
Painting and Visualization

Robert M. Kirby
School of Computing and

Scientific Computing and Imaging Institute
University of Utah

Daniel F. Keefe and David H. Laidlaw
Visualization Research Laboratory
Department of Computer Science

Brown University

October 10, 2003

1 Introduction

Art, in particular painting, has had clear impacts on the style, techniques, and processes of scientific vi-
sualization. Artists strive to create visual forms and ideas that are evocative and convey meaning or tell a
story. Over time, painters and other artists have developed sophisticated techniques, as well as a finely tuned
aesthetic sense, to help accomplish their goals. As visualization researchers, we can learn from this body of
work to improve our own visual representations. We can study artistic examples to learn what art works and
what does not, we can study the visual design process to learn how to design better visualization artifacts, and
we can study the pedagogy for training new designers and artists so we can better train visualization experts
and better evaluate visualizations. The synergy between art and scientific visualization, whether manifested
in collaborative teams, new painting-inspired visualization techniques, or new visualization methodologies,
holds great potential for the advancement of scientific visualization and discovery.

Scientific visualization applications can be loosely divided into two categories: expository and ex-
ploratory. In this chapter, we will focus on exploratory applications. Exploratory applications typically
represent complicated scientific data as fully as possible so that a scientific user can interactively explore it.
Per the scientific method, a scientist gathers data to test a hypothesis, but the binary answer to that test is
usually just a beginning (see Fig. 1). From the data come ideas for the next hypothesis, insights about the sci-
entific area of study, and predictive models upon which further scientific advances can be made. Exploration
of increasingly complicated and inter-related data become a means to that end.

One of the most complicated types data that scientists wish to explore and understand comes in the form
of multivalued, multidimensional fields. There are a number of visualization application areas that work
with this type of data, including fluid dynamics and medicine. These data are difficult to understand because
so many variables, or values, are of interest to the scientists. The challenge comes in understanding the
correlations and dependencies between all of the values. For example, 2D fluid flow simulations produce a
2D vector field that is sometimes time-varying. From this field, additional scalar, vector, and tensor fields
are often derived, each relating to the others and providing a different view of the whole. Displaying such
multivalued data all together is difficult, even in 2D. It requires showing six to ten different values within
a single image. For 3D fluid flow, the data exist within a volume. Representing a 3D vector field alone
is a challenge; representing such a vector field together with derived scalar, vector, and tensor fields is an
extremely difficult problem in visual representation.

We will begin with a narrative of some of our work in the area of representing multivalued data, illus-
trating more specifically some of the ways in which art can be brought to bear on scientific visualization.
We will then give a broader survey of scientific visualization work that has been influenced by art, followed
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Figure 1: Exploratory scientific visualization is a specific instance of the scientific method. It begins with
a hypothesis about some physical phenomenon. It continues with the collection of data that is expected to
validate the model. Visualization of the data then helps in the validation of the hypothesis and in generating
new hypotheses and insights, often iteratively.

by a discussion of some of the open issues in this area, which will tie back to studying art, design, and art
education.

2 Mimicking Artists: Strokes, Design, Critiques, and Sketching

Perhaps the most compelling reasons for visualization researchers to look toward oil painting, and to art in
general, are the visual richness and visual effectiveness of the art that we see in our everyday lives. Paintings
and reproductions are accessible in museums, posters, calendars, and on the web because there is a demand
for them – they are broadly appealing and often convey a meaning or narrative to which we can relate.

Besides their obvious visual appeal, we can learn from art, artists, and art teachers what is visually
compelling, what works for specific visual goals, how to tell if something is working, the process of visual
design, and the process of learning visual design. Over the last several years we have been exploring each
of these areas and will try to illustrate some of what we have learned with examples from those efforts.

2.1 Strokes

Some of our earliest attempts to borrow ideas from the art world began with trips to museums to view
paintings and loosely emulate the techniques that we saw there. We were expertly accompanied by artist
davidkremers, who guided us through the collections, showing us what he felt would be most relevant to our
scientific visualization process. We absorbed ideas, transformed them to our digital medium, and generated
a series of visual representations of multivalued data.

This stage was motivated by Meier’s work to create painterly animations [25]. Her haystack image
(see Fig. 2) illustrates how brush strokes can be layered to build up a compelling visual image. This same
layering process is common in oil painting, although deconstructing it is more difficult.

In our early examples we used software that created data-driven visualization by layering “strokes” onto
a 2D “canvas.” Many visual characteristics of the strokes were set directly from the data, with the mapping
under the control of the user. The images are data driven but are not guided by a particular scientific
problem; they are experimentation with a new medium. Some of our experiments involved varying stroke
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Figure 2: Meier layered strokes to build up computer paintings much as painters layer their strokes to build
up an oil painting. The stroke layers are shown here as they accrete. Here, the layers are organized around
form and lighting, but other organizing principles can work in other contexts.
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Figure 3: Several early “painterly” visualizations. We experimented with varying the visual representation
of underlying data by changing stroke shapes, texture, color, size, and placement. The top and bottom image
in each pair are the same underlying data.
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Figure 4: Scumbling, or lightly painting over an already-painted region, is an example of a painting tech-
nique we mimicked. We used small strokes to emulate the small bits of paint left behind.

shape, texture, color, and size; changing relationships among layers; and modifying the placement of strokes.
Fig. 3 shows some examples.

