
An Evaluation of How Small User Interface Changes Can
Improve Scientists’ Analytic Strategies

ABSTRACT

Subtle changes in analysis system interfaces can be used
purposely to alter users’ analytic behaviors. In a controlled
study subjects completed three analyses at one-week inter-
vals using an analysis support system. Control subjects used
one interface in all sessions. Test subjects used modified
versions in the last two sessions: a first set of changes aimed
at increasing subjects’ use of the system and their considera-
tion of alternative hypotheses; a second set of changes aimed
at increasing the amount of evidence collected. Results show
that in the second session test subjects used the interface
39% more and switched between hypotheses 19% more than
in the first session. They then collected 26% more evidence
in the third than in the second session. These increases differ
significantly (p < 0.05) from near constant control rates. We
hypothesize that this approach can be used in many real ap-
plications to guide analysts unobtrusively towards improved
analytic strategies.
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INTRODUCTION

This paper provides experimental support for the hypothe-
sis that we can use subtle changes in the interfaces of visual
analysis systems to influence users’ analytic behavior and
thus unobtrusively guide them towards improved analytic
strategies. We posit that this approach may facilitate the use
of visual analytics expertise to correct biases and heuristics
documented in the cognitive science community.

Specifically, we report results from a controlled study in
which subjects were asked to complete three analysis ses-
sions using a system consisting of a visualization and an
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analysis support module. Two sets of non-functional changes
were made to the analysis support interface before the sec-
ond and third sessions. These changes were designed to im-
prove three hypothesized or observed analytic deficiencies:
analysts’ excessive reliance on memory, inability to consider
hypotheses in parallel, and insufficient search for evidence.
Our quantitative results show that the interface changes suc-
ceeded in alleviating these deficiencies. Compared to a con-
trol group, our test subjects used the support module more,
they switched among hypotheses more often, and they col-
lected more evidence per hypothesis. Our data not merely
show that changes in interfaces translate into different user
behavior, but demonstrate that we can leverage interface de-
sign and cognitive principles in controlled ways to overcome
known analytic deficiencies.

Our work was motivated by extensive cognitive science re-
search showing that human thinking is subject to heuris-
tics and biases that often lead to suboptimal decision mak-
ing [19]. Recent visual analytics efforts [35] suggest that
visualization and interfaces can offer support against such
cognitive biases and heuristics, possibly by leveraging the
expertise of the cognitive science and intelligence commu-
nities [18]. However, to the best of our knowledge, few con-
crete attempts have used visual analytics techniques to align
descriptive analysis (i.e., what people actually do to derive
a solution) to normative analysis (i.e., rational strategies of
deriving the best solution). Here, we evaluate a potential so-
lution inspired by previous work in the fields of behavioral
economics and human-computer interaction (HCI): libertar-
ian paternalism [32, 34] and persuasive technology [16] are
similar concepts that advocate designing choice layouts and
computer interfaces so that they nudge users towards deci-
sions that are in their best interest.

Contributions: We hypothesize that subtle changes in visu-
alization interfaces can be used in controlled ways to guide
users towards more normative analysis and provide quantita-
tive evidence that supports this hypothesis. We also present
qualitative observations on analytic strategies, biases, and
heuristics that our subjects used in their tasks.

Roadmap: Next, a related work section summarizes exist-
ing research that we build on and extend. We then describe
a user-study that validates our hypothesis and summarize its
results. We end with a discussion and concluding remarks.
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Figure 1. By making subtle, non-functional changes in the interface of an analysis support module (top) we generated statistically significant changes
in users’ analytic behavior in a visual problem-solving task. A first set of changes nudged subjects to increase their use of the analysis module by 39%
(lower left, p = 0.02) in an attempt to support our subjects’ working memory. It also caused them to switch among hypotheses 19% more often (lower

center, p = 0.03), indicating more consideration of alternative hypotheses. A second set of changes then led subjects to gather 26% more evidence per

hypothesis (lower right, p = 0.01). These three increases compare to smaller or negative variations in a control group (+15%,−17%,−2%).

RELATED WORK

This section shows how our work relates to and is motivated
by existing research.

