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Course Summary

The goal of this course is to introduce participants to the wealth of visualization inspiration available from art and art history.
How people perceive an image can have a profound effect on the meaning they attach to that image. A compelling example is
the artist’s use of painterly techniques that harness our perception to evoke a specific emotional response. This course surveys
a number of important issues in nonphotorealistic rendering and visual perception, then discusses their direct relevance to
computer graphics and scientific visualization through a series of descriptions, examples, and practical applications. Topics
address questions like: Which artistic techniques can we apply during image generation? How can these techniques be used
to enhance the expressive power of traditional methods like volume visualization or line integral convolution? How does
the correspondence between artistic properties and human perception allow us to produce painterly renditions of complex
information spaces? Answers to these questions are important to graphics researchers and practitioners who want to construct
nonphotorealistic images the convey an intended meaning or perceptual effect when viewed by their audience.
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Course Schedule

First Session (1 hour, 25 minutes)

8:30 Introduction (Laidlaw, 10 minutes)

1. The scientific method

2. Where visualization fits in

3. Perception and art in visualization

4. A roadmap for this course

8:40 Artistic Enhancement in Scientific Visualization (Interrante, 75 minutes)

1. Motivation: when is a drawing more useful than a photograph?

2. Goals: enhancing the important features; minimizing the extraneous details; hierarchically structuring the
attentional focus

3. Historical examples from scientific illustration

4. Recent applications: emphasizing 3D shape with texture

Coffee Break (15 minutes)

Second Session (1 hour, 30 minutes)

10:10 Participant Painting Session, Introduction (Laidlaw, davidkremers, 45 minutes)

1. Introduction to hands-on painting session

2. Purpose and goals of hands-on painting session

3. Presentation and explanation of example vector and scalar fields

10:55 Participant Painting Session (davidkremers and other instructors, 45 minutes)

1. Participant painting session with assistance and real-time feedback from course instructors

2. Presentation and critique of individual participant results

Lunch Break (1 hour, 20 minutes)

Third Session (2 hours)

1:00 Participant Painting Session, cont’d (davidkremers and other instructors, 45 minutes)

1. Participant painting session with assistance and real-time feedback from course instructors

2. Presentation and critique of individual participant results

1:45 Impressionism, Perception, and Multidimensional Visualization (Healey, 75 minutes)

1. Discussion of low-level human vision

2. Perceptual properties of color and texture patterns

3. Painterly styles in Impressionist art

4. Correspondence between low-level visual features and painterly styles

5. Nonphotorealistic techniques for multidimensional visualization

iv



3:00 Artistic Inspiration for Volume Rendering (Rheingans, 35 minutes)

1. Expressive techniques in technical illustrations

2. Artistic techniques for translucent phenomena

Coffee Break (15 minutes)

Fourth Session (1 hour, 20 minutes)

3:50 Expressive Volume Rendering (Rheingans, 40 minutes)

1. Features in volume models

2. Techniques for expressive volume rendering

3. Implementing expressive rendering for volume models

4:30 Beyond Perceptual Psychology with Oil Painting (Laidlaw and davidkremers, 40 minutes)

1. A sequence of painters

2. Deconstructing van Gogh

3. Layering of brush strokes for data representation

4. Textures, icons, and geometry - a lesson in multiple scales

5. Some open problems

5:10 Conclusions and Wrap-up
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Introduction

David Laidlaw
Brown University

This course will explore where scientists can find inspiration for scientific visualization. We will discuss examples from art
and perceptual psychology. Art is a natural source for visual inspiration. Perceptual psychology is less obvious, but sensible,
considering that it attempts to understand how the human visual system “sees.”

Throughout the day we will see examples of art-motivated visualization, look at art and understand how and why it works,
experiment with making some art of our own, and talk among ourselves about what works and what doesn’t.

The audience for this course is likely to be varied. The approaches that we will talk about are inherently multidisciplinary (and
hence fun and exciting!). We hope that folks in the audience who are artists artists will see some new applications for what they
have learned works visually. We hope that scientists in the audience will be inspired by some of the art that they see and think
about how ideas from the art might be applied to their scientific problems. We hope that software developers in the audience
might see new visual representations that they can build into visualization tools. Finally, we hope that some cross fertilization
will take place between members of the audience and with the presenters as well. During the day there will be several times
when you will be looking at art, thinking about it, making it, and talking to your compatriots. Collaboration is encouraged.

1.1 Scientific Visualization

The organizing principle behind scientific visualization is the scientific method. Broadly speaking, scientists pose hypotheses
about how the world works, design tests to evaluate those hypotheses, and then carry out the tests. Occasionally, those tests
work out as expected, but, much more often, they lead to surprises. From the resulting information, expected or now, new
hypotheses emerge, and new tests are designed and carried out. Through this iterative process, scientists gain insight into the
phenomena they are studying.

Visualization can play an important role. Figure [dhl cycle figure] shows an iterative scientific visualization cycle that includes
visualization. The cycle typically begins in the lower right with a hypothesis or model of the world. Cycling to the left, a
scientist generates measurements of the world, say with a medical imaging device, a camera, or by running a simulation. The
resulting data is then analyzed at the top. The analysis may involve comparing simulated results with physical measurements,
searching for patterns in measured or simulated data, or comparing measurements across subjects. In all cases, the overarching
goal of the visualization process is to evaluate the scientific hypothesis initially posed.

This goal comes with some implications. First, it implies that the visualization needs to show certain things. This con-
straint makes the visualization more challenging, but it also provides something of an evaluation metric – the performance
of researchers on their scientific tasks can be considered a measure of the effectiveness of the visualization methods. This is
important, because it colors the entire visualization development and evaluation process.

1.2 Art and Perception for Inspiration

With clearly defined goals, then, we have some hope of developing effective visualization tools. Much of this course will focus
on finding ideas and inspiration in art and perceptual psychology and applying them to scientific visualization tasks. Through
several centuries, artists have evolved a tradition of techniques to create visual representations for particular communication
goals. Art history provides a language for understanding that knowledge.

Beyond inspiration, perceptual psychology also brings a second set of knowledge to bear on scientific visualization problems.
Evaluating the effectiveness of visualization methods is difficult because, not only are the goals difficult to define and codify,
tests that evaluate them meaningfully are difficult to design and execute. These evaluations are akin to evaluating how the
human perceptual system works. While this may seem outside the search for inspiration, it is closely coupled, because the
inspiration has to lead to effective methods, which are otherwise impossible to evaluate.



Reprinted from “Illustrating Transparency: Communicating the 3D Shape of Layered
Transparent Surfaces via Texture”, PhD dissertation, University of North Carolina at
Chapel Hill, 1996.

5.2:  How artists represent form with line

Line patterns have been used for centuries to represent three dimensional figures in flat
drawings.  It therefore seems appropriate to begin this investigation into promising techniques for using
line to represent shape by briefly reviewing what artists and illustrators have written on this subject over
the years in textbooks describing their pen-and-ink methods.

Thickness, spacing and orientation appear to be the three most important and often discussed
line characteristics.  Sullivan [1922] demonstrates how the relative weight of the line used to surround an
object determines whether the outline is perceptually grouped with the object or with the background, or,
alternatively, whether the line stands apart from both and demands recognition as an entity in its own
right.  He goes on to describe how the amount of “depth” conveyed in an image will vary considerably
depending on the effectiveness with which the outline is drawn;  in the cases where the line assumes its
own identity, he says, an extra measure of flatness will be imparted to the image which is, in most cases,
undesirable.  It should be noted that Sullivan is referring here to outlines which are drawn for the sole
purpose of separating figure from ground, lines which have no intrinsic, viewpoint-invariant meaning on
the surface itself.

Figure 5.4:  An illustration demonstrating the potential significance of stroke characteristics,
from [Pitz 1957].  A dramatically different effect is achieved in these two images although little more is
changed than the lengths and directions of the lines used to represent the tonal values.  Of particular
note here is the dynamism or sense of radiant flow in the image on the left in contrast with the relative
serenity or stillness in the same scene in the depiction on the right.

When lines are used to represent surfaces areas rather than boundaries of form, the thickness and
spacing of the individual strokes is often varied over the image depending on the “tone” desired in each
region.  Gradations in tone can be represented in many different ways: by changing the spacing between
strokes of equal thickness, by changing the thicknesses of strokes whose central axes are more or less
equally spaced, or by varying the width of each stroke along its length.  Sullivan [1922] emphasizes the
importance of proper spacing, a theme that is reiterated in almost every book describing the art of
drawing:
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... lines may be placed so far apart relative to ... the space occupied that they hardly appear
as a tone, but as individual lines, independent of each other except insofar as their parallelism is
marked.  They then take up a position which may challenge the supremacy of the main
constructive lines of the drawing, so that the adjective is more forcible than the noun, as in a
common and senseless form of swearing, or they may appear, not as belonging to and suggesting
surface or an intangible shade or shadow, but as something positive, either as construction or
pattern.

Pitz [1957] cautions that when the lines comprising a tone are spaced 1/16” apart or more, the eye is more
likely to be conscious of them as individual elements.  Guptill [1976] suggests an even closer spacing,
writing that, as a general rule, the strokes used to represent a tone should be placed 1/32” (0.8mm) apart
if the drawing is to be viewed from a distance of about 2ft.  In the samples of work by medical illustrators
shown at the end of this section, we can see that relatively larger line spacings are common.

Although it is clear that styles vary, it is important nevertheless to take somewhat to heart the
admonishment against representing strokes, or any texture elements, in such a way that they take on a
character of their own.  Our primary intention in adding opaque markings to transparent surfaces is to
allow the form of the depicted objects to be more easily and intuitively understood.  To the extent that the
individual texture markings are unduly prominent, they may do more harm than good, distracting the
attention of the observer, confusing the appearance of the picture and adding visual “noise” that detracts
from rather than enhances the overall effectiveness of the presentation.  This may be one reason that the
circular texture elements are so rarely employed by scientific and medical illustrators for the purpose of
more explicitly depicting surface shape.

While variations in tone are important for representing the patterns of light and shade that are
defined by illumination, this is not the only way in which they are commonly used.  An important
concern in any illustration is emphasis, and Guptill [1976] demonstrates how to define the focus of
attention in a drawing by varying the contrast with which different parts of the scene are depicted (and,
concomitantly, varying the amount of detail that is represented in each part).  The lengths of the
individual strokes and the precision with which they are drawn and placed on the page (including the
regularity of the patterning and the amount by which the individual strokes fluctuate in direction) also
influence the impression conveyed by a drawing.

In terms of the effectiveness with which shape and depth are portrayed, however, the most
important line characteristic by far appears to be orientation.  (This should not be interpreted as meaning
that shading somehow plays a lesser role, but only as an acknowledgment of the fact that tonal variations
can be equivalently conveyed by a multitude of different particular line styles.  The essential shape of an
object, both within and apart from the shading, is conveyed most clearly by the orientations of the lines
that fill and bound its form.)  Sullivan [1922] is particularly adamant about the importance of stroke
direction in line drawings, saying

...all a fastidious spectator’s pleasure in a drawing may be destroyed by a wrong use of
direction in a space of modelling, no matter how fine the lines composing it may be, or how pretty
the general effect.

There are a number of different commonly-accepted techniques for defining line orientation.
Possibly the simplest approach, and incidentally the one that communicates the least amount of
information about shape and depth, is to not vary the line orientation at all but merely to consistently
apply the strokes in a uniform vertical or horizontal direction.  This is the effect achieved in computer
graphics when an image-space texture is applied.  Although the orientation of the lines is independent of
the three-dimensional space occupied by the depicted objects, our perception of form is nevertheless
affected by the choice of line direction.  Pitz [1957] illustrates and explains the effects of a variety of
different directed stroke techniques; figure 5.5 shows excerpts from this work, demonstrating how the use
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of vertical lines can emphasize height, horizontal lines can emphasize width, and lines that follow the
edges of the forms can emphasize their volume.

Figure 5.5:  An illustration of the biasing effects of various stroke textures, from [Pitz 1957].
Vertical lines emphasize height, horizontal lines emphasize width, and lines that follow the outer
edges of the forms emphasize volume.

Guptill [1976] describes how, even for a very simple scene, there seem to be an almost infinite
variety of different ways in which lines can “follow the form” of a surface.  The upper group of
illustrations in figure 5.6 depicts, for example, his demonstration of eight different combinations of edge-
following uni-directional line textures that can be applied to the visible faces of a shaded cube.

Figure 5.6:  Different pen-and-ink techniques for representing the surfaces of a simple object,
from [Guptill 1976].  Upper group: Eight different combinations of edge-following textures that can be
used to shade the faces of a cube.  Lower group: four alternative texturing approaches: outline (no
texture), stipple, crosshatch, diagonal lines.
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Just as there may be a great many equivalently appropriate techniques for representing the
surface of an object with line texture, there are also many ways in which, if inappropriately used, texture
lines can misrepresent surface shape, orientation or depth.  Guptill [1976] points out, in addition to the
above-mentioned effects of vertical and horizontal strokes, that diagonally oriented textures can convey a
sense of expansion, making things look relatively larger than they otherwise might.  Diagonal lines are
also problematic in that, in some instances, they can make parallel lines appear to converge or diverge, as
demonstrated by the well-known Zöllner illusion.  (Gillam [1980] discusses the implications that many of
the classical geometrical illusions have for shape and depth perception.)  Guptill advises, however, that
“as a general rule, a subject offers some hint as to a natural arrangement of lines, and when this is
followed there is little danger of distortion”.

Lines, of course, are not the only texture elements that can suggest a distortion of surface shape.
Op artists, and in particular Victor Vasarely, demonstrated how surface markings could be successfully
manipulated to create stunningly vivid and often incongruous portrayals of depth.  Figure 5.7, after
Vasarely’s    Tupa-3    [1972], shows how the impression of curvature conveyed by a distorted pattern of
surface texture can dominate the impression of flatness conveyed by contradictory shape-from-shading
and non-generically ambiguous shape-from-contour cues.

Figure 5.7:  An illustration, after    Tupa-3   [Vasarely 1974], showing how texture can be misused
to distort the appearance of surface shape.  One of the keys to the success of this picture lies in the
non-generic positioning of the surface; from this very specific viewpoint, the straight lines are
technically consistent with either a flat or distorted cube (from any other angle, the projections of the
lines would be different for the two alternative configurations).  The effect of the texture gradients is
impressive, especially when one notes that the surface illumination can only be consistent with a
planar, faceted object.

Sullivan [1922] offers three alternative techniques for defining the orientations of the strokes in a
line texture so that they “follow the form” and communicate the surface shape in an intuitively
meaningful way, as illustrated in figure 5.8.  (The distribution of the strokes is defined, in all three cases,
by the patterns of illumination, which he says convey relief best when generated by a proximal light
source of relatively low intensity.)  The first, and by his admission simplest, of these approaches is to
define the direction of the strokes according to the “fall of light upon the object”.  He suggests two ways
of doing this, schematically portrayed in the upper portion of figure 5.8: either along the radiating rays of
light or at right angles to them.  It inevitably occurs with this approach, however, that at some points the
direction of the texture lines closely parallels the direction of bounding contour, and Sullivan says that
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when this happens the “turn” of the form is not well-represented and the impression of depth is
diminished.  The second general approach, which he describes as probably the most difficult and
demanding the greatest knowledge of the form itself, is to orient the strokes “at right angles to the length
of the form”.

Figure 5.8:  An illustration of some alternative conventions for determining stroke direction —
following the light or following the form, from [Sullivan 1922].  Left: concentric circles emanating
from the light source.  Center: radial lines emanating from the light source.  Right: strokes “taken
through the form at right angles to its length”.

Medical illustrators, in particular, seem to favor this “form-following” convention for using line
to depict surface shape, as can be observed in the samples of artwork reproduced in figure 5.9 [Sweet (in
Bunnell 1944), Loechel 1964, Hagen 1990, Drake 1932].  The basic form of the hand, in the upper-left
illustration, is represented primarily by outline and valley lines.  Of particular note is how the parallel
strokes (which appear to lie in the direction of maximum curvature) are used around the wrist to bring
the drawing “out of the plane” and convey a sense of depth distance between the outer skin surface and
the underlying structures.   In the illustration on the upper right, the artist presents anatomical
information educed from an x-ray, along with surgical annotations, in a clearly understandable figural
context.  Interior strokes are used to represent shape (where they appear to be oriented in the direction of
greatest normal curvature), direction (arrows) and texture (in the area below the stomach), as well as
outline and tone (note that a neutral line orientation is chosen when the purpose is to represent color
rather than shape in the case of the distinguishing breast features).  In the illustration on the lower left,
lines are used to indicate shape and to differentiate the component elements of the figure.  The artist here
seems to be following the line drawing style advocated by Drake, in which the strokes are applied in a
manner that suggest deformations of a ruled surface.  An advantage of this approach is that it permits a
consistent line direction to be used for the representation of an undulating structure and also allows
separate structures to be easily differentiated (note the difference in the direction of the lines used to
represent the main body of the colon and the lines representing the muscle running along the center of it).
The illustration in the lower right shows Drake’s technique implemented in a drawing by the master
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himself.  Line orientation conveys shape; width and spacing convey shading; the strong outline separates
figure from ground.  Describing the pen-and-ink techniques illustrated in figure 5.10, Drake [1987] says

...think of [a surface] as a metal sheet with a series of parallel lines and then think of bending this
sheet ... it is only natural that the lines on the receding surfaces become closer and closer together
as they recede.  ... Similarly, if lines are made to converge on the sides as well as receding on the
top and bottom, a spherical shape will result.  This can be demonstrated by thinking of [the
surface] as a rubber sheet.  ...if we press a finger into the rubber, the lines at the high spot will
become separated, converging on the sides, and become closer together at the top and bottom.  This
is the foundation of line drawing...