In one example of a technique we worked to mimic, a painter uses a lightly loaded brush to paint over a
dry, but previously painted, region. The texture of the underlying dry paint catches wet paint off the brush,
leaving small textured bits of paint. Our version, shown in Fig. 4, used small strokes in a layer atop much
larger ones, placed in only a small portion of the image, and in a contrasting color.

From this work we sensed potential. Some of the images created are visually compelling, and the
sources of inspiration seem only touched upon. We were also excited by the potential to incorporate time
into visualization design. By mapping some parts of data to quickly-seen visual cues and others to visual
cues that are seen less quickly, the order in which data is seen in a visualization may be controlled.

This early work also reminded us that there was no evidence that these images would have scientific
value. While they were data driven in the sense that data values controlled many of the visual attributes in the
images, they were not targeted at solving a specific scientific problem. Indeed, measuring the effectiveness
of visualization methods is a controversial and difficult problem.

It also pointed out to us that design decisions sometimes have unintended consequences. For example,
some of the painterly experiments had a sense of depth from regions that were lighter or darker. Qualities
like this can be difficult for an untrained eye to notice but can dramatically effect our perception of a scene
or data.

2.2 Designing Scientific Visualizations

As a follow-on to our early experimentation, we created a set of visualizations addressing three scientific
applications using multivalued 2D imaging data: sections of 3D tensor-valued MR images [19], 2D fluid
flow (and derived quantities) [16], and six-valued multi-echo MR images [22]. We will discuss in this
section the painting-related motivation behind the 2D flow application and also try to provide some insight
into the issues with which we grappled.

In [16] we examined the scientific problem of understanding fluid flowing past a cylinder. The primary
focus of the study was to visualize multivalued data. Within the study of fluid mechanics, many mathemat-
ical constructs are used to enhance our understanding of physical phenomena. Visualization techniques are
often used as tools for developing physical intuition of these quantities. One important question, however,
is: What do we visualize? To maximize their potential to cross correlate information, scientists usually want
to maximize the amount of comprehensible data presented in one visualization. For example, scientists often
choose to examine derived quantities, such as vorticity, along with standard quantities such as, velocity and
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Figure 5: Typical visualization methods for 2D flow past a cylinder at Reynolds number 100. On the left,
we show only the velocity field. On the right, we simultaneously show velocity and vorticity. Vorticity
represents the rotational component of the flow. Clockwise vorticity is blue, counterclockwise yellow.

pressure, in an effort to fully understand the underlying process of fluid flow.
We illustrate the complexity of this issue by displaying velocity and vorticity simultaneously (see Fig. 5).

Vorticity is a classic example of a mathematical construct that provides information not immediately appar-
ent in the velocity field. When examining only the velocity field, it is difficult to see that there is a rotational
component of the flow in the far wake region of the cylinder (to the right). But, when vorticity is combined
with the velocity field, the underlying dynamics of vortex generation and advection is more apparent.

Although vorticity cannot be measured directly, its relevance to fluid flow was recognized as early as
1858 with Helmholtz’s pioneering work. Vorticity as a physical concept is not intuitive to all, yet visualiza-
tions of experiments demonstrate its usefulness, and hence account for its popularity. Vorticity is derived
from velocity, andvice versaunder certain constraints[27]. A function and its derivative are similarly re-
lated. Hence, vorticity does not provide any new information that is not already available from the velocity
field, but it does emphasize the rotational component of the flow. The latter is clearly demonstrated in
Figure 5, where the rotational component is not apparent when one merely views the velocity.

Other derived quantities, such as the rate of strain tensor, the turbulent charge and the turbulent current,
can be of value in the same way as vorticity. Since examination of the rate of strain tensor, the turbulent
charge, and the turbulent current within the fluids community is relatively new, few people have ever seen
visualizations of these quantities in well known fluid mechanics problems. Simultaneous display of the
velocity and the quantities derived from it is done both to allow the fluids’ researcher to examine these new
quantities against the canvas of previously examined and understood quantities, and also to allow the fluids’
researcher to accelerate his understanding of these new quantities by visually correlating them with well
known fluid phenomena.

In our painting inspired visualizations of fluid flow, we sought representations inspired by the brush
strokes artists apply in layers to create an oil painting. We copied the idea of using a primed canvas or
underpainting that shows through the layers of strokes. Rules borrowed from art guided our choice of colors,
texture, visual elements, composition, and focus to represent data components. These ideas are discussed in
more depth in [18, 19].

In one of our visual designs, shown in Fig. 6 (left), we wanted the viewer to first read velocity from the
visualization, then vorticity and its relationship to velocity. Because of the complexity of the second-order
rate of strain tensor we want it to be read last. We describe the layers here from bottom up, beginning with a
primed canvas, adding an underpainting, representing the tensor values transparently over that and finishing
with a very dark, high-contrast representation of the velocity vectors.