Guiding user’s choices

Thaler and Sunstein’s work [34, 32] in the field of behav-
ioral economics popularized the term choice architecture —
how a set of choices is presented to a consumer — and the
concept of libertarian-paternalism — designing choice ar-
chitectures that “nudge” consumers towards decisions that
are in their own interest (paternalistic) while unrestricting
choice (libertarian). A similar concept was proposed in the
HCI domain by Fogg [16] who defines persuasive technol-
ogy as “interactive information technology designed for chang-
ing users’ attitudes or behavior”. We build on these previ-
ous approaches and demonstrate empirically how the nudge
paradigm can further the visual analytics agenda.

Sunstein and Thaler as well as Fogg motivate their approaches
with two arguments, which they support with experimental
evidence. First, any choice architecture or computer inter-
face necessarily influences decision-making behavior, whether
intentionally or not. Second, as already shown, research in-
dicates that people’s choices and behaviors are not always
aligned with their goals. From a visual analytics perspec-
tive, this means that even if an analyst’s objective is to select
the optimal course of action based on available data, cogni-
tive biases and heuristics can steer him towards suboptimal
results. Finally, Thaler, Sunstein and Fogg, as well as subse-
quent research articles, defend the ethicality of the nudging
approach and impose ethical design constraints (e.g. avoid-
ance of coercion or deception, ease of avoiding paternalist
choices) [25].

Both approaches have inspired scientific results that vali-
dated their feasibility. Thaler and Benartzi [33] use an array
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of cognitive effects such as mental discounting or default op-
tions to persuade employees of a company to increase their
contributions to their retirement plans. In the technological
realm, the enhanced speedometer [23] changes its appear-
ance based on the current speed limit (when known), en-
couraging users to stay within speed limits, while the smart
sink [2] augments a normal sink with visual cues that make
energy consumption apparent. This works has provided in-
spiring design models for the analysis nudges presented here.

Analytic biases and heuristics

Our work is motivated by extensive cognitive science re-
search demonstrating that people are prone to a range of
analysis biases and heuristics that can lead to analysis er-
rors [19]. A specific manifestation of such effects occurs
in the context of hypothesis-driven analysis. For example,
satisficing [29] limits analysis to a hypothesis that is good
enough, a confirmation bias conditions us to confirm hy-
potheses rather than disconfirm them [36], and people of-
ten fail to to consider alternative explanations [6]. Many
such studies have been conducted with naive subjects, but
research shows that biases and heuristics also occur in scien-
tific and clinical settings, with similar error-inducing effects
[12, 4, 27]. Several results suggest however, that experts,
while not immune to such biases and heuristics, may be bet-
ter equipped to overcome them [13, 21].

Evidence suggests that users can be helped to overcome bi-
ases and heuristics and instead use normative analysis, a
change that usually yields improved analytic performance.
For instance, subjects conditioned to pursue alternative hy-
potheses and disconfirming evidence reached solutions to a
scientific puzzle more often [12]. Analogies and subsequent
unexpected findings lead to consideration of multiple hy-
potheses and novel findings [13]. Medical students using
hypothesis-driven analysis outperformed those using a data-
immersion approach [15]. Finally, multiple-attribute utility
theory can reduce the prominence effect (i.e. basing a deci-
sion on one attribute deemed most important) [19]. These
results support our goal of guiding users towards normative
analysis practices.

Related work in visual analytics

The paper “Illuminating the path” [35] introduced the field
of visual analytics (VA) as “the science of analytical reason-
ing facilitated by interactive visual interfaces”. The work
presented in this paper extends the VA research agenda, con-
centrating on designing interfaces and visualizations that sup-
port the aggregation of data insights into cohesive scientific
theories.

Our work is tangential to VA results on understanding the
sense-making process [5, 26] and draws on position papers
that argue for leveraging the expertise of cognitive science
and intelligence communities [18, 31]. In our evaluation
we use a system inspired by a range of efforts to design
analysis support interfaces that let users store, annotate, and
browse analysis artifacts such as hypotheses or evidence [7,
37, 17, 38, 14]. However, to the best of our knowledge, few
concrete attempts have used visual analytics techniques to

bridge the gap between descriptive analysis and normative
analysis. Our work complements current research by using
a visual analytics methodology to create a link between ob-
served analytic deficiencies and corrected behavior.