Figure 5.9:  A representative sample of medical line illustrations.  Upper left: [Ralph Sweet, in
Bunnell 1944]; upper right: [Loechel 1964]; lower left: [Hagen 1990], lower right: [Drake 1932].
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Figure 5.10:  An illustration of Drake’s system for representing shape with line, from Drake
[1987].  Left: a flat surface, aligned with the image plane.  Center: this same surface, rotated slightly
about the vertical axis in the plane and bent backwards in depth along the top and bottom edges.
Right: line techniques for modeling a protrusion in the planar surface.

Drake and other artists also emphasized the different treatment required for representing
transparent vs. opaque surfaces with patterns of line.  In figure 5.11 [Hodge 1980] we can see that the tone
of the lines on the opaque surface vary in basic accordance with the surface reflectance.  On the
transparent surface, which is not characterized by Lambertian shading, the tones are used instead to
emphasize the brilliance of the specular highlight by sharpening its contrast with the surrounding
surface.

Figure 5.11:  A demonstration of the different techniques required to represent transparent and
opaque spheres with line texture, by Gerald P. Hodge [©1980] (from [Hodges 1989]).

The use of line in scientific illustration in fields such as biology or entomology, where faithful
reproduction of the specimen is the primary task, appears, to me, to be slightly more delicate and
subdued than in medical line illustration, where the object is often as much to convey a concept as it is to
accurately portray a specific anatomical structure, although in many cases the same conventions are used
for defining line orientation.  In scientific illustration, great emphasis is put on the detailed representation
of patterns of light and dark, and there is a standard convention of portraying the light as coming from
above and from the left [Hodges 1989].

Despite its simplicity as a device for representing tone, cross-hatching has been singled out by
several authors as a generally inelegant use of line.  Sullivan [1922] is particularly adamant, counseling
that
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Except as the rhythmic solution of forces of line or for the establishment of a neutral tone,
[cross-hatching] is better avoided, it then having no value, unless as a correction of an error in
tone, when of course, it stands as a confession of underlying weakness. This is probably the reason
why cross-hatching, unless as the resolution of opposing forces of line, becomes increasingly
unpleasant the more elongated the included white “diamond” becomes, as the weakness of
intention in the original lines is made more manifest.

Zweifel [1961] reiterates the benefits of using meaningfully directed lines, which can indicate shape as
well as shading (the term “hachure lines” is used in this case to refer to directed short strokes):

...hachure lines which follow the contours of the subject may show the form more
effectively than stipple in many instances ... A few well-placed hachure lines will show the
contours of the subject satisfactorily, whereas it would require several thousand stipple dots to
give the same effect.

A fundamental theme running through this entire section is that line direction is important for
showing shape and that there seem to be specific, intrinsic surface shape features that can guide the
determination of “appropriate” line directions.  Inspired by this insight, I set about to see whether,
perhaps, I could define a texture consisting of short, opaque “strokes” locally oriented in the direction of
maximum normal curvature, that might when applied to a transparent surface help convey an intuitively
meaningful impression of the surface shape as well as provide direct evidence of the surface location in
depth.
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Painting, Drawing, and Visualization

David Laidlaw
Brown University

During the next hour and a half we will have a chance to work with paint, pastels, and other media to experiment with visually
representing multi-valued scientific data. Our goals for this section are to give you an opportunity to experiment with visual
representations in ways that you may not have before and to give a new framework for some of the artistic and perception-based
guidelines and rules that we have been and will be talking about today. We hope that you’ll take away some new ideas about
how to visually represent data and/or develop visualization tools. Of course, we hope that you’ll have fun, as well!

1.1 Data Example: 2D Fluid Flow

We will work with 2D vector data for a number of reasons. First, it’s 2D, so we can concentrate on representing the data instead
of on representing 3D shapes. Second, 3D fluid flow is a very important phenomenon that is not understood. Visualization has
the potential to help with that understanding. If we can develop ideas in 2D and then generalize them to 3D, they will have wide
applicability. Third, there are a number of quantities important to fluid flow that can be derived from 2D vector fields. These
quantities have different types and physical interpretations, so there is a significant challenge here and a wealth of combinations
with which to experiment. Finally, it’s relatively easy to generate random examples, so we have have a lot of data!

We will provide separate 2D images of a number of quantities you can represent in your work today. Each image is located at
the same place as all of the others, but represents a different quantity.

The base for this type of data is a 2D vector field. Imagine that at each point on your piece of paper there is an arrow. It’s length
and direction represent the magnitude and direction of the vector field. This will be one of the quantities that we can represent.

Differentiating this vector field spatially produces a 2x2 second-order tensor, the velocity gradient tensor, at each point on your
paper. Fluid researchers often decompose that tensor into simpler quantities.

One quantity, vorticity, is a scalar value. It represents the tendency of a particle at a particular location to be spinning. An
example may help make this clearer. Imagine a velocity field where direction is always left to right, but the speed increases as
we go from bottom to top. If you pick any point in this vector field, the point will feel a faster velocity above it than below it
and will tend to spin clockwise. It would be said to have positive vorticity. Negative vorticity corresponds to counter-clockwise
spinning. This is the second quantity that we can represent.

The effect of vorticity can be removed from the velocity gradient tensor to leave a new tensor known as the rate-of-strain tensor.
This tensor describes how a fluid would squash and stretch at each point. Imagine a circle located at a single point on your
paper. Forces would be squashing and stretching it in different directions. If all the forces were pushing toward the circle, it
would shrink. If all the forces were pulling away, it would grow. If they were pushing in one direction and pulling in another,
it would become an ellipse. In fact, there is a one-to-one mapping from this tensor into ellipses (including circles) just as
described here. This is the third quantity that we can represent.

A vector field where the ellipses all maintain their size (area) is known as incompressible. When flow is compressible, a scalar
measure of this tendency to shrink or grow (i.e., increase in pressure or decrease in pressure) at each point is the fourth quantity
we can represent.

After factoring out the change in size of these ellipses, the remaining components can be represented with a scalar measure of
the eccentricity of the ellipse together with a vector in the direction of the largest radius. These two quantities are the fifth and
sixth that we can represent.

Pressure and temperature are two additional quantities that are sometimes available together with velocity data. These will be
the seventh and eighth quantities that we can represent.

Finally, two more complicated derived quantities, turbulent charge (a scalar) and turbulent current (a vector) will be the ninth
and tenth quantities that we can represent.



Pick and choose from among these ten quantities and represent them together.

1.2 Media

We will have available several media: tempera paint, transparent markers, pastels, tape, scissors, paper, and transparencies.
Please experiment in any way you think will work. Use different media, layer things.

1.3 Thought Experiments

At the risk of over-directing, here are some questions that you might ponder as you produce. These are only intended as
guidelines. Please also create your own questions!

1. How many quantities can you represent together? Does it depend on the data? What are some tradeoffs?

2. What kinds of abstractions can be used to represent lots of information with a small amount of visual bandwidth?

3. What kind of layering works? Large strokes over small? Discrete strokes over continuous? High contrast over low?
Layers that are blended together, or kept separate? Again, what are some of the tradeoffs?

4. Do untraditional items, like taped-on cutouts, expand expressiveness? How?
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Expressive Volume Rendering
Penny Rheingans

University of Maryland Baltimore County

The main goal of visualization is to effectively convey information to the user using the wide input channel
provided by the human visual system.  A visual representation of a large data set can capture both
interesting elements and interesting structure in the data.  For volume data, one key goal is to convey the
structure of the data distribution, for example the shape of the liver, or the extent of ground water
contamination, or the density of ozone throughout the atmosphere.  In some applications, the boundaries of
interesting regions are sharp and well-defined, for instance the boundaries of organs or the places where
groundwater contamination exceeds legal limits.  In other applications, the boundaries of interesting
regions are rather diffuse, for instance the boundaries of tumors or molecules.  And in still other
applications, the whole structure of the data distribution is of interest, rather than just the boundaries of
particular regions.  Effective general volume visualization techniques must address all three kinds of
applications.

Algorithms for the visualization of volume data can be characterized into two general approaches.  Surface
algorithms first map the volume data to representative geometry, such as an isosurface of constant value,
and then render the geometric representation using standard rendering techniques.  The second type of
approach, direct volume rendering, generates the image directly from the volume data, without first
creating any geometry.  For volume models, the key advantage of direct volume rendering over surface
rendering approaches is the potential to show the structure of the value distribution throughout the volume,
rather than just at selected boundary surfaces of variable value (by isosurface) or coordinate value (by
cutting plane).  The contribution of each volume sample to the final image is explicitly computed and
included.  The key challenge of direct volume rendering is to convey that value distribution clearly and
accurately.  In particular, showing each volume sample with sufficient clarity and opacity that its structure
is apparent but not so much that volume samples in the rear of the volume are overly obscured.

Volume illustration is a new approach to volume rendering involving the augmentation of a physics-based
rendering process with non-photorealistic rendering (NPR) techniques to enhance the expressiveness of the
visualization [Ebert00].  NPR draws inspiration from such fields as art and technical illustration to develop
automatic methods to synthesize images with an illustrated look from geometric surface models.  Non-
photorealistic rendering research has effectively addressed both the illustration of surface shape and the
visualization of 2D data, but has virtually ignored the rendering of volume models.  Volume illustration
introduces a set of NPR techniques specifically for the visualization of volume data, including both the
adaptation of existing NPR techniques to volume rendering and the development of new techniques
specifically suited for volume models.

The volume illustration approach combines the benefits of the two traditional volume rendering approaches
in a flexible and parameterized manner.  It provides the ease of interpretation resulting from familiar
physics-based illumination and accumulation processes with the flexibility of the transfer function
approach.  In addition, volume illustration provides flexibility beyond that of the traditional transfer
function, including the capabilities of local and global distribution analysis, and light and view direction
specific effects.  Therefore, volume illustration techniques can be used to create visualizations of volume
data that are more effective at conveying the structure within the volume than either of the traditional
approaches.  As the name suggests, volume illustration is intended primarily for illustration or presentation
situations, such as figures in textbooks, scientific articles, and educational video.

Motivation for Volume Illustration

Volumetric illustration differs from surface-based NPR in several important ways.  In surface-based NPR,
the surfaces (features) are well defined, whereas with volumes, the volumetric features vary continuously
throughout three-dimensional space and are not as well defined as surface features.  Feature areas within
the volume must be determined through analysis of local volumetric properties.  Once these volumetric



feature volumes are identified,  user selected parametric properties can be used to enhance and illustrate
them.

In a surface model, the essential feature is the surface itself.  The surface is explicitly and discretely
defined by a surface model, making “surfaceness” a boolean quality.  Many other features, such as
silhouettes or regions of high curvature, are simply interesting parts of the surface.  Such features can be
identified by analysis of regions of the surface.  In a volume model, there are no such discretely defined
features.  Additional processing is required to first identify interesting features in the volume.

Another difficulty with volumetric models is that few of the usual depth cues are present in traditional
rendering of translucent volumes.  Obscuration cues are largely missing since there are no opaque objects
to show a clear depth ordering.  Perspective cues from converging lines and texture compression are also
lacking, since few volume models contain straight lines or uniform textures.  The dearth of clear depth cues
makes understanding spatial relationships of features in the volume difficult.  One common approach to
this difficulty is the use of hard transfer functions, those with rapidly increasing opacity at particular value
ranges of interest.  While this may increase depth cues by creating the appearance of surfaces within the
volume, it does so by hiding all information in some regions of the volume, sacrificing a key advantage of
volume rendering.

Similarly, information about the orientation of features within the
volume is also largely missing.  Transfer function approaches
typically perform no illumination calculations to determine the color
at a volume sample.  Nor does the transfer function approach usually
include the effect of shadows, particularly self-shadows in which the
volume shadows itself.  Although physics-based volume rendering
algorithms do include illumination and shadow effects, the effects are
generally subtle and difficult to interpret unambiguously.  As a result,
the shape of individual structures within the volume is difficult to
perceive, as can be seen in this volume rendering of an abdominal CT
volume:

Some Volume Illustration Techniques

A wide variety of illustration techniques can be adapted or invented for use with volume models.  Some of
these techniques, described more fully in [Ebert00], are:

1. Silhouette Enhancement
Silhouette lines are particularly important in the perception of
surface shape, and have been utilized in surface illustration and
surface visualization rendering.  Similarly, silhouette volumes
increase the perception of volumetric features. In order to strengthen
the cues provided by silhouette volumes, we can increase the
opacity of volume samples where the gradient is perpendicular to
the view direction.
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2. Volumetric Sketch Lines
Oriented adjustment of the volume opacity and color can also be
used to emphasize volume feature orientation. Decreasing the
opacity and/or altering the color of volume features oriented toward
the viewer emphasizes feature orientation, and in the extreme cases,
can create sketches of the volume.  Additionally, oriented
adjustment of opacity with respect to the light source can enhance
the perception of features and feature orientation.

3. Tone Shading
Another illustrative technique used by painters is to modify the tone
of an object based on the orientation of that object relative to the
light.  This technique can be used to give surfaces facing the light a
warm cast while surfaces not facing the light get a cool cast, giving
effects suggestive of illumination by a warm light source, such as
sunlight.  Gooch et al. proposed an illumination model based on this
technique [Gooch98].  The parameters define a warm color by
combining yellow and the scaled fully illuminated object color and a
cool color combining blue and the scaled ambient illuminated object
color.  The final surface color is formed by interpolation between
the warm and cool color based on the signed dot product between
the surface normal and light vector.  The image at right was
calculated using an illumination model similar to Gooch tone
shading for use with volume models.  As with Gooch tone shading,
the tone contribution is formed by interpolation between the warm and cool colors based on the signed dot
product between the volume sample gradient and the light vector.  Unlike Gooch tone shading, the
illuminated object contribution is calculated using only the positive dot product, becoming zero at
orientations orthogonal to the light vector.  This more closely matches familiar diffuse illumination models.

4. Oriented Fading
The use of surface orientation with respect to the viewer is a
common property used in sketching and medical illustration to
emphasize object orientation and features of interest. For instance,
in medical illustration the portions of anatomical structures oriented
toward the viewer are desaturated and structures oriented away from
the view are darkened and saturated [Clark99]. We simulated these
effects by allowing the volumetric gradient orientation to the viewer
to modify the color, saturation, value, and transparency of the given
volume sample.
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5. Feature Halos
Illustrators sometimes use null halos around foreground features to
reinforce the perception of depth relationships within a scene.  The
effect is to leave the areas just outside surfaces empty, even if an
accurate depiction would show a background object in that place.
Interrante [Interrante98] used a similar idea to show depth
relationships in 3D flow data using Line Integral Convolution (LIC).
She created a second LIC volume with a larger element size, using
this second volume to impede the view.  Special care was required
to keep objects from being obscured by their own halos.  The
resulting halos achieved the desired effect, but the method depended
on having flow data suitable for processing with LIC.  We used a
more general method for creating halo effects during the
illumination process using the local spatial properties of the volume.
Halos are created primarily in planes orthogonal to the view vector by making regions just outside features
darker and more opaque, obscuring background elements which would otherwise be visible. This method
produces effects similar to those of Interrante, but can be applied to any type of data or model during the
illumination process.  Since the halos generated are inherently view dependent, no special processing must
be done to keep features from casting a halo on themselves.

Adapting NPR Surface Techniques for Volumes

There has been extensive research for illustrating surface shape using non-photorealistic rendering
techniques.  Adopting a technique found in painting, Gooch et al. developed a tone-based illumination
model that determined hue, as well as intensity, from the orientation of a surface element to a light source
[Gooch98].  The extraction and rendering of silhouettes and other expressive lines has been addressed by
several researchers [including Saito90, Salisbury94, Gooch99, Interrante95, Girshik00, Hertzmann00].
Expressive textures have also been applied to surfaces to convey surface shape and depth [including
Levoy90b, Rheingans96, Salisbury97, Interrante97, Hamel98].

A few researchers have applied NPR techniques to the display of data.  Laidlaw used concepts from
painting to create visualizations of 2D data, using brushstroke-like elements to convey information
[Laidlaw98] and a painterly process to compose complex visualizations [Kirby99].  Treavett has developed
techniques for pen-and-ink illustrations of surfaces within volumes [Treavett00].

The key difficulty of adapting surface techniques for NPR is that there are no explicit surfaces in volume
models.  So, instead of simply calculating illustration appearance on surfaces, volume illustration must first
explicitly identify features to be illustrated and then render these features appropriately.  These features
may be either boolean (as surfaces are) or may be continuously defined to indicate the strength of a feature
at a location.  Continuously defined features, in particular, generally require the consideration of each voxel
in the rendering process.