� Primer The bottom layer of the visualization is light gray, selected because it would show through the
transparent layers to be placed on top.
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Figure 6: Left: Visualization of 2D flow. Velocity, vorticity, and rate of strain (including divergence and
shear) are all encoded in image layers. Right: Additional values turbulent charge and turbulent current
for Reynolds number 100 flow are added to the visualization. A total of nine values are simultaneously
displayed.

� Underpainting The next layer encodes the scalar vorticity value in semi-transparent color. Since the
vorticity is an important part of fluid behavior, we emphasized it by mapping it onto three visual cues: color,
ellipse opacity, and ellipse texture contrast (see below). Clockwise vorticity is blue and counter-clockwise
vorticity yellow. The layer is almost transparent where the vorticity is zero, but reaches 75% opacity for the
largest magnitudes, emphasizing regions where the vorticity is non-zero.

� Ellipse layer This layer shows the rate of strain tensor and also gives additional emphasis to the
vorticity. The logarithms of the rates of strain in each direction scale the radii of a circular brush shape to
match the shape that a small circular region would have after being deformed. The principal deformation
direction was mapped to the direction of the stroke to orient the ellipse. The strokes are placed to cover
the image densely, but with minimal overlap. The color and transparency of the ellipses are taken from the
underpainting, so they blend well and are visible primarily where the vorticity magnitude is large. Finally,
a texture whose contrast is weighted by the vorticity magnitude gives the ellipses a visual impression of
spinning where the vorticity is larger.

� Arrow layer The arrow layer represents the velocity field measurements: the arrows point in the
direction of the velocity, and the brush area is proportional to the speed. We chose a dark blue that contrasts
with the light underpainting and ellipses, so that the velocities would be read first. The arrows are spaced so
that strokes overlap end-to-end but are well separated side-to-side. This draws the eye along the flow.

� Mask layer The final layer is a white mask covering the image where the cylinder was located.
In a second visual design, shown in Fig. 6 (right), we added two additional derived flow quantities,

turbulent current, a vector, and turbulent charge, a scalar. The layers from the first design were changed to
make the ellipses and arrows less contrasting and an additional layer added atop them:

� Turbulent sources layer In this layer we encode both the turbulent charge and the turbulent current.
The current is encoded in the size and orientation of the vector value just as the velocity in the arrow layer.
The charge is mapped to the color of the strokes. Green strokes represent negative charge and red strokes
positive. The magnitude of the charge is mapped to opacity. Where the charge is large, we get dark, opaque,
high-contrast strokes that strongly assert their presence. Where the charge is small, the strokes disappear
and do not clutter the image. For these quantities, that tend to lie near surfaces, this representation makes
very efficient use of visual bandwidth. The strokes in this layer are much smaller than the the strokes in the
arrow layer. This allows for finer detail to be represented for the turbulent sources, which tend to be more

7



localized. It also helps the turbulent sources layer to be more easily distinguished from the arrows layer
than in the previous visualization, where the stroke sizes were closer and, therefore, harder to disambiguate
visually.

The use of these painting and design concepts helped us create a visual representation for the data
that encoded all of the data for a more holistic understanding. The images in this 2D flow example, and
in the other application areas described elsewhere, simultaneously display six to nine data values while
qualitatively representing the underlying phenomena, emphasizing different data values to different degrees,
and displaying different portions of the data from different viewing distances. These qualities lead a viewer
through the temporal cognitive process of understanding interrelationships in the data much as a painting
can lead a viewer through the visual narrative designed by the painter.

We were left with several observations and questions from this work. First, the images became more
iconic than our early experiments as they were targeted at specific scientific applications. They have a less
painterly look, as a result.

Also, once again, the question arises, how can we evaluate visualizations? User studies are a stock
visualization answer, but we also wondered if we could borrow from art and art education in evaluating
visualizations.

2.3 Art Education

Perhaps the most important educational tool to the art instructor is the critique, or crit, for short. Art critiques
can take on many different forms, but in a typical classroom, group-critique setting, they often involve
displaying the work of all the students and then moving from piece to piece discussing and dissecting the
visual decisions and techniques employed. The instructor running the critique usually has very specific
goals in mind for the process and leads the discussion and criticism in a direction that culminates in the
transmission of some design concept or theory to the students.

Critiques are a checkpoint along a path to creating visually refined imagery. They are almost always a
part of a larger, iterative process. The lessons learned in a critique should carry on to future work, either in
the form of a refinement of an initial design based on feedback, or as a lesson applied to a completely new
design in the future. A critique that doesn’t lead to new thought or work by the student is a failure.

Our initial experience applying the concept of critiques to visualization problems is encouraging. The
critique framework, especially when expert artistic illustrators, designers, and instructors are involved, may
offer an excellent alternative or complimentary approach to the traditional user studies used to evaluate
visualizations.