Perhaps closest to our work is that of Savikhin et al. [28]
demonstrating experimentally that a targeted visual repre-
sentation can induce normatively correct decisions in an oth-
erwise biased economic choice task. We extend this result by
linking it to the more general nudging approach proposed by
Sunstein, Thaler and Fogg, by exploiting interface design in
general, and by providing an experimental validation for a
high-level analytic task.

METHODS

We conducted a controlled user study to test the hypothesis
that small changes in a visualization system’s interface can
be used to produce targeted modifications in users’ analytic
workflows. This section presents the design of this study.
We start with an overview description of the methodology
used and continue with an in-depth presentation of each as-
pect of the study.

Study overview

Subjects completed an analysis task inspired by a real scien-
tific problem using a visualization and an analysis-support
interface (Figure 1, top). Each subject performed three such
analysis sessions at one-week intervals. Each session lasted
roughly one hour.

Thirty-six subjects, mostly undergraduate and graduate stu-
dents, were divided into two groups: 21 test and 15 control
subjects. The control group solved all three tasks using the
same analysis-support interface. Conversely, test-group sub-
jects were given slightly different versions of the analysis-
support interface in each session. Specifically, two sets of
interface nudges were added to the analysis system before
the second and third sessions. We hypothesized that, while
changes between sessions would be observed in both groups
due to task-learning effects, the test group would exhibit ad-
ditional effects due to the interface nudges.

The analysis task was inspired by the proteomic domain:
finding causal paths in protein interaction networks to ex-
plain the interdependency of pairs of proteins that are not
directly connected. None of the subjects was familiar with
the task or background material beforehand and all received
a 20-minute tutorial at the beginning of the study.

Our test system was instrumented to log users’ interactions
automatically. Subjects were also asked to distill their anal-
ysis in a written questionnaire at the end of each of the three
analysis sessions. We analyzed the datasets both quantita-
tively, to look for support for our nudging hypothesis, and
qualitatively, to gain insight into how subjects approached
their task.

Task description

Subjects were asked to solve three artificially constructed
analysis tasks inspired by workflows of proteomic researchers
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studying protein signaling pathways.

Proteins are functional molecules within cells that interact
with one another to form complex causal pathways that de-
termine the response of cells to events. Such protein inter-
actions are the object of intense scientific research because
understanding these cellular pathways would let researchers
devise efficient drugs to influence a cell’s behavior without
causing unwanted side effects. Proteomicists often use vi-
sualizations of interaction networks to understand changes
in protein activation patterns measured in experiments. A
distinct class of experiments is knockout experiments: here
researchers deactivate particular proteins and compare pro-
tein activation levels before and after the removal.

Our subjects were given network visualizations that were
said to depict protein interactions documented in recent pub-
lications. Figure 1 shows one of three distinct networks that
subjects were asked to analyze. The networks were manu-
ally created and laid out. The familiar Google Maps user
interface was used to display the network images and offer
basic interaction. Clicking on nodes or edges opened infor-
mation bubbles referring to these particular elements. In-
teractions were described by fictional, brief paper abstracts
detailing the particulars of each interaction and the context
in which it was discovered.

Subjects were told that a knockout experiment had been per-
formed on a specific type of cell. They were informed that a
protein was removed from the cell and that researchers sub-
sequently observed changes (positive or negative) in the lev-
els of several proteins. These changes were marked on the
network with arrows. Finally, subjects were asked to use the
available information to determine network paths likely to
have produced those changes and to rank them in order of
plausibility. This network task represents a visual, complex,
and open-ended implementation of causal reasoning tasks
that have been typical choices of cognitive studies [36].

Our networks used proteomic terminology but introduced
fictitious proteins, interactions and interaction mechanisms.
Thus, the probability of a regulation chain was determined
by the logical consistency of the evidence presented. The
key rules that subjects were expected to extract from the ev-
idence and use in their analysis were: the probability of a
depicted interaction is lower if it was documented in species
and cells other than those investigated in the knockout exper-
iment; a correlation between two proteins should be treated
as an edge with uncertain directionality; interactions could
describe direct or inverse regulation mechanisms; and the
edges sequence in a solution path should justify the sign
of the observed change. These assumptions, along with a
general description of protein signaling, were illustrated in
a 20-minute tutorial (text and video) and were clarified on
request. Moreover, essential terms were highlighted in all
evidence text and in-situ explanations were displayed upon
mouse clicks (Figure 1).