Although volume data contains no surfaces, the boundaries between regions may still be of interest.  The
local gradient magnitude at a volume sample can be used to indicate the degree to which the volume
sample is a boundary between disparate regions. The direction of the gradient is analogous to the surface
normal.  Regions of high gradient are similar to surfaces, but now “surfaceness” is a continuous, rather than
boolean, quality. This makes gradient a straight-forward feature indicator.  There is a rich literature in the
estimation of gradients for volume data [including Goss94, Marschner94, Bentum96, M½ller97, M½ller98,
Neumann00].

Additional feature indicators may be used, usually in conjunction with the gradient. These include higher-
order derivatives, solid shape in the vicinity of a voxel, location, alignment, and metadata.
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Some NPR techniques originally developed for surfaces can be adapted for volumes including a boolean or
continuous feature indicator in the appearance model, resulting in strong illustration where there are strong
features and fainter illustration for fainter features.  In this way, the feature strength scales the illustration
weight by modifying voxel opacity, stroke density, or other rendering parameters.  The techniques most
suitable for this adaption are those which can be characterized by some appearance model evaluated at
sample points (for instance, the tone shading model of Gooch et al. [Gooch98] or the 3D textures of
Treavett and Chen [Treavett00]) or those in which strokes of differing densities are generated in image
space (for instance, Salisbury97 and Deussen00).

Architectures for Expressive Volume Rendering

Two basic types of rendering systems that potentially support expressive direct volume rendering are ray-
based volume renderers and systems which represent voxels with one or several stroke-like primitives.
Both have been used to create illustration effects.  Interrante augmented a raycast volume renderer to
convey depth relationships with halos around foreground features in flow data [Interrante98].  Ebert and
Rheingans added a variety of illustrative enhancements to a ray-based volume renderer [Ebert00].  Saito
converted 3D scalar fields into a sampled point representation and visualized selected points with a simple
primitive, creating an NPR look [Saito94], while  Treavett et al. also used strokes within a volume
[Treavett01].  Morris used strokes to create the appearance of a stipple drawing [Morris01].

In general, ray-based renderers provide obscuration cues more naturally through their accumulation model,
while stroke based approaches can better exploit hardware acceleration to allow better interaction with the
visualization.  Although volume rendering hardware can now provide interactive viewing of volume data,
present systems do not allow sufficiently complex real-time control of the mapping from volume densities
and features to displayed opacities to allow interactive volume illustration.

Adapting Ray-based Volume Rendering to be Illustrative

Traditional direct volume rendering has relied on the use of transfer functions from scalar value to rendered
opacity to produce artificial views of the data which highlight regions of interest [Drebin88].  These
transfer functions, however, require in-depth knowledge of the data and need to be adjusted for each data
set.  The design of effective transfer functions is still an active research area [Fang98, Fujishiro99].  While
transfer functions can be effective at bringing out the structure in the value distribution of a volume, they
are generally limited by their dependence on voxel value as the sole transfer function domain.

Augmenting a ray-based volume renderer to include illustration effects can be accomplished by modifying
the color and opacity of volume samples, either instead of or in addition to a traditional transfer function.
Multiple enhancements may be made in sequence to create more complex effects.

Augmenting a ray-based volume renderer to include illustration effects can be accomplished by modifying
the color and opacity of volume samples, either instead of or in addition to a tradition transfer function.
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To some extent, volume illustration techniques may be regarded as representing a very complex and
flexible multivariate transfer function mechanism.  Some previous research has considered both voxel
value and gradient and more rarely other quantities, either directly or indirectly, as the domain of a transfer
function, starting with Levoy’s use of gradient magnitude to increase opacity in boundary
regions[Levoy88].  Kindlmann and Durkin used the first and second directional derivatives in the gradient
direction to calculate a boundary emphasis to be included in the opacity transfer function [Kindlmann98]
More recent work has considered curvature, as well [Hladuvka00, Sato00]..

Using this abstraction, the parameters controlling boundary and silhouette enhancement specify a
multivariate opacity transfer function from voxel value, voxel location, gradient, and view vector.
Similarly, the parameters controlling oriented fading, distance color blending, and tone shading specify a
multivariate color transfer function from voxel value, initial voxel color, voxel location, gradient, view
vector, and light position and intensity.  The two transfer functions would require ten and seventeen inputs,
respectively.  Specifying illustration techniques through multiple separable enhancements breaks the
problem of designing these potentially very complex multivariate functions into smaller, more manageable
design problems.

The transfer function abstraction breaks down when feature halos are considered.  Both transfer functions
would not only need to take the voxel value, voxel location, gradient, and view vector as inputs, but also
the value, location, and gradient of each voxel in a neighborhood of user-controllable size.  This would
require transfer functions with a number of inputs which was not only large, but variable.
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Combining Perception and Impressionist Techniques
for Nonphotorealistic Visualization of Multidimensional Data

Christopher G. Healey
North Carolina State University

1 Introduction

An important research problem in computer graphics is the visualization of multidimensional data, the conversion of a datasetD

containing strings and numbers into a sequence of one or more images. Values inD representm attributesA = fA1; : : : ; Amg

recorded atn sample pointsei, that is,D = fe1; : : : ; eng andei = fai;1; : : : ; ai;mg; ai;j 2 Aj . A data-feature mapping
M(V;�) defines a visual featureVj 2 V to use to display values fromAj ; it also defines�j : Aj ! Vj ; �j 2 � to map the
domain ofAj to the range of displayable values inVj . Visualization in this framework is the construction of a data-feature
mappingM together with a viewer’s interpretation of the images produced byM .

Although the need to visualize multiple layers of information simultaneously is well documented [43, 61, 63], progress towards
this goal has been slow [56]. It has often proven difficult to construct methods that represent multidimensional data in a way is
easy toexplore, analyze, verifyanddiscover. The desire to build fundamental techniques that are appropriate for a wide range
of visualization environments further complicates this problem.

Previous work has studied methods for harnessing the low-level human visual system during visualization [4, 26, 52, 81].
Certain visual features (e.g.,hue, luminance, contrast, and motion) are detected very quickly by the visual system [14, 70, 83];
when combined properly, these same features can be used to construct multidimensional displays that can berapidly, accurately,
and effortlesslyexplored and analyzed by a viewer. The application of perception in aid of visualization has shown great
promise, and has been explicitly cited as an important area of current and future research [63].

We have recently initiated a study of the use of artistic techniques for multidimensional visualization. This investigation
was motivated in large part by work on nonphotorealistic rendering in computer graphics [10, 18, 27, 28, 39, 44, 65], and
by the efforts of researchers like Interrante [30], Laidlaw [36, 37], and Ebert and Rheingans [13] to extend this work to a
visualization environment. Certain movements and techniques in painting (e.g.,impressionism, expressionism, or watercolor)
are characterized by a set of fundamental styles. If these styles can be identified and simulated on a computer, we believe
they can then be applied to represent individual data attributes in a multidimensional dataset. Consider, for example, a dataset
containing weather conditions. A “painting” made up of simulated brush strokes could be used to visualize this data. A brush
stroke’s color would represent temperature at a given spatial location; stroke direction and length would represent wind direction
and strength; stroke density would represent pressure. The result is an image that looks like a painting, not of a real-world scene,
but rather of the information contained in the underlying dataset.

Such a technique might initially seem difficult to control and test. An important insight is that many painterly styles correspond
closely to perceptual features that are detected by the human visual system. In some sense this is not surprising. Artistic
masters understood intuitively which properties of a painting would capture a viewer’s gaze, and their styles naturally focused on
harnessing these features. Moreover, certain movements used scientific studies of the visual system to help them understand how
viewers would perceive their work (e.g.,the use of the perceptual color models of Chevruel [9] and Rood [55] in Impressionism).
The overlap of artistic styles and perception offers two significant advantages. Most importantly, the body of knowledge on
the use of perception during visualization can help us to predict how corresponding painterly styles might perform in the
same environment. In addition, psychophysical experiments offer a method for designing controlled studies that can test the
fundamental strengths and limitations of a given style, both in isolation and in combination with other styles being shown
simultaneously in the same display.



Feature Author

line (blob) orientation Jul´esz & Bergen (1983); Wolfe (1992)
length Triesman & Gormican (1988)
width Julész (1984)
size Triesman & Gelade (1980)
curvature Triesman & Gormican (1988)
number Jul´esz (1985); Trick & Pylyshyn (1994); Healey, Booth, & Enns (1996)
terminators Jul´esz & Bergen (1983)
intersection Jul´esz & Bergen (1983)
closure Enns (1986); Triesman & Souther (1986)
color (hue) Triesman & Gormican (1988); Nagy & Sanchez (1990); D’Zmura

(1991); Healey (1997)
intensity Beck et al. (1983); Triesman & Gormican (1988)
flicker Julész (1971)
direction of motion Nakayama & Silverman (1986); Driver & McLeod (1992)
binocular lustre Wolfe & Franzel (1988)
stereoscopic depth Nakayama & Silverman (1986)
3-D depth cues Enns (1990)
lighting direction Enns (1990)
texture Healey & Enns (1998)

Table 1: A list of two-dimensional features that “pop out” during visual search, and a list of authors who describe preattentive tasks performed usingthe given
feature.

2 Low-Level Human Vision

An important requirement for any visualization technique is a method for rapid, accurate, and effortless visual exploration. We
address this goal by using what is known about the control of human visual attention as a foundation for our visualization tools.
The individual factors that govern what is attended in a visual display can be organized along two major dimensions: bottom-up
(or stimulus driven) versus top-down (or goal directed).

Bottom-up factors in the control of attention include the limited set of features that psychophysicists have identified as being
detected very quickly by the human visual system, without the need for search. These features are often called preattentive,
because their detection occurs rapidly and accurately, usually in an amount of time independent of the total number of elements
being displayed1. When applied properly, preattentive features can be used to perform different types of exploratory analysis.
Examples include searching for data elements with a unique visual feature, identifying the boundaries between groups of
elements with common features, tracking groups of elements as they move in time and space, and estimating the number of
elements with a specific feature. Preattentive tasks can be performed in a single glance, which corresponds to 200 milliseconds
(ms) or less. As noted above, the time required to complete the task is independent of the number of data elements being
displayed. Since the visual system cannot choose to refocus attention within this timeframe, users must complete their task
using only a “single glance” at the image. Table 1 lists a number of preattentive features, and provides references that describe
the tasks that can be performed using these features.

Fig. 1 shows examples of both types of target search. In Fig. 1a-1d the target, a red circle, is easy to find. Here, the target
contains a preattentive feature unique from the background distracters: color (red versus blue) or shape (circle versus square).
This unique feature is used by the low-level visual system to rapidly identify the presence or absence of the target. Unfortunately,
an intuitive combination of these results can lead to visual interference. Fig. 1e and 1f simulate a two-dimensional dataset where
one attribute is encoded with color (red or blue), and the other is encoded with shape (circle or square). Although these features
worked well in isolation, searching for a red circle target in a sea of blue circles and red squares is significantly more difficult.
In fact, experiments have shown that search time is directly proportional to the number of elements in the display, suggesting

1Although we now know that these visual features are influenced by the goals and expectations of the observer, the term preattentive is still useful because
it conveys the relative ease with which these processes are completed.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Examples of target search: (a, b) identifying a red target in a sea of blue distracters is rapid and accurate, target absent in (a), present in (b); (c, d)
identifying a red circular target in a sea of red square distracters is rapid and accurate, target present in (c), absent in (d); (e, f) identifying the same red circle
target in a combined sea of blue circular distracters and red square distracters is significantly more difficult, target absent in (e), present in (f)
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that viewers are searching small subgroups of elements (or even individual elements themselves) to identify the target. In
this example the low-level visual system has no unique feature to search for, since circular elements (blue circles) and red
elements (red squares) are also present in the display. The visual system cannot integrate preattentively the presence of multiple
visual features (circular and red) at the same spatial location. This is a very simple example of a situation where knowledge of
preattentive vision would have allowed us to avoid displays that actively interfere with our analysis task.

In spite of the perceptual salience of the target in Fig. 1a-1d, bottom-up influences cannot be assumed to operate independently
of the current goals and attentional state of the observer. Recent studies have demonstrated that many of the bottom-up factors
only influence perception when the observer is engaged in a task in which they are expected or task-relevant (see the review
by [14]). For example, a target defined as a color singleton will “pop out” of a display only when the observer is looking for
targets defined by color. The same color singleton will not influence perception when observers are searching exclusively for
luminance defined targets. Sometimes observers will fail completely to see otherwise salient targets in their visual field, either
because they are absorbed in the performance of a cognitively-demanding task [41], there are a multitude of other simultaneous
salient visual events [51], or because the salient event occurs during an eye movement or other change in viewpoint [62].
Therefore, the control of attention must always be understood as an interaction between bottom-up and top-down mechanisms.

1. Visual analysis is rapid, accurate, and relatively effortless since preattentive tasks can be completed in 200 ms or less.
We have shown that tasks performed on static displays extend to a dynamic environment where data frames are shown
one after another in a movie-like fashion [23] (i.e., tasks that can be performed on an individual display in 200 ms can
also be performed on a sequence of displays shown at five frames a second).

2. The time required for task completion is independent of display size (to the resolution limits of the display). This means
we can increase the number of data elements in a display with little or no increase in the time required to analyze the
display.

3. Certain combinations of visual features cause interference patterns that mask information in the low-level visual system.
Our experiments are designed to identify these situations. This means our visualization tools can be built to avoid data-
feature mappings that might interfere with the analysis task.

Properties that are processed preattentively can be used to highlight important image characteristics. Experiments in both the
cognitive psychology and scientific visualization domains have used various features to assist in performing the following visual
tasks:

� target detection, where users attempt to rapidly and accurately detect the presence or absence of a “target” element that
uses a unique visual feature within a field of distracter elements (Fig. 1),

� boundary detection, where users attempt to rapidly and accurately detect a texture boundary between two groups of
elements, where all the elements in each group have a common visual feature (Fig. 2), and

� counting and estimation, where users attempt to count or estimate the number or percentage of elements in a display that
have a unique visual feature.

Callaghan [7, 8] first reported the interference effects shown in Fig. 2. The visual system seems to prioritize features in order
of importance. This means that the presence of visually “important” features can interfere with tasks that use lower priority
features. In Fig. 2a, the vertical boundary defined by hue is detected preattentively, even though the shape of each element is
random. In Fig. 2b, however, it is difficult to detect the horizontal boundary defined by form due to random hue variations. If
hue were fixed to a constant value for each element, the form boundary could be detected preattentively. Callaghan explains this
phenomena by suggesting that the visual system assigns a higher importance to hue than to form during boundary detection.
Thus, a random hue interferes with form boundary detection, but a random form has no effect on hue boundary detection. A
similar asymmetry exists between hue and intensity. Random hue has no effect on detecting boundaries defined by intensity.
However, random intensity interferes with hue boundary detection. Callaghan concluded that intensity is more important than
hue to the low-level visual system during boundary identification [6].

Researchers continue to expand preattentive processing in a number of exciting directions. To date, most of the features used
in preattentive tasks have been relatively simply properties (e.g.,hue, orientation, line length, and size). Enns and Rensink,
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(a) (b)

Figure 2: Region segregation by form and hue: (a) hue boundary is identified preattentively, even though form varies in the two regions; (b) random hue
variations interfere with the identification of a region boundary based on form

however, have identified a class of three-dimensional elements that can be detected preattentively [15, 16]. They have shown
that three-dimensional orientation, shape, and direction of lighting can be used to make elements “pop-out” of a visual scene
(Fig. 3b and 3c). This is important, because it suggests that complex high-level concepts may be processed preattentively by
the low-level visual system.

New tasks that can be performed preattentively are also being investigated. Research has recently been conducted on counting
and estimation in preattentive processing. Varey describes experiments in which subjects were asked to estimate the relative
frequency of white or black dots [76]. Her results showed that subjects could estimate in four different ways: “percentage” of
white dots, “percentage” of black dots, “ratio” of black dots to white dots, and “difference” between the number of black and
white dots. She also found that subjects consistently overestimated small proportions and underestimated large proportions.
Estimation of relative frequency using hue and orientation was shown to be preattentive in experiments conducted in our labo-
ratory [22, 24]. Moreover, our results showed that there was no feature interaction. Random orientation did not interfere with
estimation of targets with a unique hue, and random hue did not interfere with estimation of targets with a unique orientation.
This is important because it suggests that hue and orientation can be used to encode two independent data values in a single
display without causing visual interference.

A number of scientists have proposed competing theories to explain how preattentive processing occurs, in particular Triesman’s
feature integration theory [70], Jul´esz’ texton theory [34], Quinlan and Humphreys’ similarity theory [48], and Wolfe’s guided
search theory [83]. Our interest is in the use of visual features that have already been shown to be preattentive. Results from
psychology are extended, modified, tested, and then integrated into our visualization environment.

Since preattentive tasks are rapid and insensitive to display size, we believe visualization techniques that make use of these
properties will support high-speed exploratory analysis of large, multivariate datasets. Care must be taken, however, to ensure
that we choose data-feature mappings that maximize the perceptual salience of all the data attributes being displayed.