Some of our experience with this framework came in the form of a class we taught in conjunction with
Fritz Drury, head of the Illustration department at the Rhode Island School of Design (RISD). The class
was composed of half RISD students and half Brown University students. Our focus for a semester was
to learn how to visually represent time-varying 3D fluid flow data generated computationally. We started
our exploration of visual representation with 2D fluid flow problems, and eventually created visualizations
of 3D flow that run in a Cave virtual reality display. Throughout the process, students worked on weekly
design assignments, and each week these were expertly critiqued to teach how to create successful designs
from both visual and scientific standpoints. The importance of enabling a scientist to perform a specific
task, such as locate areas of high vorticity within a flow, was a new constraint for RISD design students. The
depth of understanding reached by the class on the effects of color, texture, form, and iconic representation
upon human perception, particularly in virtual reality, was new territory for all the students.

Some results from a 2D flow visualization design assignment are shown in Fig. 7. Input from the
critique of these works helped shape the students’ future assignments as well as the final class projects in
virtual reality. Based on feedback in weekly critiques, most designs in the class were eventually refined to
the point that they were perceptually sound, useful for scientific inquiry, and maintained a pleasing aesthetic.
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Figure 7: Students in a joint computer science/art scientific visualization class generated creative multival-
ued 2D flow visualizations.
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Figure 8: Examples of 2D flow visualizations developed by students in a SIGGRAPH 2001 course.

One conclusion from this class experience is that, particularly in complicated, multi-variate visualiza-
tion problems, the design process is extremely important. When approaching these difficult visualization
problems, it is rare for an initial visualization design to be visually coherent enough for scientists to use
successfully. Iterating upon a visualization design takes time. Critiques can certainly help in this process.

Quickly sketching out design ideas and refining them again and again, each time evaluating them from
the standpoint of the target audience’s scientific goals, is one of the best ways to refine a design. For 2D
visualization problems, this is often easily accomplished with traditional artistic tools. In fact, Fig. 8 shows
some of the designs that attendees of the SIGGRAPH 2001 course entitled “Non-Photorealistic Rendering
in Scientific Visualization” [10] were able to create in an afternoon. These were quick sketches made with
paint, markers, etc. They represent experimentation and thinking outside the box. This type of effort is
needed for complex visualization problems, the type to which art-based visualization methods are perhaps
most suited. When we move to 3D visualization problems, quick sketches and visualization prototypes
become much more difficult to make and critique.

2.4 Sketching and Prototyping for Virtual Reality

Currently, it can take a long time to advance from an initial art-based visualization idea sketched out on a
piece of paper to a useful visualization. One of the most time consuming parts of this process is refining and
iterating on the design; iteration is an essential part of the design process.

For some media, it is important to do much of the refinement step within the final medium itself. For
2D visualizations, this is less of a concern because traditional 2D media can do a fairly complete job of
mimicking what can be seen on a computer screen. Thus, visualization designers can sketch out ideas,
critique them, and revise them all without the time consuming step of implementing the design on the
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computer. However, for virtual reality (VR) and other 3D computer mediums, it is difficult to mock up
and accurately critique a visualization without actually going through the trouble of programming it and
experiencing it. Prototyping designs with traditional 2D and 3D artistic media is still beneficial for VR-
based visualizations, but the insight that can be gained from critiquing these prototypes is limited because
so many of our physical and perceptual cues change when we enter a virtual environment. Dimension, scale,
colors, composition, interaction, and sense of presence all change as we move from a 2D representation of
the idea to a complete virtual world.

Recently, we have started to take a new approach to prototyping and design in 3D that mimics a tra-
ditional 2D artistic process. The cornerstone of this approach is the Cave-based VR system, CavePainting
[15]. CavePainting uses a prop and gesture based interface derived from a traditional oil painting process to
allow an artist to paint 3D forms directly in VR using a six degree-of-freedom tracker. While the interaction
is based on painting techniques with which the artist is already familiar, the resulting “paintings” are a form
of zero-gravity sculpture that bears little resemblance to a flat oil painting. Nevertheless, the quick, loose,
stroke based style of CavePainting make it an excellent candidate for testing the feasibility of extending
painting inspired visualization techniques to three-dimensional problems and prototyping 3D visualization
designs.

Through using this tool, designers have been able to refine 3D visualization techniques quickly from
within VR. The immediate advantage of this approach is that designers can visually critique a Cave-based
visualization during the early stages of design. At this point in the process, even dramatic changes to the
approach are easy to make. In our experience, design changes are often discussed and sketched out in 3D
during a critique. Our vision for this approach to visualization design is that the ability to more quickly
produce and iterate on designs within VR will decrease the time that it takes us to converge on scientifically
useful visualizations.

This vision has played out in some of our initial work with the visualization class described above.
As we continue to develop this prototyping tool and achieve a tighter coupling with scientific needs, we
anticipate that prototyping designs in VR will allow us to spend much more time iteratively designing for
VR visualizations and less time implementing complex visualization approaches that eventually prove to be
less perceptually sound and scientifically useful than originally planned.

We further explore some of the issues raised in this section after providing historical perspective in the
next section.

3 Historical Perspective: The Connections between Art and Science

We now present a historical perspective on the connections between art and science, with particular emphasis
on the efforts that have been made over the last ten years to unite scientific visualization with other visual
science disciplines. This section is by no means comprehensive; our goal is to provide a broad overview of
the current stream of momentum from which painterly methods have derived over the past twenty years or
so.