The order in which the three networks were presented to
users was alternated to minimize the chance of network dif-

ferences influencing the global result. Thus, in the test group,
six subjects solved the networks in order 1,2,3, seven sub-
jects solved them as 2,3,1, and the remaining six solved
them as 3,2,1. A similar division was used for the control
group.

Figure 2. The two modified analysis interfaces include three evalu-

ated nudges: a box lists online users actively interacting with the anal-
ysis module (left), a color gradient (white to gold) shows recently ana-

lyzed hypotheses (left), a redesigned, larger evidence box asks users to

commit to the implications of a hypotheses lacking associated evidence

(right).

Analysis interface and evaluated nudges

In addition to the protein network viewer, an analysis sup-
port interface augmented the experimental environment (Fig-
ure 1). As noted in Section 3.1, control subjects used the
same base analysis interface in all three sessions. Test sub-
jects started with an identical interface but then used up-
graded versions in the second and third sessions. These ver-
sions, obtained by incrementally including two sets of eval-
uated nudges in the base interface, are shown in Figure 2.

The base analysis module contained three lists in which users
could store their hypotheses, confirming, and disconfirm-
ing evidence. Hypotheses were entered into the system as
noncyclical network paths by clicking on sequences of con-
nected nodes. Evidence was inserted into the confirming or
disconfirming category by typing free text in a pop-up box.
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Selecting existing hypotheses would highlight their corre-
sponding paths on the visualization and display their associ-
ated evidence, thus allowing subjects to revisit and compare
hypotheses. Subjects were familiarized with these features
in the tutorial video at the beginning of the study.

Three nudges were designed to alleviate three analytic defi-
ciencies. First, we assumed that subjects would rely on their
working memory rather than use the analysis system. Sec-
ond, based on cognitive science studies, we assumed that
subjects would have trouble considering multiple hypothe-
ses in parallel. Third, we hypothesized that subjects would
gather mostly confirming evidence for their hypotheses, and
ignore the aspect of disconfirming evidence. The results
of our initial session one runs caused us to adjust our last
assumption: subjects were gathering approximately equal
amounts of confirming and disconfirming evidence but in
overall small amounts. We refined the design of our last
nudge to target this issue better.

As already noted, the first evaluated nudge (Figure 2, left)
aimed to increase users’ reliance on the analysis module.
Our design rested on the assumption that if subjects knew
other users were actively interacting with the module, they
would do so as well. To test this assumption, a section listing
online users was added to the base analysis module. As users
interacted with the module, this was reflected in a publicly
visible status message (e.g., “user is browsing his hypothe-
ses”, “user has entered new evidence”). Fake user-bots were
added to ensure that a nudge factor was present at all times.
This design was inspired by research on conformity effects
and motivational factors for online contributions. Specifi-
cally, humans change their behavior to match that of oth-
ers [9, 3, 8] to gain social approval [10], or because they de-
rive utility information from observing what others do [30,
20]. In addition, visibility encourages users of social net-
works to increase their online contributions [1, 24, 24].

The second nudge was designed to encourage users to com-
pare and contrast hypotheses in parallel rather than perform
a sequential search in hypothesis space. Initially we planned
to evaluate this nudge by itself but ultimately merged it with
the first one so as to make the length of the study manage-
able. The design involved assigning each hypothesis a re-
cency score that decayed over time but increased with any
interactions targeting the hypothesis (e.g. selection, adding
evidence). Recently active hypotheses were highlighted in
the hypotheses list by using a color gradient based on the re-
cency score. Finally, thresholding the recency score allowed
us to determine the number of a user’s active hypotheses,
display this information in the user status (Figure 2, left),
and sort users based on how many hypotheses they were in-
vestigating. This offered a visual and status reward. While
a user could trick the system by quickly switching between
hypotheses, this was taken into account in data analysis (see
Results section) and we have observed just two intentional
instances of it. These first two nudges were integrated into
the analysis interface before the second session.

Finally, the third nudge, deployed before the last session,

aimed to encourage test subjects to gather more evidence
for the same number of hypotheses. To that end we mod-
ified the evidence collection part of the interface (Figure 2,
right). First, the evidence-collection area was made more
visually interesting and distinct from the rest of the inter-
face. Second, if no confirming or disconfirming evidence
had been entered for a hypothesis, the evidence boxes would
read “0 chances that hypothesis is false” or “hypothesis is
unlikely”. This essentially required subjects to commit to
extreme cases — something that people are known to avoid [11].
Third, modification introduced unintentionally while imple-
menting the design was that the evidence boxes in this nudge
were larger than in the base interface.