2.1 Real-Time Preattentive Visualization

Most preattentive techniques are validated by studying a single data frame in isolation. This leads to an interesting question
with important relevance to visualization. If a preattentive task can be performed on a single frame in 100 milliseconds, can
the same task can be performed on a real-time sequence of frames displayed at ten frames per second? We hypothesized that
important aspects of preattentive processing will extend to a real-time environment. A visualization tool that uses preattentive
features will allow viewers to perform visual tasks such as grouping of similar data elements (boundary detection), detection of
elements with a unique characteristic (target detection), and estimation of the number of elements with a given value or range of
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Figure 3: Combination of simple components to form emergent features: (a) closure, a simple closed figure is seen; (b) three-dimensionality, the figure appears
to have depth; (c) volume, a solid figure is seen

values, all in real-time on temporally animated data frames. We tested this hypothesis using experiments that simulated the use
of our preattentive visualization tools in a real-time environment. Analysis of the experimental results supported our hypothesis
for boundary and target detection using hue and shape. Moreover, interference properties previously reported for static frames
were found to apply to a dynamic environment.

Our initial experiment addressed two general questions about the preattentive features hue and shape, and their use in our
visualization tools:

� Question 1:Is it possible for subjects to detect a data frame with a horizontal boundary within a sequence of random
frames? If so, what features allow this and under what conditions?

� Question 2:Do Callaghan’s feature hierarchy effects apply to our real-time visualization environment? Specifically, does
random hue interfere with form boundary detection within a sequence of frames? Does random form interfere with hue
boundary detection within a sequence of frames?

Experimental results showed accurate boundary detection can be performed using either hue or form on sequences of frames
displayed at ten frames per second. Moreover, feature hierarchy effects extended to a dynamic environment, specifically, hue
dominated form during boundary detection. A random hue pattern masked form boundaries, while a random form pattern had
no effect on hue boundary detection.

A corresponding set of experiments were run to test target detection, with similar results. While both hue and form targets can
be detected preattentively in a real-time environment (at frame rates of ten to twenty frames per second), form targets were only
visible when the background hue was held constant. Hue variation masked form targets. Form variation had no effect on the
detection of hue targets.

We have built a number of visualization tools that allow users to perform exploratory analysis on their datasets in real-time.
Experience from using these tools confirmed that our experimental results hold for these datasets and tasks.
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3 Color Selection

Color is a powerful and often-used visual feature. Previous work has addressed the issue of choosing colors for certain types of
data visualization. For example, Ware and Beatty describe a simple color visualization technique for displaying correlation in
a five-dimensional dataset [79]. Robertson, Ware, Rheingans and Tebbs, and Levkowitz and Herman discuss various methods
for building effective color gamuts and colormaps [38, 52, 53, 78]. Recent work at the IBM Thomas J. Watson Research Center
has focused on a rule-based visualization tool that considers how a user perceives visual features like hue, luminance, height,
and so on [4, 54].

If we use color to represent our data, one important question to ask is: “How can we choose effective colors that provide good
differentiation between data elements during the visualization task?” We addressed this problem by trying to answer three
related questions:

� How can we allow rapid and accurate identification of individual data elements through the use of color?

� What factors determine whether a “target” element’s color will make it easy to find, relative to differently colored “non-
target” elements?

� How many colors can we display at once, while still allowing for rapid and accurate target identification?

None of the currently-available color selection techniques were specifically designed to investigate the rapid and accurate
identification of individual data elements based on color. Also, since the color gamut and colormap work uses continuous color
scales to encode information, they have not addressed the question of how many colors we can effectively display at once, while
still providing good differentiation between individual data elements.

We began by using the perceptually balanced CIE LUV color model to provide control over color distance and isoluminance.
We also exploited two specific results related to color target detection: linear separation [12, 2] and color category [35]. These
effects are controlled to allow for the rapid and accurate identification of color targets. Target identification is a necessary
first step towards performing other types of exploratory data analysis. If we can rapidly and accurately differentiate elements
based on their color, we can apply our results to other important visualization techniques like detection of data boundaries, the
tracking of data regions in real-time, and enumeration tasks like counting and estimation [24, 71, 76].

3.1 CIE LUV

The CIE LUV color model was proposed by the Commission Internationale de L’Èclairge (CIE) in 1976 [85]. Colors are spec-
ified using the three dimensionsL� (which encodes luminance),u�, andv� (which together encode chromaticity). CIE LUV
provides two useful properties for controlling perceived color difference. First, colors with the sameL� are isoluminant. Sec-
ond, Euclidean distance and perceived color difference (specified in�E� units) can be interchanged, since the color difference
between two color stimulix andy (positioned in CIE LUV at(L�
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3.2 Linear Separation

The linear separation effect has been described by both D’Zmura and Bauer et. al [2, 12]. D’Zmura was investigating how
the human visual system finds a target color in a sea of background non-target colors. D’Zmura ran experiments that asked
observers to determine the presence or absence of an orange target. Two groups of differently colored non-target elements
were also present in each display (e.g., in one experiment half the non-targets in each display were colored green and half
were colored red). Results showed that when the target could be separated by a straight line from its non-targets in color space
(Fig. 4, target T and non-targets A and C), the time required to determine the target’s presence or absence was constant, and
independent of the total number of elements being displayed. This suggests detection occurs preattentively in the low-level

26



visual system. When the target was collinear with its non-targets (Fig. 4, target T and non-targets A and B), the time required
to identify the target was linearly proportional to the number of elements being displayed. Observers had to search serially
through each display to determine whether the target was present or absent. Bauer et. al strengthened D’Zmura’s results by
showing that perceptually balanced color models cannot be used to overcome the linear separation effect. Bauer et. al also
replicated their findings in three additional color regions: green, blue, and green-yellow. This suggests linear separation applies
to colors from different parts of the visible color domain.

T-BC
linear separation

C

A

T

B

blue-purple
color category boundary

blue

purple

Figure 4: A small, isoluminant patch within the CIE LUV color model, showing a target colorT and three background distracter colorsA, B, andC; note that
T is collinear withA andB, but can be separated by a straight line fromB andC; note also thatT, A, andC occupy the “blue” color region, whileB occupies
the “purple” color region

3.3 Color Category

Kawai et. al [35] reported results that suggest that the time required to identify a color target depends in part on the named
color regions occupied by the target and its non-targets. Kawai et. al tested displays that contained a uniquely color target and a
constant number of uniformly colored non-targets. They divided an isoluminant, perceptually balanced color slice into named
color regions. Their results showed that search times decreased dramatically whenever the non-target was moved outside the
target’s color region. For example, finding a target colored T in a set of non-targets colored A was significantly more difficult
than than finding T in a set of non-targets colored B (Fig. 4). Since the target–non-target distancesTA andTB are equal, there
was an expectation of perceptual balance that should have been provided by the underlying color model. This expectation was
not met. Kawai et. al suggests the difference in performance is due to the fact that both T and A are located in the blue color
region, but A is not.

3.4 Experiments

We ran a number of experiments to study the effects of color distance, linear separation, and color category. Subjects were
shown displays that contained multiple colored squares. Each subject was asked to determine whether a target square with a
particular color was present or absent in each display. The experiments were designed to test the following conditions:

27



� selection criteria, which selection criteria (color distance, linear separation, and color category) need to be considered to
guarantee equally distinguishable colors,

� simultaneous colors, how many colors can we display at the same time, while still allowing users to rapidly and accurately
determine the presence or absence of any particular color, and

� display size, is performance affected by the number of elements in a display.

We found that up to seven isoluminant colors can be displayed simultaneously, while still allowing for the rapid and accurate
identification of any one of the seven. The time required to perform identification was independent of display size, suggesting
that target detection is occurring preattentively. Our results also showed that all three selection criteria needed to be considered
to guarantee consistent performance. When only some of the selection criteria were used (e.g. only distance and separation,
or only category) the amount of time required to identify targets depended on the color of the target: some colors were very
easy to identify, while other colors were very difficult. This asymmetry suggested that the colors we chose were notequally
distinguishable, and therefore that the selection criteria being used were not sufficient to properly control perceived difference
between the colors during target detection.

4 Visualizing CT Medical Scans

One practical application of our color selection technique is the use of color to highlight regions of interest during volume
visualization [66]. Radiologists from the University Hospital at the University of British Columbia are studying methods for
visualizing abdominal aneurisms. Traditional repair of an abdominal aneurism entails a major operation with an incision into the
aneurism, evacuation of the clot contained within, placement of a synthetic graft, and wrapping of the graft with the remnants
of the wall of the aneurism. Recently, a new treatment option, endovascular stenting, has been proposed and is currently
undergoing clinical trials. This procedure does not require general anesthesia and can be done less invasively by simply placing
a self-expanding stent graft via a catheter into the aneurism to stabilize it. Less fit patients are able to withstand the procedure,
hospital stay is cut to 1 to 2 days, and post-operative recovery is shortened considerably.

After the operation computed tomography (CT) scans are used to obtain two-dimensional slices of a patient’s abdominal region.
These slices are reconstructed to produce a three-dimensional volume. The volume is visualized by the radiologists to perform
post-operative analysis. A two-pass segmentation step is used to strip out material in each CT slice that does not correspond to
one of the regions of interest: the artery running through the abdomen, the aneurism, and the metal hooks (called tynes) used
to embed the stent graft within the aneurism. The reconstructed volumes must show clearly each of these three regions.

Normally, greyscale is used to display reconstructed medical volumes. Changes in luminance are most effective for representing
the high spatial frequency data contained in these kinds of datasets. For our application, however, one of the most important
tasks is identifying the exact position of the tynes (which in turn identify the positions of each of the corresponding stent
grafts). In our greyscale volume the location of tynes within the aneurism are obscured by the wall of the aneurism itself
(Fig. 5a). Different levels of transparency were used to try to “see through” the aneurism, however, we could not find any
appropriate value that showed the tyne locations within the artery, while at the same time providing an effective representation
of the three-dimensional shape and extent of the wall of the aneurism. We decided that, for this application, it might be more
appropriate to high the three regions of interest using color.

Although the radiologists had already chosen a set of colors based on context and aesthetic considerations, it did a poor job of
showing the size and shape of the aneurism (Fig. 5b). We replaced their colors with three new ones using our color selection
technique. The radiologists asked us to avoid greens and green-yellows, since these are associated with bile. We decided to
use yellow to represent the artery, purple to represent the aneurism, and red to represent the tynes (Fig. 5c). These colors show
clearly the location of all three regions of interest within the volume. For example, consider the large patches of yellow within
the aneurism. These are areas of “low support”where the grafts in the lower part of the artery were not inserted far enough
to mesh with their upstream partner. Although not dangerous, these are exactly the kinds of features the radiologists want to
identify during post-operative visualization.
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Figure 5: A reconstructed CT volume showing an abdominal aneurism: (a) greyscale hides the location of the tynes within the aneurism; (b) a color scale
chosen by the radiologists obscures the shape and extent of the wall of the aneurism; (c) three colors chosen with our perceptual color selection technique

5 Perceptual Textures

One of the important issues in scientific visualization is designing methods for representing multiple values (or attributes) at a
single spatial location. Although it is possible to assign different visual features to each attribute, simply “stacking” multiple
features together will most likely lead to displays that are unintelligible.

Rather than choosing multiple individual features (i.e., color, shape, size, orientation, line length), we decided to try using a
single visual feature that could be decomposed into a set of fundamental parts or dimensions. We chose to investigate texture
for this purpose.

Texture has been studied extensively in the computer vision, computer graphics, and cognitive psychology communities. Al-
though each group focuses on separate tasks (texture identification and texture segmentation in computer vision, displaying
information with texture patterns in computer graphics, and modeling the low-level human visual system in cognitive psychol-
ogy) they each need ways to describe precisely the textures being identified, classified, or displayed.

Researchers have used different methods to study the perceptual features inherent in a texture pattern. Bela Jul´esz [32] con-
ducted numerous experiments that investigated how a texture’s first, second, and third-order statistics affect discrimination in
the low-level human visual system. This led to the texton theory [33], which suggests that early vision detects three types of
features (or textons, as Jul´esz called them): elongated blobs with specific visual properties (e.g.,hue, orientation, and width),
ends of line segments, and crossings of line segments. Tamura et al. [67] and Rao and Lohse [49, 50] identified texture dimen-
sions by conducting experiments that asked subjects to divide pictures depicting different types of textures (Brodatz images)
into groups. Tamura et al. used their results to propose methods for measuring coarseness, contrast, directionality, line-likeness,
regularity, and roughness. Rao and Lohse used multidimensional scaling to identify the primary texture dimensions used by
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their subjects to group images: regularity, directionality, and complexity. Haralick et al. [19] built greyscale spatial dependency
matrices to identify features like homogeneity, contrast, and linear dependency. These features were used to classify satellite
images into categories like forest, woodlands, grasslands, and water. Liu and Picard [40] used Wold features to synthesize
texture patterns. A Wold decomposition divides a 2D homogeneous pattern (e.g.,a texture pattern) into three mutually orthog-
onal components with perceptual properties that roughly correspond to periodicity, directionality, and randomness. Malik and
Perona [42] designed computer algorithms that use orientation filtering, nonlinear inhibition, and computation of the resulting
texture gradient to mimic the discrimination ability of the low-level human visual system. We used these results to choose the
perceptual texture dimensions we wanted to investigate during our experiments.

Work in computer graphics has studied methods for using texture patterns to display information during visualization. Schweitzer
[59] used rotated discs to highlight the orientation of a three-dimensional surface. Pickett and Grinstein [17] built “stick-men”
icons to produce texture patterns that show spatial coherence in a multidimensional dataset. Ware and Knight [80, 81] used
Gabor filters to construct texture patterns; attributes in an underlying dataset are used to modify the orientation, size, and con-
trast of the Gabor elements during visualization. Turk and Banks [75] described an iterated method for placing streamlines
to visualize two-dimensional vector fields. Interrante [29] displayed texture strokes to help show three-dimensional shape and
depth on layered transparent surfaces; principal directions and curvatures are used to orient and advect the strokes across the
surface. Finally, Salisbury et al. [57] and Wikenbach and Salesin [82] used texturing techniques to build computer-generated
pen-and-ink drawings that convey a realistic sense of shape, depth, and orientation. We built upon these results to try to develop
an effective method for displaying multidimensional data through the use of texture.

5.1 Pexels

We wanted to design a technique that will allow users to visualize multidimensional datasets with perceptual textures. To
this end, we used a method similar to Ware and Knight to build our displays. Each data element is represented with a single
perceptual texture element, or pexel. Our visualization environment consists of a large number of elements arrayed across a
three-dimensional surface (e.g.,a topographical map or the surface of a three-dimensional object). Each element contains one
or more attributes to be displayed. Attribute values are used to control the visual appearance of a pexel by modifying its texture
dimensions. Texture patterns formed by groups of spatially neighboring pexels can be used to visually analyze the dataset.

We chose to study three perceptual dimensions: density, regularity, and height. Density and regularity have been identified in
the literature as primary texture dimensions [49, 50, 67]. Although height might not be considered an “intrinsic textural cue”,
we note that height is one aspect of element size, and that element size is an important property of a texture pattern. Moreover,
results from cognitive vision have shown that differences in height are detected preattentively by the low-level visual system
[1, 70]. We wanted to build three-dimensional pexels that “sit up” on the underlying surface. This allows the possibility of
applying various orientations (another important perceptual dimension) to a pexel. Because of this, we chose height as our third
texture dimension.

In order to support variation of height, density, and regularity, we built pexels that look like a collection of paper strips. The user
maps attributes in the dataset to the density (which controls the number of strips in a pexel), height, and regularity of each pexel.
Examples of each of these perceptual dimensions are shown in Fig. 6a. Fig. 6b shows an example of our technique applied to
the oceanographic dataset: environmental conditions in the northern Pacific Ocean are visualized using multicolored pexels.
In this display, color represents open-ocean plankton density, height represents ocean current strength (taller for stronger), and
density represents sea surface temperature (denser for warmer). Fig. 6b is only one frame from a much larger time-series of
historical ocean conditions. Our choice of visual features was guided by experimental results that show how different color and
texture properties can be used in combination to represent multivariate data elements.

5.2 Experiments

In order to test our perceptual dimensions and the interactions that occur between them during visualization, we ran a set of
psychophysical experiments. Our experiments were designed to investigate a user’s ability to rapidly and accurately identify
target pexels defined by a particular height, density, or regularity. Users were asked to determine whether a small group of
pexels with a particular type of texture (e.g.,a group of taller pexels, as in Fig. 7a) was present or absent in a20 � 15 array.
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(a)

temperature gradients (density)

dense plankton blooms (color)current strength gradient (height)

(b)

Figure 6: Pexel examples: (a) a background array of short, sparse, regular pexels; the lower and upper groups on the left contain irregular and random pexels,
respectively; the lower and upper groups in the center contain dense and very dense pexels; the lower and upper groups to the right contain medium and tall
pexels; (b) Color, height, and density used to visualize open-ocean plankton density, ocean current strength, and sea surface temperature, respectively; low
to high plankton densities represented with blue, green, brown, red, and purple, stronger currents represented with taller pexels, and warmer temperatures
represented with denser pexels
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Figure 7: Two display types from the taller and regular pexel experiments: (a) a target of medium pexels in a sea of short pexels with a background density
pattern (2 � 2 target group located left of center); (b) a target of regular pexels in a sea of irregular pexels with no background texture pattern (2 � 2 target
group located 8 grids step right and 2 grid steps up from the lower-left corner of the array)

Conditions like target pexel type, exposure duration, target group size, and background texture dimensions differed for each
display. This allowed us to test for preattentive task performance, visual interference, and a user preference for a particular
target type. In all cases, user accuracy was used to measure performance.