We partition this section into two subsections, a conceptual history and practical connections between
art and science. The former traces the steady infusion of artistic ideas and concepts into the scientific
visualization community, while the later presents current applications, both explicit and tacit, of painterly
concepts in the development of visualization methodologies.

3.1 History of Art-related Scientific Visualization

For at least the last six centuries artists have striven to develop methods for distilling complex scene infor-
mation into oil painting representations. Some of this work was even directed at scientific topics, including
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astronomy and fluid flow. Within the last twenty years, there has been a renewed recognition that concepts
from art and visual disciplines are not orthogonal to the goals of scientific visualization. Victoria Interrante
succinctly presents the similarities and differences between visualization and art in [10]. She states that “Vi-
sualization can be viewed as the art of creating a pictorial representation that eloquently conveys the layered
complexity of the information in a complicated dataset.” In the same article, however, she also emphasizes
how visualization and art are different: “Visualization differs from art in that its ultimate goal is not to please
the eye or to stir the senses but, far more mundanely, to communicate information - to portray a set of data
in a pictorial form that facilitates its understanding. As such, the ultimate success of a visualization can be
objectively measured in terms of the extent to which it proves useful in practice. But to take the narrow
view that aesthetics don’t matter is to overlook the complexity of visual understanding.” (C&C REFER TO
VICKI’S CHAPTER?)

Early pioneers in this field, such as Donna Cox, who holds positions in both the School of Art and Design
and the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign,
understood the potential of bringing scientists and visual design artists together. In 1987 Cox developed
the concept of “Renaissance Teams,” a team of domain experts and visualization experts whose goal was
to determine visual representations which both appropriately and instructively presented domain specific
scientific data.

In her 1995 essay “Art, Science” Vibeke Sorensen, Professor and Founding Chair of the Division of
Animation and Digital Arts in the School of Cinema-Television at the University of Southern California,
alludes to the necessity of such “Renaissance Teams” to effectively counter the divisional chasm between
artistic and scientific disciplines which has been caused by specialization. She argues that in the mind of
most scholars, the ideal of the artist-scientist as an integrated, educated individual culminated in Leonardo
da Vinci. Da Vinci represents the union of artist and scientist. Although considered by some to be the epit-
ome of the artist-scientist combination, the da Vinci ideal was soon lost to specialization. As our quest for
knowledge produced a plethora of different subfields of science, the communication between different disci-
plines disintegrated, and in particular the ties between art and science were severed in the name of scientific
objectiveness. Sorensen, however, asserts in her published articles on art and science, her strong conviction
that artists have an important role to play in the further development of science and technology. In partic-
ular, that the means of restoring the ideal artist-scientist is through interdisciplinary research collaborations
in which there is a synergy of many different disciplines, scientific and artistic.

Over the last several years there have been several attempts to foster this cultural crossover through
panels and workshops. For instance, in 1998, David Laidlaw organized a panel at IEEE Visualization 1998
entitled “Art and Visualization: Oil and Water?” [23] whose purpose was to explore such questions as “How
can artistic experience benefit visualization?” and “What artistic disciplines have the most to offer?”. In
1999 J. Edward Swan organized a panel at IEEE Visualization 1999 entitled “Visualization Needs More Vi-
sual Design!” [30] whose purpose was to argue two main points: that utilizing visual design may be difficult
but is important for visualization, and that, in general, the scientific community needs to work harder to tap
into the many centuries of design knowledge that exists in fields such as art, music, theater, cartography, and
architecture. In 2001, Theresa-Marie Rhyne organized a panel at IEEE Visualization 2001 entitled “Real-
ism, Expressionism, and Abstraction: Applying Art Techniques to Visualization” [26] which explored the
artistic transition between realism, expressionism and abstraction and attempted to examine if such a pro-
gression also exists within the field of scientific visualization. One conclusion of that panel, articulated by
Chris Healey, is that “the appropriate use of perceptual cues can significantly enhance a viewer’s ability to
explore, analyze, validate and discover.” In that same year, two SIGGRAPH 2001 courses were dedicated to
artistic topics. Sara Diamond organized a class entitled “Visualization, Semantics, and Aesthetics” and Chris
Healey organized a class entitled “Nonphotorealistic Rendering in Scientific Visualization,” both of which
further explored the connection between scientific visualization and artistic sciences. At a different forum,
Felice Frankel, a research scientist in the School of Science at the Massachusetts Institute of Technology
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organized what has been referred to as ground-breaking conference at MIT entitled “Image and Meaning,
Envisioning and Communicating Science and Technology” which was an initiative to promote new collabo-
rations among scientists, image experts, and science writers. Her new book captures some of the excitement
of the conferences [7]. The following year, at SIGGRAPH 2002 Kwan-Liu Ma organized a course entitled
“Recent Advances in Non-Photorealistic Rendering for Art and Visualization” whose expressed purpose was
to give a concise introduction to non-photorealistic rendering in the context of generation of artistic imagery
and perceptually effective scientific visualization. Along the same lines Non-Photorealistic Animation and
Rendering (NPAR) in 2002 had a section specifically devoted to painterly rendering. Though the section
was not limited to scientific visualization, its focus was on the exploration of interjecting painterly ideas into
the visualization process.