We hypothesize that this nudge could be restricted to dis-
confirming evidence only, in which case it could potentially
alleviate confirmation biases [36]. As noted, our subjects
did not exhibit a confirmation bias in the early stages of the
study, so that we resorted to testing the more general case of
increasing the amount of total evidence.

User pool

Our study included a total of 36 subjects. Of these, 16 were
women and 20 men. Six of them were young profession-
als, 18 were undergraduates, and 12 were graduate students.
Twenty-six of the subjects were active in sciences, while 10
were humanities students. None of the subjects had previous
experience with proteomic analysis. Thus, all subjects relied
solely on the tutorial provided at the beginning of the study.

Subjects were randomly distributed in control (15) and test
(21) groups such that the two groups had similar distribu-
tions of gender and age (undergraduate, graduate or post-
graduate). Subjects were compensated for their participa-
tion.

User study limitations

Ease of hypothesis elicitation: A pilot run showed us that
free-text specification of hypotheses would have produced
considerable variability in what users entered as hypothe-
ses. To be able to compare results across subjects we limited
hypotheses to paths of connected proteins. This interaction
mode, reinforced by the tutorial video, gave subjects an easy
“recipe” for generating hypotheses: any network path was a
valid hypothesis.

Lack of motivation: Our study did not involve monetary in-
centives to encourage subjects to provide valid solutions. As
a result, several subjects appeared not to devote significant
effort in searching for clues beyond those immediately no-
ticeable.

Unforeseen problem-solving strategies: A few of our early
subjects copied the network on paper and annotated each in-
teraction and protein. This strategy is not scalable to real
protein interaction networks and it does not capture the ex-
ploratory nature of analysis. To avoid this, we instructed the
rest of the subjects not to use such exhaustive analysis strate-
gies.
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Task misunderstanding: Instead of constructing short paths
that linked the knockout protein to each changing protein,
two subjects looked for long paths that linked the knocked-
out protein and all arrow proteins (i.e proteins with changed
levels) together. We retained these results because the sub-
jects used this interpretation consistently in all three ses-
sions.

Variation in analysis times: We urged users to spend ap-
proximately 60 minutes on each session. Several subjects,
however, insisted on finishing earlier. Moreover, a few datasets
showed prolonged intervals of inactivity and several users
were observed to take web-browsing or texting breaks. In
our analysis we eliminated intervals with no activity and nor-
malized all measurements by the time spent on the task.

Small number of subjects: Our sample size (21 test, 15
control subjects) was relatively low for the open-ended tasks
our study involved. However, we note that the trends in the
data became apparent with as few as six users in each group
and changed very little throughout the experiment.

Effect of change not captured: Our study does not capture
the amount by which interface changes amplify the saliency
of our nudges. It may well be that nudges are less observ-
able and effective if they are introduced into the first system
release.

RESULTS

Here we describe quantitative and qualitative results from
our user study. All data and analyses are available online [39].

Data preparation and analysis

Thirty-two subjects completed all three sessions while four
completed only the first two for a total of 28× 3 + 4× 2 =
104 datasets. Four of the subjects, two from each group,
solved the tasks on paper using exhaustive annotation of the
networks. Three additional users also switched to this ap-
proach in the final session. All these data were discarded
from the analyses leaving 104−4×3−3×1 = 89 datasets
from 13 control subjects and 19 test subjects.

We measured and analyzed three quantitative indicators to
support our nudging hypothesis. First, we recorded the num-
ber of hypotheses and evidence entered into the system as a
proxy for the degree to which subjects relied on the interface
to trace their analysis. This number was normalized by the
time, in minutes, subjects spent on each session. Second, we
measured the number of times a subject switched between
hypotheses and normalized it by the number of hypotheses,
as an indicator of the degree to which hypotheses were an-
alyzed in parallel during analysis. Third, we recorded the
number of evidence items collected and divided it by num-
ber of hypotheses.