Each experimental display contained a regularly-spaced20 � 15 array of pexels rotated45Æ about the X-axis (Fig. 7). All
displays were monochromatic (i.e., grey and white), to avoid variations in color or intensity that might mask the underlying
texture pattern. Grid lines were drawn at each row and column, to ensure users perceived the pexels as lying on a tilted 3D plane.
After a display was shown, users were asked whether a group of pexels with a particular target value was present or absent. In
order to avoid confusion, each user searched for only one type of target pexel: taller, shorter, sparser, denser, more regular, or
more irregular. The appearance of the pexels in each display was varied to test for preattentive performance, visual interference,
and feature preference. For example, the following experimental conditions were used to investigate a user’s ability to identify
taller pexels (similar conditions were used for the shorter, denser, sparse, regular, and irregular experiments):

� two target-background pairings: a target of medium pexels in a sea of short pexels, and a target of tall pexels in a sea
of medium pexels; different target-background pairings allowed us to test for a subject preference for a particular target
type,

� three display durations: 50 msec, 150 msec, and 450 msec; we varied exposure duration to test for preattentive perfor-
mance, specifically, does the task become more difficult during shorter exposures,

� three secondary texture dimensions: none (every pexel is sparse and regular), density (half the pexels are randomly chosen
to be sparse, half to be dense), and regularity (half the pexels are regular, half are random); we added a “background”
texture feature to test for visual interference, that is, does the task become more difficult when a secondary texture
dimension appears at random spatial locations in the display, and

� two target group sizes:2 � 2 pexels and4 � 4 pexels; we used different target group sizes to see how large a group of
pexels was needed before the target could be detected by a viewer.

Our results suggest that pexels can be used to represent multidimensional data elements, but only if specific data-feature
mappings are chosen. Some dimensions were more salient than others, and interference occurred when certain types of pexels
were displayed. Specifically, we found that:

� taller pexels can be identified at preattentive exposure durations (i.e.,150 msec or less) with very high accuracy (approx-
imately 93%); background density and regularity patterns produce no significant interference,

� shorter, denser, and sparser pexels are more difficult to identify than taller pexels, although good results are possible at
both 150 and 450 msec; height, regularity, and density background texture patterns cause interference for all three target
types,
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� irregular pexels are difficult to identify, although reasonable accuracy (approximately 76%) is possible at 150 and
450 msec with no background texture pattern, and

� regular pexels cannot be accurately identified; the percentage of correct results approached chance (i.e., 50%) for every
condition.

These results show that height and density can be used to to form texture patterns that can be identified preattentively. Regularity,
however, can only be used as a secondary dimension. While differences in regularity cannot be detected consistently by the
low-level visual system, in many cases users will be able to see changes in regularity when areas of interest in a dataset are
identified and analyzed in a focused or attentive fashion.

6 Orientation
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Figure 8: (a) A20� 20 patch of values from a scalar field; (b) the patch represented by greyscale swatches; (c) a collection of slivers oriented 0Æ at each data
value location; (d) the greyscale map and slivers and combined to produce the final sliver layer

A follow-up study was recently conducted to test another perceptual texture dimension: orientation. This work was motivated
in part by the desire to construct an alternative method for visualizing multiple overlapping data fields. The well-known method
of selectingm visual features to represent each of them data attributes has a number of inherent limitations:

� dimensionality:as the number of attributes n in the dataset grows, it becomes more and more difficult to find additional
visual features to represent them.

� interference:different visual features will often interact with one another, producing visual interference; these interfer-
ence effects must be controlled or eliminated to guarantee effective exploration and analysis.

� attribute-feature matching:different visual features are best suited to a particular type of attribute and analysis task; an
effective visualization technique needs to respect these preferences.
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Figure 9: (a,b) two scalar fields represented with 0Æ and 90Æ, respec-
tively; (c) both fields displayed in a single image, overlapping values
show as elements that look like plus signs

Multidimensional datasets can often be viewed as a col-
lection of m scalar fields that overlap spatially with one
another. Rather than usingm visual features to represent
these fields, we can use only two: orientation and lumi-
nance. For each scalar field (representing attributeAj ) we
select a constant orientationoj ; at various spatial locations
where a valueai;;j 2 Aj exists, we place a corresponding
sliver texture oriented atoj . The luminance of the sliver
texture depends onai;j : the maximumamax j 2 Aj pro-
duces a white (full luminance) sliver, while the minimum
amin j 2 Aj produces a black (zero luminance) sliver. A
perceptually-balanced luminance scale running from black
to white is used to select a luminance for an intermediate
valuesai;j ; amin j < ai;j < amax j .

Fig. 8a shows a uniformly-sampled patch from a hypo-
thetical scalar field. Values in the field are represented as
greyscale swatches in Fig. 8b. A constant orientation of 0Æ

is used to represent values in the field (slivers rotated 0Æ a
replaced at the spatial locations for each reading in the field,
shown in Fig. 8c). Blending these two representations to-
gether produces the final image (Fig. 8d), a layer of variable-
luminance slivers showing the positions and values of all the
data in the original field.

Multiple scalar fields are displayed by compositing their
sliver layers together. Fig. 9a-b shows two separate sliver
layers representing two scalar fields. The first field uses sliv-
ers oriented 0Æ; the second uses slivers oriented 90Æ. When
a viewer visualizes both fields simultaneously, the sliver lay-

ers are overlayed to produce the single image shown in Fig. 9c. This image allows the viewer to locate values in each individual
field, while at the same time identifying important interactions between the fields. The use of thin, well separated slivers is key
to allowing values from multiple fields to show through in a common spatial location. A viewer can use these images to:

� determine which fields are prominent in a region,

� determine how strongly a given field is present,

� estimate the relative weights of the field values in the region, and

� locate regions where all the fields have low, medium, or high values.

6.1 Experiments

Our initial experiments investigated a viewer’s ability to distinguish sliver textures with different 2D orientations (i.e., slivers
with different rotations embedded in the XY-plane). Each trial contained a20� 20 grid of rectangles rotatedbg. A randomly
selected2� 2 patch of target rectangles was then rotatedtg. In half the trialsbg = tg (i.e., the target was absent, Fig. 10b). In
the other half,bg 6= tg (i.e.,a target was present, Fig. 10a and 10c). We tested background orientations ranging from 0-45Æ and
45-90Æ in 5Æ steps. For each background, every orientation was tested as a target (i.e., ten target rotations 0, 5,: : :, 45Æ were
tested for each background in the range 0-45Æ; ten target rotations 45, 50,: : :, 90Æ were tested for each background in the range
45-90Æ).

In summary, our results showed:
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Figure 10: An example of three experiment displays: (a) a 10Æ target in a 0Æ background (target is five steps right and eight steps up from the lower left corner
of the array); (b) a 30Æ background with no target; (c) a 65Æ target in a 55Æ background (target is six steps left and seven steps up from the lower right corner
of the array)

1. A target oriented�15Æ or more from its background elements is rapidly and accurately distinguishable.

2. Errors for backgrounds oriented 0Æ or 90Æ were significantly lower than for other backgrounds (e.g.,tilted targets are
easier to see in backgrounds of 0Æ or 90Æ).

3. Errors for targets oriented 0Æ or 90Æ were significantly higher than for other targets, suggesting an asymmetry (good as a
background, bad as a target) for these orientations.

7 Scanning Electron Microscope Images

The application for which this technique was originally developed is the display of multiple data fields from a scanning electron
microscope (SEM). Each field represents the concentration of a particular element (oxygen, silicon, carbon, and so on) across
a surface. Physicists studying mineral samples need to determine what elements make up each part of the surface and how
those elements mix. By allowing the viewer to see the relative concentrations of the elements in a given area, our technique
enables recognition of composites more easily than side-by-side comparison, especially for situations where there are complex
amalgams of materials.

Fig. 11a shows sliver layers representing eight separate elements: calcium (15Æ), copper (30Æ), iron (60Æ), magnesium (75Æ),
manganese (105Æ), oxygen (120Æ), sulphur (150Æ), and silicon (165Æ), The orientations for each layer were chosen to ensure
no two layers have an orientation difference of less than 15Æ Fig. 11b shows the eight layers blended together to form a
single image. Fig. 11c changes the orientations of silicon and oxygen to 90Æ and 180Æ, respectively, to investigate a potential
interaction between the two (the presence of silicon oxide in the upper right, upper left, and lower left where regions of “plus
sign” textures appear).

Our results suggest up to 15 orientations in the 0-180Æ range can be rapidly and accurately differentiated. The greyscale ramp
used to assign a luminance to each sliver is also constructed to be perceptually linear. The result is an image that shows data
values in each individual field, while at the same time highlighting important interactions between the fields.

8 Combining Color and Texture

Although texture and color have been studied extensively in isolation, much less work has focused on their combined use for
information representation. An effective method of displaying color and texture patterns simultaneously would increase the
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Figure 11: (a) eight sliver layers representing calcium (15Æ), copper (30Æ), iron (60Æ), magnesium (75Æ), manganese (105Æ), oxygen (120Æ), sulphur (150Æ),
and silicon (165Æ), (b) all eight layers blended into a single image; (c) silicon and oxygen re-oriented at 90Æ and 180Æ, respectively, to highlight the presence
of silicon oxide (as a “plus sign” texture) in the upper right, upper left, and lower left corners of the image

number of attributes we can represent at one time. The first step towards supporting this goal is the determination of the amount
of visual interference that occurs between these features during visualization.

Experiments in psychophysics have produced interesting but contradictory answers to this question. Callaghan reported asym-
metric interference of color on form during texture segmentation: a random color pattern interfered with the identification of
a boundary between two groups of different forms, but a random form pattern had no effect on identifying color boundaries
[7, 8]. Triesman, however, showed that random variation of color had no effect on detecting the presence or absence of a target
element defined by a difference in orientation (recall that directionality has been identified as a fundamental perceptual texture
dimension) [73]. Recent work by Snowden [64] recreated the differing results of both Callaghan and Triesman. Snowden ran a
number of additional experiments to test the effects of random color and stereo depth variation on the detection of a target line
element with a unique orientation. As with Callaghan and Triesman, results differed depending on the target type. Search for a
single line element was rapid and accurate, even with random color or depth variation. Search for a spatial collection of targets
was easy only when color and depth were fixed to a constant value. Random variation of color or depth produced a significant
reduction in detection accuracy. Snowden suggests that the visual system wants to try to group spatially neighboring elements
with common visual features, even if this grouping is not helpful for the task being performed. Any random variation of color
or depth interferes with this grouping process, thereby forcing a reduction in performance.

These results left unanswered the question of whether color variation would interfere with texture identification during visu-
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alization. Moreover, work in psychophysics studied two-dimensional texture segmentation. Our pexels are arrayed over an
underlying height field, then displayed in 3D using a perspective projection. Most of the research to date has focused on color
on texture interference. Less work has been conducted to study how changes in texture dimensions like height, density, or reg-
ularity will affect the identification of data elements with a particular target color. The question of interference in this kind of
height-field environment needs to be addressed before we can recommend methods for the combined use of color and texture.

8.1 Experiments

In order to investigate the combined use of color and texture, we designed a new set of psychophysical experiments. Our two
specific questions were:

1. Does random variation in pexel color influence the detection of a region of target pexels defined by height or density?

2. Does random variation in pexel height or density influence the detection of a region of target pexels defined by color?

We chose to ignore regularity, since it performed poorly as a target defining property during all phases of our original texture
experiments [25, 26]. We chose three different colors using our perceptual color selection technique [20, 25]. Colors were
initially selected in the CIE LUV color space, then converted to our monitor’s RGB gamut. The three colors corresponded
approximately to red (monitor RGB = 246, 73, 50), green (monitor RGB = 49, 144, 21) and blue (monitor RGB = 82, 109,
168). Our new experiments were constructed around a set of conditions similar to those used during the original texture
experiments. We varied target-background pairings, exposure duration, the presence or absence of a secondary background
feature, and target patch size from trial to trial to test user performance in a number of different circumstances.

Mean percentage target detection accuracy was the measure of performance. Observer responses were collected, averaged, and
analyzed using multi-factor ANOVA. In summary, we found:

1. Color targets were detected rapidly (i.e.,at 150 ms) with very high accuracy (96%). Background variation in height and
density produced no interference effects in this detection task.

2. Detection accuracy for targets defined by density or height were very similar to results from our original texture experi-
ments [25, 26]. When there was no background variation in color, excellent detection accuracy was obtained for density
defined targets (i.e., denser and sparser targets) at 150 ms (94%). Height defined targets (i.e., taller and shorter) were
detected somewhat less accurately at 150 ms (88%) but were highly detectable at 450 ms (93%). As we had also found
previously, taller targets were generally easier to detect than shorter targets, and denser targets were easier than sparser
targets.

3. In all four texture experiments, background variation in color produced a small but significant interference effect, aver-
aging 6% in overall accuracy reduction.

4. The absolute reduction in accuracy due to color interference depended on the difficulty of the detection task. Specifically,
color interfered more with the less visible target values (shorter and sparser targets yielded a mean accuracy reduction of
8%) than with the more visible targets (taller and denser targets yield a mean accuracy reduction of 4%).

Our results showed an asymmetric interference effect, similar to those reported in the psychophysical literature. As described by
[64], we found that color produces a small but statistically reliable interference effect during texture segmentation. Moreover,
we found color and texture form a “feature hierarchy” that produces asymmetric interference: color variation interferes with an
observer’s ability to see texture regions based on height or density, but variation in texture has no effect on region detection based
on color. This is similar to reports by [7, 8], who reported asymmetric color on shape interference in a boundary detection task
involving two-dimensional textures. The amount of color on texture interference depended on the difficulty of the segmentation
task. Targets that were harder to identify in isolation (e.g.,shorter and sparser targets) showed a much higher sensitivity to color
interference, compared to targets that were easy to identify (e.g.,taller and denser targets). This suggests that color and texture
can be combined in a single display, but only in cases where the texture targets have a strong perceptual salience.
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9 Nonphotorealistic Visualization

For many years the areas of modeling and rendering in computer graphics have studied the problem of producing photorealistic
images, images of graphical models that are indistinguishable from photographs of an equivalent real-world scene. Advances
in areas like the simulation of global light transport, modeling of natural phenomena, and image-based rendering have made
dramatic strides towards achieving this goal. At the same time, researchers have approached the issue of image generation
from a completely different direction. Although photographs are common, there are many other compelling methods of visual
discourse, for example, oil and watercolor paintings, pen and ink sketches, cel animation, and line art. In the proper situations,
these types of pictures are often considered more effective, more appropriate, or even more expressive than an equivalent
photograph. The study of methods that construct images of these types is known asnonphotorealistic rendering.

Our current interests lie specifically in nonphotorealistic rendering methods that use simulated brush strokes to produce images
that look like paintings. Strassmann [65] constructed a “hairy brush”, a collection of bristles placed along a line segment;
Japanese-style brush strokes are produced by applying ink to the brush, then moving it along a path over a simulated paper
surface. Haberli [18] built a system that paints with a brush that a user strokes across an underlying image; the size, shape,
color, location, and direction of brush strokes can all be varied. Hsu et al. [28] used vector-based skeletal strokes with variable
thickness drawn along a parametric curve to produce interesting line-art images. Meier [44] attached particles to surfaces
in a 3D scene, then rendered a brush stroke (with variable color, size, and direction) at each particle position to paint the
scene. Litwinowicz [39] clipped strokes to object boundaries, then rendered them as lines or texture maps with variable length,
thickness, direction, and color. Curtis et al. [10] built a fluid-flow simulation to model the interactions of brush, watercolor,
and paper during the painting of watercolor images. Shiraishi and Yamaguchi [60] computed image moments on a target image
to control the color, location, orientation, and size of the brush strokes in their painterly rendering. Hertzmann [27] used a
multilayer painting technique, where each new layer contains finer details painted with smaller brush strokes; brush paths are
modeled with splines, while the brush itself allows variation of length, size, opacity, placement, and color jitter. Interrante [30]
discussed applying natural textures to visualize multidimensional datasets. Laidlaw [36, 37] extended the layered approach
of Meier to visualize multidimensional data in a painterly fashion. Finally, Ebert and Rheingans [13] used nonphotorealistic
techniques like silhouettes, sketch lines, and halos to highlight important features in a volumetric dataset.

9.1 Painterly Styles

We believe that fundamental properties of a nonphotorealistic image can be identified in part by studying the styles used by
artists to construct their paintings. Our investigation of painterly styles is directed by two separate criteria. First, we are
restricting our search to a particular movement in art known as Impressionism. Second, we attempt to pair each style with
a corresponding visual feature that has been shown to be effective in a perceptual visualization environment. There are no
technical reasons for why Impressionism was chosen over any other movement. In fact, we expect the basic theories behind
our technique will extend easily to other types of artistic presentation. For our initial work, however, we felt it was important
to narrow our focus to a set of fundamental goals in the the context of a single type of painting style.