Interest in collaboration between the arts and science has not remained confined to conferences and
workshops, but has also spilled over into the archival publication realm. Laidlaw published in [18] an article
entitled “Loose, Artistic ‘Textures’ for Visualization” in which he encouraged the scientific community
to search beyond what perceptual psychologists understand about visual perception into the fundamental
lessons that can be learned from art and art history. Herman and Duke, in their article entitled “Minimal
Graphics” [5] explore what can be learned from artistic traditions with respect to representing only salient
features in a visualization. Taylor, in his article entitled “Visualizing Multiple Scalar Fields on the Same
Surface” [31] reviews and augments with his own work ideas for visualizing multivalued data fields built
upon artistic ideas. This small sampling is not meant to be all inclusive, but rather to show that mainstream
publishing venues are also seeing the wave of the collaborative mixing of art and science.

In summary, over the past twenty years there have been many efforts to, as Sorensen describes, resurrect
the artist-scientist combination found in da Vinci. In our modern times, the process of scientific investigation
often requires extensive specialization into the nuances of one particular field of discovery, making a da
Vinci-like combination of the artist-scientist in a single personage an extremely difficult, yet worthwhile[36],
goal. In today’s world, the synergistic interdependence of “Renaissance Teams”, in which experts from
many different disciplines combine their efforts, offers the most likely means for achieving a productive
fusion of art and science. Slowly but surely this message is being disseminated through conference panels,
workshops, and publications.

3.2 Practical Connections between Art and Science

We now present three areas in which, whether explicitly or tacitly, ideas from painting have been applied
to scientific visualization. We categorize these areas as multivalued data visualization, flow visualization,
and computer graphics painting. Again, our purpose is not to necessarily provide a comprehensive listing
of all scientific visualization efforts which could be classified as exhibiting painterly themes, but rather to
illustrate the point that scientific visualization as a discipline has been attempting to answer some of the same
questions as other visual art disciplines, namely, how to effectively present information in a form which is
comprehensive, yet uncluttered.

3.2.1 multivalued data visualization

Hesselink et al. [11] give an overview of research issues in visualization of vector and tensor fields. While
they describe several methods that apply to specific problems, primarily for vector fields, the underlying
data are still difficult to comprehend; this is particularly true for tensor fields. ‘Feature-based” methods, i.e.,
those that visually represent only important data values, are promising.

Statistical methods such as principal component analysis (PCA) [14] and eigenimage filtering [37] can
be used to reduce the number of relevant values in multivalued data; often this is a worthwhile tradeoff. In
reducing the dimensionality, these methods inevitably lose information from the data. The approach taken
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in the fluid flow example presented earlier complements these data-reduction methods by increasing the
number of data values that can be visually represented.

Different visual attributes of icons can be used to represent each value of a multivalued dataset. In [8],
temperature, pressure, and velocity of injected plastic are mapped to geometric prisms that sparsely cover
the volume of a mold. Similarly, in [3] data values were mapped to icons of faces; features like the curve
of the mouth or size of the eyes encoded different values. In both cases, the icons capture many values
simultaneously but can obscure the continuous nature of fields. A more continuous representation using
small line segment-based icons shows multiple values more continuously [6].

Layering has been used in scientific visualization to show multiple items; in [12, 13], transparent stroked
textures show surfaces without completely obscuring what is behind them. The layering we presented earlier
in the fluid flow example is more in the spirit of oil painting where layers are used more broadly, often as an
organizing principle.

3.2.2 Flow visualization

A number of flow-visualization methods display multivalued data. The examples in [24, 4] combine surface
geometries representing cloudiness with volume rendering of arrows representing wind velocity. In some
cases, renderings are also placed on top of an image of the ground. Unlike our 2D examples, however,
the phenomena are 3D and the layering represents this third spatial dimension. Similarly, in [34], surface
particles, or small facets, are used to visualize 3D flow: the particles are spatially isolated and are again
rendered as 3D objects.

A “probe” or parameterized icon can display detailed information for one location within a 3D flow
[35]; it faithfully captures velocity and its derivatives at that location, but does not display them globally.

Spot noise [33] and line integral convolution [2] methods generate texture with structure derived from
2D flow data; the textures show the velocity data but do not directly represent any additional information,
e.g., divergence or shear. The authors of [33] mention that spot noise can be described as a weighted
superposition of many “brush strokes,” but they do not explore the concept. The method presented in the
previous fluid flow example takes the placement of the strokes to a more carefully structured level. Of
course, placement can be optimized in a more sophisticated manner, as demonstrated in [32].

3.2.3 Computer graphics painting

Reference [9] was the first to experiment with painterly effects in computer graphics. Reference [25] ex-
tended the approach for animation and further refined the use of layers and brush strokes characteristic for
creating effective imagery. Both of these efforts were aimed toward creating art, however, and not toward
scientific visualization. Along similar lines, references [39, 38, 28] used software to create pen and ink
illustrations for artistic purposes. The pen and ink approach has successfully been applied to 2D tensor
visualization in [29]. In reference [20], painterly concepts were presented for visualizing diffusion tensor
images of the mouse spinal cord.