In the case of hypotheses switches, we ignored hypotheses
selections lasting less than 5 seconds because we observed
that users sometimes cycled rapidly through hypotheses as
a method of gauging progress. We also ignored switches
occurring in the last part of the analysis while subjects were

filling in the answer questionnaire. We found that by default
most users did a comparative analysis of hypotheses at the
very end. Our nudge however was designed to encourage
users constantly to consider alternatives.

In a second phase we also made a qualitative analysis of our
subjects’ workflows. Our goals were to understand the domi-
nant analytic strategies and behavioral patterns, and to verify
the degree to which biases and heuristics were applied.

Quantitative support for nudging hypothesis

The premise of our experiment was that interface nudges
would cause test subjects to change their behavior between
sessions differently from how control subjects’ behavior would
evolve naturally as a consequence of learning or boredom.
Figures 3-5 demonstrate the validity of our premise by con-
trasting the relative changes in performance measures be-
tween consecutive sessions in both experimental groups. As
expected, change was negligible in control subjects (means
of all triangles are close to one), but was significant for test
subjects when a nudge was present (means of black squares
greater than one). However, test group behavior remained
constant whenever performance measures were not specifi-
cally targeted (e.g. change in contributions between the last
two sessions). This suggests that subjects were responding
not simply to interface changes but instead to nudges target-
ing particular performance measures.

Test subjects contributed 39% more hypotheses and evidence
items to the analysis module in the second session than in the
first. This compares to an increase of only 15% in the con-
trol group (Figure 3). A t-test found this difference to be
statistically significant (t(29) = −2.07, p = 0.02). Contri-
butions remained close to constant between the second and
third sessions in both the control and test group (Figure 3).
This conforms to the expected behavior since no nudge tar-
geting contributions was added between these sessions.

The difference in switches between hypotheses was an in-
crease of 18% in test subjects versus a decline of 17% in
control subjects (Figure 4). The difference was significant,
as indicated by the t-test (t(25) = −1.89, p = 0.03). The
first two nudges were both added before the second session.
Thus, we assign either of the observed changes not to any
single nudge but to all interface changes made between the
first two sessions.

The amount of evidence collected per hypothesis remained
fairly constant between all consecutive sessions in the con-
trol group with a decrease of 2% (Figure 5). Test subjects
however, gathered on average 24% more evidence per hy-
pothesis in the third condition than the second. This differ-
ence was also found to be statistically significant (t(38) =
−2.28, p = 0.01).

Qualitative analysis of subjects’ workflows

Our subject’s logs allowed us to assess their workflows qual-
itatively to extract common strategies and to determine the
extent to which subjects relied on analytic biases and heuris-
tics. The following paragraphs summarize our conclusions.
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Figure 3. Changes between the first two sessions (black) caused test

subjects (squares) to increase the number of hypotheses and evidence
items entered into the analysis system by an additional 24% over the

control subjects’(triangle) relative increase. The interface changes be-

fore the third session had no significant impact on this performance

measure (gray).

Figure 4. Changes between the first two sessions caused test subjects

(squares) to switch between hypotheses an additional 35% more than

than the control subjects’(triangle) relative increase.

Figure 5. Changes between the last two sessions (black) caused test
subjects (squares) to gather 24% more evidence for their hypotheses as

opposed to a constant evidence/hypotheses ratio (-2%) between all con-

secutive control sessions (triangles). Changes in the test group before
the second session (gray) produced non-significant changes in evidence

collection as compared to the control group.

Observed workflows: More than half our subjects started
with an initial exploration of the network. This exploration
was not hypothesis driven and typically lasted between three
and six minutes. Subjects then moved on to a hypothesis-
driven analysis, trying to connect arrow proteins to the knock-
out protein (Figure 1). We could discern two strategies for
entering hypotheses. Most subjects would pick a candidate
path, do a pre-evaluation of its likelihood, enter it into the
system if it was plausible, and then follow with a second pass
to summarize and document evidence. These users would
often revisit hypotheses and compare them. A few subjects
added hypotheses without prior exploration and then sum-
marized evidence in a following pass. Generally, they did
not reevaluate those hypotheses again until a final pass when
they decided on a global likelihood ordering.