The term “Impressionism” was attached to a small group of French artists (initially including Monet, Degas, Manet, Renoir, and
Pissaro, and later C´ezanne, Sisley, and Van Gogh, among others) who broke from the traditional schools of the time to approach
painting from a new perspective. The Impressionist technique was based on a number of underlying principles [5, 58, 77], for
example:

1. Object and environment interpenetrate.Outlines of objects are softened or obscured (e.g.,Monet’s water lilies); objects
are bathed and interact with light; shadows are colored and movement is represented as unfinished outlines.

2. Color acquires independence.There is no constant hue for an object, atmospheric conditions and light moderate color
across its surface; objects may reduce to swatches of color.

3. Show a small section of nature.The artist is not placed in a privileged position relative to nature; the world is shown as a
series of close-up details.

4. Minimize perspective.Perspective is shortened and distance reduced to turn 3D space into a 2D image.
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5. Solicit a viewer’s optics.Study the retinal system; divide tones as separate brush strokes to vitalize color rather than
graying with overlapping strokes; harness simultaneous contrast; use models from color scientists like Chevruel [9] or
Rood [55].

Although these general characteristics are perhaps less precise than we might prefer, we can still draw a number of important
conclusions. Properties of hue, luminance, and lighting were explicitly controlled and even studied in a scientific fashion by
some of the Impressionists. Rather than using an “object-based” representation, the artists appear to be more concerned with
subdividing a painting based on the interactions of light with color and other surface properties. Additional painterly styles can
be identified by studying the paintings themselves. These styles often varied dramatically between individual artists, acting to
define their unique painting techniques. Examples include:

� path: the direction a brush stroke follows; Van Gogh made extensive use of curved paths to define boundaries and shape
in his paintings; other artists favored simpler, straighter strokes,

� length: the length of individual strokes on the canvas, often used to differentiate between contextually different parts of
a painting,

� density:the number and size of strokes laid down in a fixed area of canvas,

� coarseness:the coarseness of the brush used to apply a stroke; a coarser brush causes visible bristle lines and surface
roughness, and

� weight: the amount of paint applied during each stroke; heavy strokes highlight coarseness and produce ridges of paint
that cause underhanging shadows when lit from the proper direction.

Although this collection of painterly styles provides a good starting point, it is by no means exhaustive. All of the styles
we use are evaluated for effectiveness by identifying their perceptual characteristics, and by validating their ability to support
visualization, discovery, analysis, and presentation in a real-world application environment.

A comparison of perceptual color and texture properties with painterly styles from Impressionist art reveals a strong correspon-
dence between the two. Reduced to perceptual elements, color and texture are the precise properties that an artist varies in the
application of colored pigments of paint to a canvas with a brush. From this perspective, color and lighting in Impressionism has
a direct relationship to the use of hue and luminance in perceptual vision. Other painterly styles (e.g.,path, density, and length)
have similar partners in perception (e.g.,orientation, contrast, and size). This close correspondence between perceptual features
and many of the painterly styles we hope to apply is particularly advantageous. Since numerous controlled experiments on the
use of perception have already been conducted, we have a large body of evidence to use to predict how we expect painterly
styles to react in a multidimensional visualization environment.

9.2 Experiments

We conducted a set of psychophysical experiments to test our hypothesis that guidelines from human perception will extend
to a painterly environment. Our experiments were designed to investigate a viewer’s ability to rapidly and accurately identify
target brush strokes defined by a particular color or orientation. Background orientation, color, regularity, and density varied
between displays. This allowed us to test for preattentive task performance, and for visual interference effects. The experimental
results were then used to identify similarities and differences between painterly images and existing perceptual visualization
techniques.

Each experimental display contained a22 � 22 array of simulated brush strokes (Fig. 12). Viewers were asked to determine
whether a small,3�3 group of strokes with a particular target type was present or absent in each display. Displays were shown
for 200 milliseconds, after which the screen was cleared; the system then waited for viewers to enter their answer (either “target
present” or “target absent”).

The displays were equally divided into two groups: one studied a viewer’s ability to identify target strokes based on color,
the other studied identification based on orientation. The appearance of the strokes in each display was varied to test for
preattentive performance and visual interference. For example, Fig. 12a shows an orange target in a sea of pink strokes; all the
strokes have a constant orientation of 30circ; they are sparsely packed, and are located in a completely regular, grid-like pattern.
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Fig. 12b shows a green target in a sea of orange strokes; these strokes, however, have a random orientation, a dense packing,
and an irregular placement. Fig. 12c shows a 45Æ orientation target in a sea of strokes rotated 30Æ; the strokes have a random
background color, very dense packing, and irregular placement. Finally, Fig. 12d shows a 60Æ target in a 45Æ background; these
strokes have a constant color, dense packing, and regular placement.

(a) (b) (c) (d)

Figure 12: Example experiment displays: (a) orange target in pink strokes, constant 30Æ background orientation, sparse packing, regular placement; (b) green
target in orange strokes, random background orientation, dense packing, irregular placement; (c) 45Æ target in30Æ strokes, random background color, very
dense packing, irregular placement; (d)60

Æ target in45Æ strokes, constant background color, dense packing, regular placement

Viewer accuracy and response time were combined and tested for significance using a multi-factor analysis of variance (ANOVA).
In summary, we found:

� color targets were easy to detect at a 200 millisecond preattentive exposure duration; a random orientation pattern had no
interfering effect on performance,

� orientation targets were easy to detect when a constant color was displayed in the background; a random background
color pattern caused a significant reduction in performance,

� background density had a significant effect on both color and orientation targets; denser displays produced an improve-
ment in performance, and

� background regularity had a significant effect on both color and orientation targets; irregular displays caused a reduction
in performance.

Our results match previous findings in both the psychophysical and the visualization literature, specifically: (1) color produces
better performance than orientation during target identification, and (2) an asymmetric color on texture interference effect exists
(random color patterns interfere with orientation identification, but not vice-versa). Both results have been shown to exist in
experimental [8, 64] and real-world visualization settings [25, 26]. These results extend our previous work [26], which found a
general color on texture interference pattern, but no corresponding texture on color effect. Overall, our results provide positive
evidence to support the belief that perceptual findings will carry to a painterly visualization environment.

10 Visualizing Environmental Weather Data

Based on the results from our experiments, we decided to build a nonphotorealistic visualization system that varied brush stroke
color, spatial density, direction (i.e., orientation), and stroke placement (i.e., regularity) to encode multiple data attributes (in
addition to the two spatial values used to position each stroke). The presence of feature hierarchies suggest color should be
used to represent the most important attribute, followed by texture properties. Our results further refine this to mapping color,
direction, density, and placement in order of attribute importance (from most important to least important).
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The brush strokes in our current prototype are similar to the ones shown during our experiments. They are constructed using
a simple texture mapping scheme. This technique is common in nonphotorealistic rendering (e.g.,in [18, 27, 39, 44]). Real
painted strokes are captured and converted into texture maps. These textures are applied to an underlying polygon to produce
an approximation of a collection of generic brush strokes. We currently use a small library of five representative brush stroke
textures; one of the textures is randomly selected and applied when a stroke is rendered. A stroke’s color, direction, density,
and placement are controlled by modifying its texture and by transforming the polygon it maps to.

One of the application testbeds for our nonphotorealistic visualization technique is a collection of monthly environmental and
weather conditions collected and recorded by the Intergovernmental Panel on Climate Change. This dataset contains mean
monthly surface climate readings in1

2

Æ

latitude and longitude steps for the years 1961 to 1990 (e.g., readings for January
averaged over the years 1961-1990, readings for February averaged over 1961-1990, and so on). We chose to visualize values
for mean temperature, windspeed, pressure, precipitation, and frost frequency (ortemp, wind pressure, precip,and frost).
Based on this order of importance, we built a data-feature mappingM that varies brush stroke color, density, orientation, and
regularity. We divided density into two separate parts:energy, the number of strokes used to represent a data elementei,
andcoverage, the percentage ofei’s screen space covered by its strokes. Both properties represent painterly styles. Energy
describes the number and vitality of strokes in a fixed region of a painting (e.g.,a few long, broad, lazy strokes or many small,
short, energetic strokes). Coverage describes the amount of the underlying canvas, if any, that shows through the strokes. This
produced the following attribute to visual feature pairings:

� temp! color: dark blue for lowtempto bright pink for hightemp,

� wind! coverage:low coverage for weakwind to full coverage for strongwind,

� pressure! energy:a single stroke, a1� 2 array of strokes, or a2� 2 array of strokes for low to highpressure,

� precip! orientation:upright (90Æ rotation) for lightprecipto flat (0Æ rotation) for heavyprecip, and

� frost! regularity: regular for lowfrost frequency to irregular for highfrost frequency.

Fig. 13 shows an example of applyingM to data for February along the east coast of the continental United States. The
top five images use a perceptual color ramp (running from dark blue and green for small values to bright red and pink for
large values) to show the individual variation intemp, pressure, wind, precip,andfrost. The result of applyingM to construct a
nonphotorealistic visualization of all five attributes is shown in the bottom image. Various color and texture patterns representing
different weather phenomena are noted on this image. Changes in temperature are visible as a smooth blue-green to red-pink
color variation running north to south over the map. Pressure gradients produce energy boundaries, shown as regions with
different numbers of strokes packed into a unit area of screen space (e.g.,higher energy strokes in Florida represent higher
pressurereadings). Windspeed modifies stroke coverage: weakwind values produce small strokes with a large amount of
background showing through (e.g.,north of the Great Lakes), while strongwind values produce larger strokes that completely
fill their corresponding screen space (e.g.,in central Texas and Kansas). Increases in rainfall are shown as a increasing stroke
tilt running from upright (lightprecip) to flat (heavyprecip). Finally, a higher frost frequency produces more irregularity
(e.g.,strokes in Florida and southern Texas are completely regular, while strokes in the northern states and Canada are highly
irregular).

Fig. 14 uses the same mappingM to visualize weather conditions over the western United States for January and August.
These visualizations provide a number of interesting insights into historical weather conditions for this part of the continent. In
January (Fig. 14a) weakwind values (shown as small, low coverage strokes) highlight the locations of the Rocky Mountains,
the Cascades, and the Sierra Nevada range. Typically heavy rainfall in the Pacific Northwest is represented by nearly flat
strokes. Regions of severe cold east of the Rocky Mountains near Denver and in the northern plains and Canadian prairies
appear as patches of dark green and blue strokes. Low pressure (i.e.,a single low energy stroke for each data element) and high
frost frequency (shown as irregular stroke placement) covers most of the map. Conditions in August (Fig. 14b) are markedly
different. Most of the western United States is warm (a completely regular placement of strokes denoting little or no frost
during this month). An area of intense heat, shown as bright pink strokes, is visible in southern California and Arizona. High
pressure regions cover the coast, the south, and much of the central and northern plains. Little or no rainfall is evident. Finally,
an area of weakwindvalues is visible as small, low coverage strokes in northern Washington, Idaho, and Montana.
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temp pressure wind precip frost

Figure 13: Nonphotorealistic visualization of weather conditions over the eastern United States: (top row) perceptual color ramps (dark blue for low to bright
pink for high) of mean temperature, pressure, windspeed, precipitation, and frost frequency in isolation; (bottom row) combined visualization of temperature
(dark blue to bright pink for cold to hot), pressure (low to to high energy for low to high), windspeed (low to high coverage for weak to strong), precipitation
(upright to flat for light to heavy), and frost frequency (regular to irregular for low to high)
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(a) (b)

Figure 14: Weather conditions over the western United States: (a) meantemp, pressure, wind, precipandfrost for January; (b) mean conditions for August

11 Visualizing Typhoon Data

One of our current testbeds for using pexels to visualize multidimensional data is the analysis of environmental conditions
related to typhoons. We used pexels to visualize typhoon activity in the Northwest Pacific Ocean during the summer and
fall of 1997. The names “typhoon” and “hurricane” are region-specific, and refer to the same type of weather phenomena:
an atmospheric disturbance characterized by low pressure, thunderstorm activity, and a cyclic wind pattern. Storms of this
type with windspeeds below 17m/s are called “tropical depressions”. When windspeeds exceed 17m/s, they become “tropical
storms”. This is also when storms are assigned a specific name. When windspeeds reach 33m/s, a storm becomes a typhoon (in
the Northwest Pacific) or a hurricane (in the Northeast Pacific and North Atlantic).

We combined information from a number of different sources to collect the data we needed. A U.S. Navy elevation dataset2

was used to obtain land elevations at ten minute latitude and longitude intervals. Land-based weather station readings collected
from around the world and archived by the National Climatic Data Center3 provided daily measurements for eighteen separate
environmental conditions. Finally, satellite archives made available by the Global Hydrology and Climate Center4 contained
daily open-ocean windspeed measurements at thirty minute latitude and longitude intervals. The National Climatic Data Center
defined the 1997 typhoon season to run from August 1 to October 31; each of our datasets contained measurements for this
time period.

We chose to visualize three environmental conditions related to typhoons: windspeed, pressure, and precipitation. All three val-
ues were measured on a daily basis at each land-based weather station, but only daily windspeeds were available for open-ocean
positions. In spite of the missing open-ocean pressure and precipitation, we were able to track storms as they moved across the
Northwest Pacific Ocean. When the storms made landfall the associated windspeed, sea-level pressure, and precipitation were
provided by weather stations along their path.

Based on our experimental results, we chose to represent windspeed, pressure, and precipitation with height, density, and color,
respectively. Localized areas of high windspeed are obvious indicators of storm activity. We chose to map increasing windspeed
to an increased pexel height. Although our experimental results showed statistically significant interference from background
color variation, the absolute effect was very small. Taller and denser pexels were easily identified in all other cases, suggesting
there should be no changes in color interference due to an increase in task difficulty. Windspeed has two important boundaries:

2http://grid2.cr.usgs.gov/dem/
3http://www.ncdc.noaa.gov/ol/climate/online/gsod.html
4http://ghrc.msfc.nasa.gov/ghrc/list.html
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17m/s (where tropical depressions become tropical storms) and 33m/s (where storms become typhoons). We mirrored these
boundaries with height discontinuities. Pexel height increases linearly from 0-17m/s. At 17m/s, height approximately doubles,
then continues linearly from 17-33m/s. At 33m/s another height discontinuity is introduced, followed by a linear increase for
any windspeeds over 33m/s.

Pressure is represented with pexel density. Since our results showed it was easier to find dense pexels in a sea of sparse
pexels (as opposed to sparse in dense), an increase in pressure is mapped to a decrease in pexel density (i.e.,very dense pexels
represent the low pressure regions associated with typhoons). Three different texture densities were used to represent three
pressure ranges. Pressure readings less than 996 millibars, between 996 and 1014 millibars, and greater than 1014 millibars
produce very dense, dense, and sparse pexels, respectively.

Precipitation is represented with color. We used our perceptual color selection technique to choose five perceptually uniform
colors. Daily precipitation readings of zero, 0–0.03 inches, 0.03–0.4 inches, 0.4–1.0 inches, and 1.0–10.71 inches were colored
green, yellow, orange, red, and purple, respectively (each precipitation range had an equal number of entries in our typhoon
dataset). Pexels on the open ocean or at weather stations where no precipitation values were reported were colored blue-
green. Our experimental results showed no texture-on-color interference. Moreover, our color selection technique is designed
to produce colors that are equally distinguishable from one another. Our mapping uses red and purple to highlight the high-
precipitation areas associated with typhoon activity.

We built a simple visualization tool that maps windspeed, pressure, and precipitation to their corresponding height, density, and
color. Our visualization tool allows a user to move forwards and backwards through the dataset day-by-day. One interesting
result was immediately evident when we began our analysis: typhoon activity was not represented by high windspeed values in
our open-ocean dataset. Typhoons normally contain severe rain and thunderstorms. The high levels of cloud-based water vapor
produced by these storms block the satellites that are used to measure open-ocean windspeeds. The result is an absence of
any windspeed values within a typhoon’s spatial extent. Rather than appearing as a local region of high windspeeds, typhoons
on the open-ocean are displayed as a “hole”, an ocean region without any windspeed readings (see Fig. 15b and 15d). This
absence of a visual feature (i.e.,a hole in the texture field) is large enough to be salient in our displays, and can be preattentively
identified and tracked over time. Therefore, users have little difficulty finding storms and watching them as they move across
the open ocean. When a storm makes landfall, the weather stations along the storm’s path provide the proper windspeed, as well
as pressure and precipitation. Weather stations measure windspeed directly, rather than using satellite images, so high levels of
cloud-based water vapor cause no loss of information.

Fig. 15 shows windspeed, pressure, and precipitation around Japan, Korea, and Taiwan during August 1997. Fig. 15b, looking
northeast, tracks typhoon Amber (one of the region’s major typhoons) approaching along an east to west path across the
Northwest Pacific Ocean on August 27, 1997. Fig. 15c shows typhoon Amber one day later as it moves through Taiwan.
Weather stations within the typhoon show the expected strong winds, low pressure, and high levels of rainfall. These results are
easily identified as tall, dense, red and purple pexels. Compare these images to Fig. 15d and 15e, where windspeed was mapped
to regularity, pressure to height, and precipitation to density (a mapping without color that our original texture experiments
predict will perform poorly). Although viewers can identify areas of lower and higher windspeed (e.g.,on the open ocean
and over Taiwan), it is difficult to identifya changein lower or higher windspeeds (e.g., the change in windspeed as typhoon
Amber moves onshore over Taiwan). In fact, viewers often searched for an increase in density that represents an increase in
precipitation, rather than an increase in irregularity; pexels over Taiwan become noticeably denser between Fig. 15d and 15e.