4 Some Open Issues

The previous sections suggest some open issues, which we will discuss in more detail here.

4.1 Evaluation

One of the most difficult aspects of developing new visualization methods is evaluating their success, and
this is certainly true for methods that are motivated by painting and art. For many exploratory applications,
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the best measure of success is the acceleration of scientific discovery and insight in other disciplines, but that
is virtually impossible to measure quantitatively even with a crystal ball. Scientific advances are dependent
on many factors, and visualization tools are only one. Even a significant increase could be lost in the variance
caused by the others.

We must revert to less direct measures. These may be judgments about an algorithm’s elegance, sim-
plicity, or speed. They may be about the accuracy or speed of a group of users in performing specific well
defined tasks. Or they may be about a visualization’s aesthetics, ability to display certain features in data, or
appeal to domain scientists.

The first type of algorithmic measure is well understood in computer science. We know elegance and
simplicity when we see it, and we can easily measure speed and talk about how it scales with problems
size. While these are important, their connection back to how well a tool will advance scientific discovery
is tenuous, at best. There has been many an algorithm which has scaled nicely with problem size and yet
provided no new insight into the scientific problem that was being visualized.

The second type of measure, results from performance-based user studies, are appealing because they
are both quantitative and objective [17]. For example, for six methods of visualizing 2D fluid flow data,
we measured user accuracy and performance in locating critical points in 2D flow, identifying their types,
and visually creating integral lines [21]. With the results, we compared the six methods and drew some
conclusions about which features of each may have accounted for good performance on these specific tasks.
On the other hand, a leap of faith is required to generalize these results more broadly to other visualization
methods, particularly exploratory ones, or even to other tasks. Finding features faster and more accurately
could speed the advance of science, but we cannot know for certain. One clear contribution of these kinds
of measures is the very explicit set of visualization goals that must be defined in order to perform tests.

The third type of measure is more subjective. Here we might ask domain scientists whether they like
a method or appeal to reviewers to judge whether a certain feature is adequately represented visually and
whether that is important. This tends to be faster to evaluate than more formal performance-based user stud-
ies and can often evaluate larger conceptual advances, but at the cost of some quantization and objectivity
and often with implicit assumptions. For example, domain scientists may understandably be biased against
unfamiliar methods, even if the unfamiliar methods will be more effective after a learning period. This kind
of measure may come the closest to addressing our original question about advancing science.

All three types of measures have their place. What relates the second and third types is the choices
that must be made about the important visualization goals to target and the specific population to evaluate
them. With explicit design goals, the third type of measure may be particularly valuable. In fact, this kind of
evaluation is very similar to art critiques and has the potential to advance our field more quickly. They can
provide measures of new methodology. They can help educate both visualization researchers and designers.
And they can help clarify visualization goals. They should be used more broadly and incorporated into what
we teach our visualization students.

4.2 Visualization Goals

An essential step in critiquing or evaluating visualization methods is defining explicit visualization goals.
Too often visual appeal, or even glitz, is confused with effectiveness. Only explicit goals can be effectively
evaluated.

Defining visualization goals is an iterative process and should be driven by the underlying scientific
applications [1]. As our understanding of a scientific problem moves forward, so will our design goals for
visualization methods to address that problem. Our understanding of visualization will also help us to bring
effective methods from one scientific domain to bear on others.

It is important to understand that different scientific questions will imply different visualization goals,
sometimes contradictory. No one visualization method is right. Some claim that “more is better.” This is
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likely to be true for some kinds of exploration, but for expository visualizations, “less is more” is more likely
true.

4.3 Design, Engineering, and Science Collaborations

Designers, engineers, and scientists are brought together because their skills and their disciplines can ben-
efit from collaborations. For scientists, the benefit of collaboration is the potential for increased scientific
understanding that can result from clearer, more perceptually sound visualizations. Artists hold one key to
making these visualizations a reality. For artists, the win in scientific visualization collaboration comes in
many forms. First, working with scientific visualization opens the door to working with a variety of new me-
dia. Virtual reality, volume rendering, and other advanced computer graphics techniques are just beginning
to migrate out of the graphics research community. Through visualization research, artists have the opportu-
nity to be at the forefront of learning, working with, and even influencing recently created computer media.
As illustrators, artists are also drawn to visualization problems because of the complexity of the situations
that they represent. These type of problems are exciting because they push theories of visual representation
to their limits. In addition to these factors, art educational institutions are beginning to become interested
in scientific visualization collaborations because of the potential job opportunities that may be available for
their students in the future. As the embrace of artistic insight continues to grow within scientific fields,
we will develop a need for a new generation of artists that are adept at understanding and interacting with
scientists and that specialize in illustrating the new scientific phenomenon that our technology helps us to
explore.

While there is often some overlap in critical knowledge and techniques within design, art, engineering,
and science, the terminology, goals, and methods of each are often as different as they are advanced. In
scientific visualization, collaborative efforts require insight, communication, and education from all those
involved.