Observed biases and heuristics: An interesting finding was
that confirmation bias was not dominant. In fact, subjects
gathered slightly more disconfirming evidence than confirm-
ing evidence. A number of qualitative observations provide
further support for this finding. First, several users gath-
ered almost exclusively disconfirming evidence, while oth-
ers pruned paths that had strong negative evidence. Second,
one subject would copy entire sections from the informa-
tion bubbles and enter it directly as confirming evidence, but
would always carefully summarize negative evidence. This
suggests that she recognized the higher diagnostic value that
the disconfirming evidence would have in her final ranking.

A known heuristic that we found in several datasets was
single-attribute analysis (i.e. focusing on a single most promi-
nent attribute and using that to rank options). We noticed
several cases in which subjects added complicated paths be-
fore shorter, more intuitive ones. On closer inspection we
found that they had selected a single attribute (e.g. cell type)
and were using it to include or discard paths from their anal-
ysis.

We also noticed an inability to operate with varying degrees
of probability. Several subjects seemed to postpone the con-
sideration of paths involving a complex probability judg-
ment (e.g. multiple interactions with associated uncertainty)
and instead concentrate on paths that allowed a binary deci-
sion.

Our network setup was well suited to discovering conjunc-
tion fallacies, which occur when a specific condition is deemed
more likely than a general one. In our network task short
paths should be more likely candidates for analysis than longer
paths. In general, our subjects seemed aware of this princi-
ple. In fact most new hypotheses abided by this rule. Ad-
ditionally, several subjects added the short length of a path
as positive evidence. However, we noticed that subjects’ an-
alytic strategies tricked them into the conjunction fallacy in
a significant number of cases. We observed three main sce-
narios leading to this.

First, the favored method of expanding a set of hypotheses
was to modify an existing one by rerouting part of its path.
At the very least, subjects often used interactions that they
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were already familiar with. Most subjects avoided picking
completely new routes, especially in network areas where
they had already done some analysis. Such small changes
to initially short paths lead subjects to analyze increasingly
longer paths. Ultimately, subjects spent considerable time
on long paths that were less likely than unexplored shorter
options.

Second, subjects occasionally considered longer paths link-
ing together multiple arrow proteins more likely than short
paths from the knockout protein to each of those arrow pro-
teins. We hypothesize that users were looking for good uni-
fying stories, a known cognitive tendency. Interestingly, one
of the subjects confessed that he was aware of the conjunc-
tion fallacy but that the “story was too good” to be irrelevant.

The third reason for multiple instances of conjunction fal-
lacy was tied to the network layouts. The way paths were
visually displayed had an impact on which ones were cho-
sen for analysis. Most subjects preferred paths that described
fairly continuous visual arches, or that were symmetric with
ones they had already looked at. Sharp-angled paths were
usually selected last even if they were shorter than already
analyzed hypotheses. Another effect observable in several
datasets was that symmetrical paths were more often com-
pared to each other than to other hypotheses.

DISCUSSION

Here we discuss the broader impact of our contributions, al-
ternative methodologies, and open questions.

Significance

Some of the findings reported in this paper may seem unsur-
prising. That interface design can alter analytic workflows
is evident, as is the fact that online visibility is correlated
with increased online activity [24]. However, our study data
shows more than that interface changes translate into dif-
ferent user behavior. Our contribution lies in demonstrating
that interface elements can be leveraged in controlled ways
to unobtrusively correct users’ strategies: our subjects’ de-
ficiency in supporting their hypotheses with evidence was
observed in the first session and alleviated by a redesigned
analysis-support module in the third session. We believe this
approach is valuable because it has the potential to correct
and improve users’ strategies without having to rely on coer-
cive or obtrusive elements such as pop-up messages or help
agents.

Design guidelines

Our work was primarily aimed at providing experimental
support for the nudge paradigm in the visual analytics do-
main rather than providing a set of design guidelines. The
nudge design space warrants more exhaustive exploration
because it can either provide a tool for guiding users to-
wards better analytic strategies or help us understand how
our interfaces unintentionally shape users’ exploratory and
analytic patterns. Our work actualized interesting questions
about the degree to which tutorials, ways of entering and
storing hypotheses, and even simple design choices such as
text-area size and color can influence users’ behavior.

