlate, as do contrast and speed of recog-
nition—but these are not the only factors. 

To use this lesson, we can design our visualizations so
that important data features are mapped to quickly seen
visual features. For example, features we want to mea-
sure directly from an image are present for detailed study
but don’t intrude on the visualization’s initial impres-
sion. The multiscale examples from the “Space” section
illustrate this temporal concept. Figure 3 gives another
example: we can read the wedges more quickly than the
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3 Visualization
of 2D fluid
velocity togeth-
er with several
derived data
values.
Approximately
nine values are
represented
visually at each
point in the
image. 

4 Variances in viewing van Gogh’s Mulberry Tree. Viewed in this article from
about 18 inches, Figure 1a shows what you would see 15 feet from the
painting. Comparatively, Figure 4 shows the following: (a) a detail of what
you would see 5 feet from the painting, and (b) a detail at actual size (what
you would see from 18 inches). Look at (b) more closely for viewing dis-
tances less than 18 inches.

(a) (b)



ellipses because of a difference in contrast.
Studies of preattentive vision and knowledge about

low-level vision are useful for designing quickly seen visu-
alization parts. It’s more difficult to test the more slowly
seen parts, which makes it more difficult to design them.
Task-oriented experimental tests seem logical, but the
tasks are often so complex that the performance variance
is relatively high, making methods difficult to compare.

Our initial experiments
Our initial experiments were much looser than the

examples shown in Figures 2 and 3. Some examples in
Figure 5 show 2D or 3D fluid flow. Since I want to
emphasize the overall texture and visual qualities, I
won’t go into detail about the mappings for each. To
many, the images are visually compelling, yet it has been
difficult to extract concrete visualization lessons from
them beyond those I previously described. What people
see in these images includes not only the mappings that
were used for the data value, but also other visual char-
acteristics. Despite being 2D, some images give an over-
all sense of depth. Some of the strokes appear to layer,
like feathers or scales. One of our challenges with these
looser images is in understanding what works, what
doesn’t, and (we hope) why.

Closing thoughts
I’ve tried to illustrate some examples of looking toward

art for inspiration in creating visualizations. Here we fea-
ture van Gogh and mention Monet and Cezanne for con-
text. In your artistic searches, choose the artists in whom
you have a passionate interest. I believe that any artist
has lessons to offer to visualization.

Working on scientific visualization problems, we
already interact with scientists and adopt their prob-
lems. As toolsmiths, we do better computer science
through addressing scientists’ problems on scientists’
terms.5 Similarly, we benefit from critical feedback from
artists, despite the difficulty of creating and maintaining
these relationships. I try to look at and understand art—
early and often—and emulate it in scientific visualiza-
tions and get critical feedback from artists. I explain
what I’m trying to do visually and have artists critique it.
Then I iterate, iterate, and iterate.

Of course, scientists must be involved in this iterative
process. Artists can help with inspiration and feedback
on the visual and communicative aspects of visualiza-
tion, but scientists define the tasks performed and there-
fore must ultimately evaluate the success of the methods.
For instance, the fluid flow example in Figure 3 may be
aesthetically pleasing, but without explanation—per-
haps via a legend or key—it’s not scientifically useful.

Figure 3 displays as many as nine values at each point
of the image. With some research indicating that tex-
ture has roughly three independent dimensions, the
ability to represent nine values is somewhat surpris-
ing—perhaps it’s due to combining color with texture
or layering textures at different scales.

Texture is hard to define. Understanding black and
white natural textures like the photographs in Brodatz2

is a good start, but we also need to look broadly. Task-ori-
ented user testing may help, and perhaps we can use the
critiques that are part of artists’ training. This might
combine perceptual psychology and art to fill in part of
the gap in our understanding of how humans see. By
having artists cognitively analyze what is shown by more
complex textures, we might come to a consensus on
what works, what doesn’t work, and why it does or does-
n’t work in the context of art and art history. ■
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5 Loose texture examples.