4.3.1 Designer Education

The first area for designers to master when applying their skills to visualization problems is the new media
that they may be using. Computer graphics in some form are now common at most design schools. In our
experience, most potential design or illustration collaborators are familiar with programs such as Adobe
Photoshop and occasionally a 3D modeling package. However, many of the visualization approaches where
designers can be most helpful to scientists today utilize more recent computer graphics techniques such as
volume rendering or virtual reality environments. Many basic design principles transcend the differences
between various media, but clearly some time is needed for designers to experiment and eventually become
proficient within a new medium.

Prototyping systems, such as the CavePainting-based virtual reality system described in Sec. 2.4 offer
a transitional tool for designers. Designers are given an intuitive interface for creating VR worlds that can
be targeted towards an artistic purpose or a scientific design. This allows for experimentation and gives
designers a chance to learn the properties and limitations of a medium that they might not have without
becoming proficient graphics programmers. There is much room for experimentation here in creating tools
for quickly iterating on complicated interactive 3D visualizations.

In addition to learning how to use new media, designers must also learn the language and goals of their
collaborators’ disciplines. Understanding the scientific goals behind a visualization is the most important
element for designers to grasp. It is nearly impossible to create a good visualization when you do not know
what you are trying to show. This does not mean that the designer needs to be an expert in the scientific field.
This is an unrealistic goal, but designers must be prepared to work with scientists to understand their goals
and needs. This can be a difficult process as the languages of the two disciplines are often quite different.
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For example, to a scientist looking at a point in a visualization, “value” means 10 meters per second, a
measurement of an experimental quantity. To an artist, “value” means the lightness or darkness of the
region. Even simple conversations can become exercises in creating a common language of communication.

Cross-discipline initiatives such as the Brown University and Rhode Island School of Design (RISD)
cross-registered course, “Interdisciplinary Scientific Visualization,” and RISD’s newly created program in
digital media will help to tighten the threads connecting the art world and the visualization community.
These ventures, and similar ones at other institutions, will help to develop a language for collaboration and
teach scientists, engineers, programmers, and artists to understand each others’ goals and work together, as
in Donna Cox’s renaissance teams, to realize their designs.

4.3.2 Engineering and Scientific Education

As for designers, it is important for scientists, engineers, and programmers to not only master the new media
that computers provide but also understand the scientific goals behind the visualization. The mastery of
computer media should cover potential uses of current hardware and software solutions. It is also important
for the computer experts in a collaboration to provide tools to other collaborators that they can use. This
may be as simple as providing digital or physical printouts of imagery. It may be complex as a virtual
reality prototyping system. It is imperative that engineers and programmers find the means for including
scientists and designers in the design loop. Technological barriers often make this difficult. However, any
visualization collaboration will be enhanced by quickly establishing a means for overcoming the obstacles
to communication and design input presented by differences in computing facilities and experience.

Finally, it is critically important for scientists to appreciate design and the aesthetic sense that designers
have developed through their training and experience. This leads to a recognition of the potential that design
has for furthering scientific discovery, a necessary ingredient for a successful collaboration. Often, this
appreciation is best accomplished through experience in artistic projects and classes.

4.3.3 Education and the Renaissance-Person

Most of the scientific visualization approaches we have discussed to this point involve significant interdis-
ciplinary collaboration by multiple people. It is interesting to note that what this approach strives to create
through collaboration is the equivalent of a Leonardo da Vinci: a scientist and artist acting as one. Artistic
insight feeds into and illustrates scientific discovery, while scientific discovery pushes the limits of artistic
representation and understanding. In a sense, there is a continuum between science and art, and each in-
dividual spans some portion of that continuum. The more that one learns about the other’s field, the more
of the continuum one covers. As scientists learn more about design and art through collaborations, classes,
and experience, they break down the barriers between the two disciplines, develop a new visual language
and understanding, and make it easier for the collaborative processes to succeed. The same is true for artists
and designers. As they come to understand science and its goals, they become, more and more, renaissance-
people, spanning the entire continuum. Perhaps only a very few will reach da Vinci status, but the future
collaborations of all who strive to understand their collaborators’ fields will be enhanced by their increased
knowledge.

As interdisciplinary initiatives continue to grow in universities and research settings world wide, we
are beginning to see a change in the way science and art are taught. There is a tighter bond between the
two and a greater appreciation for how the two disciplines can work together to help achieve the goals of
each. By structuring our teaching to embrace this principle, we have the ability to foster a new generation
of renaissance-people and skilled collaborators.
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5 Summary

In this chapter we have narrated some of our own experiments with merging concepts from art and design
into the scientific visualization process, particularly for exploratory applications that work with multivalued
data. We have also surveyed related work to give some context for others aiming to continue explorations
into the synergy between these two disciplines. It is clear to us that there remains much visualization
knowledge to mine from the world of painting, art, and design. Some of this knowledge is about visual
representations, but there are design and pedagogical components as well that will play a role in educating
visualization researchers and in evaluating visualization methods. Collaboration in the form of renaissance
teams and the development of renaissance scholars will advance our field, and tools that amplify the output
of designers by better leveraging their design capabilities without taxing their stamina and patience will be
critical to this advancement.
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