A few loose design guidelines, however, can be distilled
from our work. First, putting collaborative elements and
conformity triggers in analysis systems can nudge users to
change their behavior. We hypothesize that artificial model-
analysts, such as used in our experiment, could nudge users
towards conforming to a desired behavior. Second, visual
rewards, such as our recency score, will encourage users to
consider options in parallel. Third, messages in text areas,
perhaps in conjunction with box size, may be used for boxes
that should not be left empty. Finally, from our qualita-
tive analysis of our subjects’ workflows we hypothesize that
ways of automatically suggesting hypotheses may alleviate
some of the observed conjunction fallacies and that subjects
would benefit from support for multiple attribute analysis.
Both such mechanisms would need to be domain specific
and are beyond the scope of the present work.

General considerations

The data distributions may suggest that nudges, rather than
uniformly targeting all subjects, tend to be particularly ef-
fective for a subgroup and less so for the rest. As seen in
Figures 3-5, measurements obtained from test subjects ap-
pear to form two clusters: one with values similar to those
measured in the control group, and one with distinctively
higher values. These clusters do not correlate with the order
in which networks were presented to users. However, the
data gathered as part of this study is insufficient to test this
hypothesis.

The analytic biases and heuristics targeted in our study were
chosen because they are amply documented in the cogni-
tive science literature. It is likely that one or more of these
effects do not appear or are beneficial in some areas or set-
tings. In fact naturalistic decision making [22], a distinct
research area, models situations (e.g., crisis control, time-
sensitive operations) in which heuristics are an efficient an-
alytic strategy. The aim of this study was not to eliminate a
specific set of biases and heuristics but to demonstrate that if
such effects are identified we can use interface elements to
reduce their occurrence.

Our study did not replicate several biases and heuristics doc-
umented in the cognitive science literature. Most notably,
people are thought to be unable to elicit many hypotheses
and to be biased towards gathering predominantly confirm-
ing evidence. Conversely, our subjects generated many hy-
potheses and showed no confirmation bias. We see two pos-
sible explanations for this. First, two of our study limitations
may be responsible: the ease of generating hypotheses and
subjects’ lack of motivation led them to pursue multiple hy-
potheses and not develop attachments to favored ones. An
alternative explanation is that people can switch from a nor-
mal working mode to an analysis mode in which normative
principles are more carefully observed. Research by Dun-
bar [13] hints at this hypothesis.

This latter possibility supports our choice of analysis task.
Shorter and more focused tasks like the ones used in many
cognitive experiments can be applied to large numbers of
users and provide clean data. However, the extent to which

8



they translate to the exploratory analysis typical of scientific
discoveries is far from clear. As noted in the related work
section, several studies indicate that there are observable dif-
ferences between laboratory settings and real scientific or
clinical situations.

Similarly, our study might have been more informative had
we tested domain experts in their field of research rather
than naive users on unfamiliar tasks. It remains uncertain
whether domain experts, who generally follow well estab-
lished workflows, can be nudged as easily as our subjects.
Moreover, a high familiarity with an analysis system may
also cause expert subjects to overlook new interface nudges.

Unfortunately, domain experts are scarce and the variability
in the scientific problems they solve is high. Thus, quanti-
tative studies that faithfully replicate real-life scientific set-
tings are scarce and likely to remain so. Our choice of task
and users implements a realistic approximation that provides
insight into how to minimize the impact of biases and heuris-
tics in scientific workflows. This endeavor is important be-
cause, as remarked at the beginning of the paper, domain
experts are not immune from cognitive biases and heuristics
and often benefit from normative analysis strategies.

CONCLUSION

We presented results from a quantitative user study demon-
strating that controlled changes in the interface of an anal-
ysis system can be employed to correct potential deficien-
cies in users’ analytic behavior. Specifically, we manipu-
lated the design of a basic analysis tool over three analysis
sessions to produce three changes in our subjects’ analysis.
First, subjects were nudged to increase their reliance on the
analysis-support module that accompanied the visualization.
Second, subjects were nudged to analyze hypotheses in par-
allel rather than sequentially. Third, subjects were nudged to
gather more evidence for their hypotheses. The significance
of our work is threefold. First, we give an account of how
even the simplest design decisions shape users’ analytic be-
havior. Second, we advance visual analytics efforts by intro-
ducing and validating an approach that leverages visualiza-
tion environments to correct analytic biases and heuristics
reported in the cognitive science literature. Third, we pro-
vide a short overview of analysis workflows, and biases and
heuristics that our subjects used on a scientifically inspired
analysis task.
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