12 Oceanography Simulations

Our final example describes a set of oceanography simulations being jointly conducted at North Carolina State University
and the University of British Columbia [21]. Researchers in oceanography are studying the growth and movement patterns
of different species of salmon in the northern Pacific Ocean. Underlying environmental conditions like plankton density, sea
surface temperature (SST), current direction, and current strength affect where the salmon live and how they move and grow
[68]. For example, salmon like cooler water and tend to avoid ocean locations above a certain temperature. Since the salmon
feed on plankton blooms, they will try to move to areas where plankton density is highest. Currents will “push” the salmon as
they swim. Finally, SST, current direction, and current strength affect the size and location of plankton blooms as they form.
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(a)

(b) (c)

(d) (e)

Figure 15: Typhoon conditions across Southeast Asia during the summer of 1997: (a) August 7, normal weather conditions over Japan; (b) August 27, typhoon
Amber approaches the island of Taiwan from the southeast; (c) August 28, typhoon Amber strikes Taiwan, producing tall, dense pexels colored orange, red, and
purple (representing high precipitation); (d,e) the same data as in (b) and (c) but with windspeed represented by regularity, pressure by height, andprecipitation
by density.
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The oceanographers are designing models of how they believe salmon feed and move in the open ocean. These simulated
salmon will be placed in a set of known environmental conditions, then tracked to see if their behavior mirrors that of the real
fish. For example, salmon that migrate back to the Fraser River to spawn chose one of two routes. When the Gulf of Alaska is
warm, salmon make landfall at the north end of Vancouver Island and approach the Fraser River primarily via a northern route
through the Johnstone Strait (the upper arrow in Fig. 16). When the Gulf of Alaska is cold, salmon are distributed further south,
make landfall on the west coast of Vancouver Island, and approach the Fraser River primarily via a southern route through
the Juan de Fuca Strait (the lower arrow in Fig. 16). The ability to predict salmon distributions from prevailing environmental
conditions would allow the commercial fishing fleet to estimate how many fish will pass through the Johnstone and Juan de
Fuca straits. It would also allow more accurate predictions of the size of the salmon run, helping to ensure that an adequate
number of salmon arrive at the spawning grounds.

Figure 16: Map of the North Pacific; arrows represent possible salmon
migration paths as they pass through the either Johnstone Strait (upper
arrow) or the Strait of Juan de Fuca (lower arrow)

In order to test their hypotheses, the oceanographers have
created a database of SSTs and ocean currents for the re-
gion 35Æ north latitude, 180Æ west longitude to 62Æ north
latitude, 120Æ west longitude (Fig. 16). Measurements
within this region are available at1Æ � 1Æ grid spacings.
This array of values exists for each month for the years
1956 to 1964, and 1980 to 1989.

Partial plankton densities have also been collected and tab-
ulated; these are obtained by ships that take readings at var-
ious positions in the ocean. We estimated missing plankton
values using a set of knowledge discovery (KD) algorithms
that we have specifically modified for use during visualiza-
tion. Our KD algorithms identified month, SST, and cur-
rent magnitude as the attributes used to estimate missing
plankton values. Because of this, we restricted our initial
visualization to a monthly time-series of plankton density,
SST, and current magnitude.

Displaying the three attributes together allows the oceanog-
raphers to search for relationships between plankton den-
sity, current strength, and SST. Plankton is displayed using
color; SST and current strength are displayed using tex-
ture. Colors for the five plankton ranges were chosen using
our color selection technique [20]. Although other color
scales were available (for example, by Ware [78]), our col-
ors are specifically designed to highlight outliers, and to
show clearly the boundaries between groups of elements
with a common plankton density. We display the five plankton density ranges from low to high using blue (monitor RGB=36,
103, 151), green (monitor RGB=18, 127, 45), brown (monitor RGB=134, 96, 1), red (monitor RGB=243, 51, 55), and purple
(monitor RGB=206, 45, 162),

For the underlying texture, we mapped current strength to height and SST to density. Our choices were guided by results we
observed from our texture experiments:

� differences in height (specifically, taller elements) may be easier to detect, compared to differences in density or random-
ness,

� variation in height may mask differences in density or randomness; this appears to be due to the occlusion that occurs
when tall pexels in the foreground hide short pexels in the background; this will be less important when users can control
their viewpoint into the dataset (our visualization tool allows the user to interactively manipulate the viewpoint), and

� tightly spaced grids can support up to three easily distinguishable density patterns; placing more strips in a single pexel
(e.g.,arrays of3 � 3 or 4 � 4 strips) will either cause the strips to overlap with their neighbors, or make each strip too
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thin to easily identify.

Because there may be a feature preference for height over density, and because current strength was deemed “more important”
than SST during knowledge discovery, we used height to represent currents and density to represent SSTs. The five ranges of
current strength are mapped to five different heights. We do not use a linear mapping, rather the lower two ranges (corresponding
to the weakest currents) are displayed using two types of short pexels, and the upper three ranges (corresponding to the strongest
currents) are displayed using three types of tall pexels. This allows a user to rapidly locate boundaries between weak and strong
currents, while still being able to identify each of the five ranges. For SSTs, the lower three ranges (corresponding to the coldest
SSTs) are displayed with a pexel containing a single strip, while the upper two ranges (corresponding to the warmest SSTs) are
displayed with pexels containing arrays of2�1 and2�2 strips, respectively. The densities we chose allow a user to see clearly
the boundaries between cold and warm temperature regions. If necessary, users can change the range boundaries to focus on
different SST gradients.

The oceanographers want to traverse their datasets in monthly and yearly steps. Experiments run in our laboratory have shown
that preattentive tasks performed on static frames can be extended to a dynamic environment, where displays are shown one
after another in a movie-like fashion [23]. Our visualization tool was designed to allow users to scan rapidly forwards and
backwards through the dataset. This makes it easy to compare changes in the value and location of any of the environmental
variables being displayed. The oceanographers can track seasonal changes in current strength, SST, and plankton density as
they move month by month through a particular year. They can also see how interannual variability affects the environmental
conditions and corresponding plankton densities for a particular month across a range of years.

Fig. 17 shows three frames from the oceanography dataset: February 1956, June 1956, and October 1956. Color shows the
seasonal variation in plankton densities. Height and density allow the oceanographers to track current strengths and SSTs. In
February (Fig. 17a), most plankton densities are less than 28 g/m3 (i.e., blue and green strips). Currents are low in the north-
central Pacific; a region of weak currents also sits off the south coast of Alaska. Most of the ocean is cold (sparse pexels),
although a region of higher temperatures can easily be seen as dense pexels in the south. In June (Fig. 17b) dense plankton
blooms (red and purple strips) are present across most of the northern Pacific. The positions of the strong currents have shifted
(viewing the entire dataset shows this current pattern is relatively stable for the months March to August). Warmer SSTs have
pushed north, although the ocean around Alaska and northern British Columbia is still relatively cold. By October the plankton
densities have started to decrease (green, brown, and red strips); few high or low density patches are visible. Current strengths
have also decreased in the eastern regions. Overall a much larger percentage of the ocean is warm (i.e.,dense pexels). This is
common, since summer temperatures will sometimes last in parts of the ocean until October or November.
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some thoughts on pictures in more dimensions
davidkremers, caltech distinguished conceptual artist in biology

...cezanne said that every brushstroke has its own perspective.  he didn't mean it in the sense of
renaissance perspective, but every brushstroke has its own point of view. de kooning

traditional modeling of 3d objects in space also contains an invisible 4th, or time, dimension as a feedback
circuit completed by the reaction of the viewer.  each time an object is looked at, even by the same viewer,
the viewed response is changed due to the viewer's intervening experience/position.  thus the
contemplation of any object is both refined and expanded at the same time.

the line drawn where painting crosses over into sculpture is called bas-relief.  at this point the density of
the picture plane attains a weight which the picture plane cannot visually support, and in a process
converse to a rocket reaching escape velocity, the object is launched into orbit only to find itself a captive
of gravity.  if the visual density continues to climb, the gravity of the image solidifies into sculpture.
sculpture, the tradition of representing three dimensional objects in spacetime, has relied on either
freezing time, or abstracting form as a means of representing fluidity.

our task then, is to explore the surface fields suggested by cezanne in such a fashion that we can learn to
defy gravity.  in order to depict multiple dimensions of data we must retain the fluidity of the visual
imagery.  this will require the discovery of a picture plane that can support density minus visual weight. 
we must learn to serve water without a glass.



54



Exhibits and Bibliography

1. ’microMacro : theexpandinglandscape’ de verbeelding art landscape nature, zeewolde 2001

2. ’paradise now’ exit art, new york 2000

3. ’art meets science’ royal academy of fine arts, charlottenborg palace, copenhagen 1996

4. davidkremers, ’the delbruck paradox.’ genetische kunst - kunstlisches leben [exh. cat] pvs verleger, wien, 1993.

5. warn, dana. ’unconventional collaborations.’ abcnews.com, august 21, 2000.

6. robbins, david. ’the rise of systems man.’ art issues, no. 38 [summer 1995] : 28-31.

55



In the November/December 2000 issue of IEEE
Computer Graphics and Applications,1 Vicki Interrante

posed a visualization problem she and I have been inter-
ested in for several years. The problem is that of visually
representing a 2D field of data that has multiple data
values at each point. For example, 2D fluid flow has a
vector value at each location and derived values are
often available at each location. Interrante suggests
using natural textures to attack this problem, because
the textures can potentially encode lots of information.
She provides some intriguing examples and proposes
a psychology-based approach for developing an under-
standing of how we perceive natural textures, like those
Brodach photographed.2 Understanding this helps us
build better visualizations.

Based on Interrante’s suggestions, I would like to posit
and explore what is, perhaps, a less well-defined
approach. Through evolution, the human visual system
has developed the ability to process natural textures.
However, in addition to natural textures, humans also
visually process man-made textures—some of the rich-
est and most compelling of which are in works of art.
Art goes beyond what perceptual psychologists under-
stand about visual perception and there remain funda-
mental lessons that we can learn from art and art history
and apply to our visualization problems.

The rest of this article describes and illustrates some
of the visualization lessons we have learned studying
art. I believe that these examples also illustrate some of
the potential benefits of further study. While this
approach is more open-ended than a perceptual psy-
chology approach, both approaches are worthy of pur-
suit, and the potential benefits of using the less
structured approach outweigh any risk of failure.

How humans see and understand
Scientific visualization, a term coined only a little over

10 years ago, is the process of using the human visual
system to increase our understanding of phenomena
studied in various scientific disciplines. While the term
is young, the process (modulo the computer) has been
used since the beginning of science. Many scientists have
created drawings or built 3D models to understand and
communicate their science. The history of science and
art can provide us with lessons for using computers
effectively. Over time, artists have developed techniques
to create visual representations in particular communi-
cation goals. Art history provides a language for under-

standing and communicating that knowledge.
Historically, two disciplines approach the human visu-

al system from different perspectives. Art history pro-
vides a phenomenological view of art—painting X
evokes response Y. Art history, however, doesn’t decon-
struct the perceptual and cognitive processes underlying
responses. Perceptual psychology, on the other hand,
strives to explain how humans understand those visual
representations. There’s a gap between art and percep-
tual psychology—we don’t know how humans combine
visual inputs to arrive at the responses art evokes. Shape,
shading, edges, color, texture, motion, and interaction
are all components of an interactive visualization. But
how do these components interact and how can they
most effectively be deployed for a particular scientific
task? Answers to these questions are likely to fill some of
the gap between art and perceptual psychology. As an
example, the human-computer interaction (HCI) com-
munity is using and extending knowledge about per-
ception to test and develop better user interfaces. We
can find analogous inspiration for improved methods
for scientific visualization in the gap between art and
perceptual psychology. Many of these lessons will
impact the visual representation of multivalued data.

Looking up from our monitors 
A number of times over the last few years I’ve shep-

herded my students to art museums for guided tours by
my artist collaborator davidkremers, the Caltech
Distinguished Conceptual Artist in Biology. After ini-
tially searching for scientific visualization inspiration in
art, these visits let us formulate a plan for finding and
applying the concepts. Our initial focus was on oil paint-
ing, particularly from the Impressionist period, because
these paintings are so visually rich. The multiple layers
of brush strokes in these paintings provide a natural
metaphor for constructing visualizations from layers of
synthetic “brush strokes.” Some of my colleagues look at
me askance when I describe our research field trips, as
if to say, “This is research?” But stepping out of the lab
helps students build a new picture of what they can
accomplish when they come back to the computer. It
trains their eyes and minds to see differently.

During these field trips, we studied, in particular, the
works of three painters: 

■ Van Gogh, whose large, expressive, discrete strokes
carry meaning both individually and collectively.
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■ Monet, whose smaller strokes are often meaningless
in isolation—the relationships among the strokes give
them meaning, far more than in van Gogh.

■ Cezanne, who combined strokes into cubist facets,
playing with 3D perspective and time within his paint-
ings more then either van Gogh or Monat. His layering
also incorporates more atmospheric effects. In a sense,
his work shifts from surface rendering toward volume
rendering.

The three artists’ work in this sequence builds in com-
plexity and subtlety. In our field trips, we studied all
three, but most of our experiments thus far are limited
to ideas we learned from van Gogh’s work.

Van Gogh introduced us to the concept of under-
painting, or laying down a rough value sketch of the
entire painting. The underpainting shows through the
overlying detailed brush strokes to define the anatomy
of the painting. Figure 1b shows underpainting for
Figure 1a. It divides the canvas into two parts—a primed
lower region of hillside, rocks, and ground cover and a
darker upper region of tree, sky, and distant hills.
Underpainting helped us present some overall parts of
our data. We found that an analogous underlying form
in our visualizations anchors and literally gives shape
to disparate data components. Outlines around regions
provide separation and emphasis, lending definition to
our sea of data.

In van Gogh’s The Mulberry Tree (1889, oil on canvas),
brush strokes represent the solid trunk of the tree, bend-
ing branches, leaves blowing in the wind, and tufts of grass
(Figure 1a). We learned many shorthand ways of depict-
ing complexity using icons, geometric shapes, or textures
that evoke a characteristic of the subject, or the data—and
with that comes the responsibility of choosing brush
strokes that don’t create opposing or unwanted secondary
impressions. Beyond this direct representation, they also
invite the viewer to experience the scene, not just view it
passively. Similarly, brush-stroke size and proximity depict

density, weight, and velocity. In our visualizations, we
want to capture this marriage between direct representa-
tion of independent data and the overall intuitive feeling
of the data as a whole.

Back in the lab 
Returning to our computer lab, we tried to use some

of the ideas we had gleaned, once again drawing most-
ly from van Gogh’s work. We experimented with brush
stroke shapes and ways of layering them. Our initial
attempts were free–form and produced interesting
results. Our next attempts were more directly applied
to scientific problems. We show two of the images we
generated in Figures 2 and 3 (next page). The problem-
directed approach led us to iconic-looking strokes. 

In Figure 2, we show one 2D slice of a 3D second-
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1 (a) Van Gogh’s The Mulberry Tree (1889, oil on canvas) illustrates the visual shorthand that van Gogh used with
his expressive strokes. Multiple layers of strokes combine to define regions of different ground cover, aspects of
the hillside, and features of the tree. (b) An underpainting shows the “anatomy” or composition of the scene in
broad strokes. (Image of The Mulberry Tree granted by the Norton Simon Foundation, Pasadena, California. Gift of
Norton Simon, 1976.)

(a) (b)

2 Visualization of half of a section through a mouse spinal cord. The data is
a symmetric 3D second-order tensor field, with the equivalent of six inde-
pendent scalar values at each point. The detail on the right shows the
lower right part of the section. 



order tensor field, which has about six different data val-
ues at each point in the image. The image shows the
right half of a section through a mouse spinal cord. To
create the visualization, we used a layer resembling
underpainting with ellipse-shaped strokes on top of it.
On each of the strokes, a texture represents more of the
data. For more details on the scientific interpretation
and the visualization, see Laidlaw et al.3

In Figure 3, we show 2D fluid velocity together with
a number of derived quantities. About nine values are
represented at each spatial location in this visualization.
We again used a layer resembling underpainting with
layers of ellipse, wedge, and box strokes on top. The
ellipse strokes have a subtle texture superimposed. More
details on the visualization appear in Kirby et al.4

Space
We learned that paintings (and, in some cases, visu-

alizations) are multiscale. They can be viewed from dif-
ferent distances and seen and understood differently.
This raises interesting issues about the definition of tex-
ture. Let’s consider van Gogh’s Mulberry Tree (Figure 1a).

From a few inches away (look closely at Figure 4b), you
can see shapes from the bristles of the brush as well as
colors mixed within a stroke. At this distance, the shape
and color features might be considered texture, but they
could also be interpreted individually. At a distance of
18 inches (Figure 4b at a normal reading distance of 18
inches), these features appear smaller and resemble a
texture on each stroke. The strokes themselves are still
individual. At a distance of five feet (Figure 4a), the
strokes merge together to appear more like a texture.
Finally, at 15 feet (Figure 1a), the strokes blend togeth-
er and become almost invisible individually. 

We can use this lesson by encoding different informa-
tion at different scales. Iconic information at one scale
can turn into texture information at another scale. With
care, we can design features at different scales into the

same images. In the scientific visual-
izations of Figures 2 and 3, we design
visual features at different scales. The
texture on strokes is at a much finer
scale than the strokes themselves,
and the dark box strokes of Figure 3
are at a different scale than the other
strokes. 

To take full advantage of the mul-
tiscale nature of paintings and visu-
alizations we have to have ways of
interacting with them—that is, ways
of changing our viewing distance.
We rarely change the distance from
which we view our monitors—only
a bit more frequently do we do so
with paper publications. That’s why
the same image is shown at differ-
ent scales in Figure 4 and in some of
the other detailed figures. However,
we do view images hung on a wall
from different distances. And some
images on paper—often artistic—
inspire that sort of study. Projection

systems like PowerWalls and CAVEs may be good
options for encouraging this sort of exploration, as may
other hangable large-format output media.

Time
We also learned that paintings (and, in some cases,

visualizations) have a temporal component. For
instance, we see different aspects of an image at differ-
ent viewing times. Some parts stand out quickly, like the
overall composition or palette of a painting, and some
take more time to become apparent, like the texture or
shape of individual strokes. The scale and speed of
recognition correlate, as do contrast and speed of recog-
nition—but these are not the only factors. 

To use this lesson, we can design our visualizations so
that important data features are mapped to quickly seen
visual features. For example, features we want to mea-
sure directly from an image are present for detailed study
but don’t intrude on the visualization’s initial impres-
sion. The multiscale examples from the “Space” section
illustrate this temporal concept. Figure 3 gives another
example: we can read the wedges more quickly than the
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3 Visualization
of 2D fluid
velocity togeth-
er with several
derived data
values.
Approximately
nine values are
represented
visually at each
point in the
image. 

4 Variances in viewing van Gogh’s Mulberry Tree. Viewed in this article from
about 18 inches, Figure 1a shows what you would see 15 feet from the
painting. Comparatively, Figure 4 shows the following: (a) a detail of what
you would see 5 feet from the painting, and (b) a detail at actual size (what
you would see from 18 inches). Look at (b) more closely for viewing dis-
tances less than 18 inches.

(a) (b)



ellipses because of a difference in contrast.
Studies of preattentive vision and knowledge about

low-level vision are useful for designing quickly seen visu-
alization parts. It’s more difficult to test the more slowly
seen parts, which makes it more difficult to design them.
Task-oriented experimental tests seem logical, but the
tasks are often so complex that the performance variance
is relatively high, making methods difficult to compare.

Our initial experiments
Our initial experiments were much looser than the

examples shown in Figures 2 and 3. Some examples in
Figure 5 show 2D or 3D fluid flow. Since I want to
emphasize the overall texture and visual qualities, I
won’t go into detail about the mappings for each. To
many, the images are visually compelling, yet it has been
difficult to extract concrete visualization lessons from
them beyond those I previously described. What people
see in these images includes not only the mappings that
were used for the data value, but also other visual char-
acteristics. Despite being 2D, some images give an over-
all sense of depth. Some of the strokes appear to layer,
like feathers or scales. One of our challenges with these
looser images is in understanding what works, what
doesn’t, and (we hope) why.

Closing thoughts
I’ve tried to illustrate some examples of looking toward

art for inspiration in creating visualizations. Here we fea-
ture van Gogh and mention Monet and Cezanne for con-
text. In your artistic searches, choose the artists in whom
you have a passionate interest. I believe that any artist
has lessons to offer to visualization.

Working on scientific visualization problems, we
already interact with scientists and adopt their prob-
lems. As toolsmiths, we do better computer science
through addressing scientists’ problems on scientists’
terms.5 Similarly, we benefit from critical feedback from
artists, despite the difficulty of creating and maintaining
these relationships. I try to look at and understand art—
early and often—and emulate it in scientific visualiza-
tions and get critical feedback from artists. I explain
what I’m trying to do visually and have artists critique it.
Then I iterate, iterate, and iterate.

Of course, scientists must be involved in this iterative
process. Artists can help with inspiration and feedback
on the visual and communicative aspects of visualiza-
tion, but scientists define the tasks performed and there-
fore must ultimately evaluate the success of the methods.
For instance, the fluid flow example in Figure 3 may be
aesthetically pleasing, but without explanation—per-
haps via a legend or key—it’s not scientifically useful.

Figure 3 displays as many as nine values at each point
of the image. With some research indicating that tex-
ture has roughly three independent dimensions, the
ability to represent nine values is somewhat surpris-
ing—perhaps it’s due to combining color with texture
or layering textures at different scales.

Texture is hard to define. Understanding black and
white natural textures like the photographs in Brodatz2

is a good start, but we also need to look broadly. Task-ori-
ented user testing may help, and perhaps we can use the
critiques that are part of artists’ training. This might
combine perceptual psychology and art to fill in part of
the gap in our understanding of how humans see. By
having artists cognitively analyze what is shown by more
complex textures, we might come to a consensus on
what works, what doesn’t work, and why it does or does-
n’t work in the context of art and art history. ■
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Immersive virtual reality (IVR) has the
potential to be a powerful tool for the visu-

alization of burgeoning scientific data sets and models.
In this article we sketch a research agenda for the hard-
ware and software technology underlying IVR for sci-
entific visualization. In contrast to Brooks’ excellent
survey last year,1which reported on the state of IVR and
provided concrete examples of its production use, this
article is somewhat speculative. We don’t present solu-
tions but rather a progress report, a hope, and a call to
action, to help scientists cope with a major crisis that
threatens to impede their progress.

Brooks’ examples show that the
technology has only recently start-
ed to mature—in his words, it “bare-
ly works.” IVR is used for
walkthroughs of buildings and other
structures, virtual prototyping
(vehicles such as cars, tractors, and
airplanes), medical applications
(surgical visualization, planning,
and training), “experiences” applied
as clinical therapy (reliving Vietnam
experiences to treat post-traumatic
stress disorder, treating agorapho-
bia), and entertainment. Building
on Brooks’ work, here we concen-
trate on why scientific visualization

is also a good application area for IVR. 
First we’ll briefly review scientific visualization as a

means of understanding models and data, then discuss
the problem of exploding data set size, both from sensors
and from simulation runs, and the consequent demand
for new approaches. We see IVR as part of the solution: as
a richer visualization and interaction environment, it can
potentially enhance the scientist’s ability to manipulate
the levels of abstraction necessary for multi-terabyte and
petabyte data sets and to formulate hypotheses to guide
very long simulation runs. In short, IVR has the potential
to facilitate a more balanced human-computer partner-
ship that maximizes bandwidth to the brain by more fully
engaging the human sensorium.

We argue that IVR remains in a primitive state of
development and is, in the case of CAVEs and tiled pro-
jection displays, very expensive and therefore not in rou-
tine use. (We use the term cave to denote both the
original CAVE developed at the University of Illinois’
Electronic Visualization Laboratory2 and CAVE-style
derivatives.) Evolving hardware and software technol-
ogy may, however, enable IVR to become as ubiquitous
as 3D graphics workstations—once exotic and very
expensive—are today.
Finally, we describe a research agenda, first for the

technologies that enable IVR and then for the use of IVR
for scientific visualization. Punctuating the discussion
are sidebars giving examples of scientific IVR work cur-
rently under way at Brown University that addresses
some of the research challenges, as well as other side-
bars on data set size growth and IVR interaction
metaphors.

What is IVR?
By immersive virtual reality we mean technology that

gives the user the psychophysical experience of being
surrounded by a virtual, that is, computer-generated,
environment. This experience is elicited with a combi-
nation of hardware, software, and interaction devices.
Immersion is typically produced by a stereo 3D visual
display, which uses head tracking to create a human-
centric rather than a computer-determined point of
view. Two common forms of IVR use head-mounted dis-
plays (HMDs), which have small display screens in front
of the user’s eyes, and caves, which are specially con-
structed rooms with projections on multiple walls and
possibly floor and/or ceiling. Forms of IVR differ along
a number of dimensions, such as user mobility and field
of view, which we discuss briefly when talking about
the tradeoffs that exist in IVR technology for scientific
visualization.
Closely related to the sensation of immersion is the

sensation of presence—usually loosely described as the
feeling of “being there”—which gives a sense of the real-
ity of objects in a scene and the user’s presence with
those objects. Immersion and presence are enhanced by
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a wider field of view than is available on a desktop 
display, and leverage peripheral vision when working
with 3D information. This helps provide situational
awareness and context, aids spatial judgments, and
enhances navigation and locomotion. The presentation
may be further enhanced by aural rendering of spatial
3D sound and by haptic (touch, force) rendering to cre-
ate representations of geometries and surface material
properties.
Interaction is provided through a variety of spatial

input devices, most providing at least six degrees of free-
dom (DOF) based on tracker technology. Such devices
include 3D mice, various kinds of wands with buttons
for pointing and selecting, data gloves that sense joint
angles, and pinch gloves that sense contacts. Both types
of gloves provide position and gesture recognition. Addi-
tional sensory modalities may be engaged with speech
recognizers and haptic input and feedback.
IVR aims to create a rich, highly responsive environ-

ment, one that engages as many of our senses as possi-
ble. Realism—mimicking the physical world as faithfully
as possible—is often a goal, but for experiencing many
environments, it need not be. We can view IVR as the
technology that currently lies at an extreme on a spec-
trum of display technologies and corresponding inter-
action technologies. This spectrum starts with
keyboard-driven, text-only displays and proceeds
through 2D graphics with keyboard and mouse to 3D
desktop graphics with 3D interaction devices to IVR.
Thus, IVR can be seen as a natural extension of existing
computing environments. As we argue later, however,
it’s more appropriately seen as a substantially new medi-
um that differs more from conventional desktop 3D
environments than those environments differ from 2D
desktop environments. Conventional desktop 3D dis-
plays give one the sensation of looking through a win-
dow into a miniature world on the other side of the
screen, with all the separation that sensation implies,
whereas IVR makes it possible to become immersed in
and interact with life-sized scenes.
Once mastered, post-WIMP (that is, post-windows, -

icons, -menus, -pointing) multimodal interaction,3 such
as simultaneous speech and hand input, provides a far
richer, potentially more natural way of interacting with
a synthetic environment than do mouse and keyboard.
Fish Tank VR on a monitor,4 workbenches,5 and single-
wall projection displays,6 all with head-tracked stereo,
provide semi-immersive VR environments—between
desktop 3D and fully immersive VR.

IVR for scientific visualization
We believe that IVR is a rich way of interacting with

virtual environments (VEs). It holds great promise for sci-
entists, mathematicians, and engineers who rely on sci-
entific visualization to grapple with increasingly complex
problems that produce correspondingly larger and more
complex models and data sets. These data sets often
describe complicated 3D structures or can be visualized
with derived 3D abstractions (such as isosurfaces) pos-
sessing complicated geometry. We contend that people
can more readily explore and understand these complex
structures with the kinesthetic feedback gained by peer-

ing around at them from within, walking around them
to see them from different aspects, or handling them.
Scientific visualization isn’t an end in itself, but a

component of many scientific tasks that typically
involve some combination of interpretation and manip-
ulation of scientific data and/or models. To aid under-
standing, the scientist visualizes the data to look for
patterns, features, relationships, anomalies, and the
like. Visualization should be thought of as task driven
rather than data driven.
Indeed, it’s useful to think of simulation and visual-

ization as an extension of the centuries-old scientific
method of formulating a hypothesis, then performing
experiments to validate or reject it. Scientists now use
simulation and visualization as an alternate means of
observation, creating hypotheses and testing the results
of simulation runs against data from physical experi-
ments. Large simulation runs may use visualization as
a completely separate postprocess or may interlace
visualization and parameter setting with re-running the
simulation, in a mode called interactive steering,7 in
which the user monitors and influences the computa-
tion’s progress.
Unfortunately, our ability to simulate or use increas-

ingly numerous and refined sensors to produce ever
larger data sets outstrips our ability to understand the
data, and there’s compelling evidence that the gap is
widening. Hence, we look for ways to make human-in-
the-loop visualization more powerful. IVR has begun to
serve as one such power tool.
We use the term scientific visualization and chose

examples primarily from science and technology, but
much of the discussion would apply equally well to
closely related areas of information visualization, used
for commercial and organizational data, and to concept
visualization. Our discussions of archaeology (see the
sidebar “Archave”) and color theory (see the sidebar
“Color Museum”) IVR systems give some sample
domains and approaches.

Why scientific visualization?
Visualization is essential in interpreting data for many

scientific problems. Other tools such as statistical analy-
sis may present only a global or an extremely localized
partial result. Statistical techniques and monitoring of
individual points or regions in data sets expected to be
of interest prove useful for learning the effect of a sim-
ulation, but these techniques generally cannot explain
the effect.
Visualization is such a powerful technique because it

exploits the dominance of the human visual channel
(more than 50 percent of our neurons are devoted to
vision). While computers excel at simulations, data fil-
tering, and data reduction, humans are experts at using
their highly developed pattern-recognition skills to look
through the results for regions of interest, features, and
anomalies. Compared to programs, humans are espe-
cially good in seeing unexpected and unanticipated
emergent properties.
Much scientific computing uses parallel computers,

benefiting from the productive synergy of using paral-
lel hardware and software to do computation and par-
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Members of the Computer Science Department at Brown
University have been collaborating with archaeologists from
the Anthropology and Old World Art and Archaeology
departments to develop Archave, a system that uses the
virtual environment of a cave as an interface for
archaeological research and analysis.

VR in archaeology
Archaeologists and historians develop applications to

reconstruct and document archaeological sites. The resulting
models are displayed in virtual environments in museums,
on the Internet, or in video kiosks at excavation sites.
Recently, a number of projects have been tested in IVR
environments such as caves and VR theaters.1 Although
archaeologists have used VR and IVR primarily for
visualization since Paul Reilly introduced the concept of
virtual archaeology in 1990, interest is increasing in using VR
to improve techniques for discovering new knowledge and
helping archaeologists perform analysis rather than simply
presenting existing knowledge.2 One proposed area for
application of IVR is in the presentation and analysis of three-
dimensionally referenced excavation data.

Archaeological method
The database for the Great Temple excavation in Petra,

Jordan (see Figure A), contains more than 200,000 entries
recorded since 1993. Following standard archaeological
practice, artifacts recovered from the excavation site are
recorded with precise 3D characteristics. All artifacts are also
recorded in the site database in their relative positions by loci
or excavation layer and excavation trench, with a number of
feature attributes such as object type (bone, pottery, coin,
metal, sculpture), use, color, size, key features, and date. This
method ensures that all site data is precisely recorded for an
accurate record of the disturbance caused by the excavation
and for the analysis that occurs after the excavation is
complete. Unfortunately, the full potential of spatially

defined archaeological data is rarely realized, in part because
archaeologists find it difficult to analyze the geometric
characteristics of the artifacts and spatial relationships with
other elements of the site.3

Current problems in analysis
As the excavation proceeds, there’s a strong need to

correlate all the objects in order to observe patterns within the
data set and perform standard analysis. Methods for this type
of analysis vary widely depending on excavation site features,
dig strategy, and data obtained. A quantitative analysis of all
materials grouped and sorted in various ways presented in The
Great Temple five-year report (1998) showed statistics about
the percentages of different artifacts and their find locations,
such as pottery by phase, pottery by area, and frequency of
occurrence of pottery by area.4 This type of analysis can help
in a variety of statistical analyses using fairly comprehensive
information from the database. It can also let the archae-
ologist quantify obvious patterns within the data set.

Unfortunately, many factors cannot be represented well
with a traditional database approach and in reports
generated from it. Specifically, these methods cannot
integrate important graphical information from the maps
and plans, and specific attribute data, location, and relational
data among artifacts and site features.

Besides obvious conclusions that can be drawn when
objects are correlated spatially, combinations of artifacts
when viewed by a trained eye in their original spatial
configurations can yield important and unlikely discoveries.
Lock and Harris suggested that “vast quantities of locational
and thematic information can be stored in a single map and
yet, because the eye is a very effective image processor,
visual analysis and information retrieval can be rapid.”3

Although processing information visually would seem a
more intuitive and thus effective way of processing 3D data,
the idea hasn’t yet been proven. More graphical methods of
analysis have been explored in geographic information
systems (GIS) systems that overlay multiple types of 2D
graphic representations of data such as maps, plans, and
raster images with associated attribute data in an attempt to
present relationships among spatial data. However, many
feel that it’s not clear that GIS systems are sophisticated
enough to provide a thorough description of height
relationships. As Clarke observed, “The spatial relationships
between the artifacts, other artifacts, site features, other sites,
landscape elements and environmental aspects present a
formidable matrix of alternative individual categorizations
and cross-combinations to be searched for information.”5

A new method
The Archave system displays all the components of the

excavation with recorded artifacts and features in a cave
environment. Like the excavation site, the virtual site is
divided into the grid of excavation trenches excavated over
the past seven years (see Figure B). Each trench is modeled
so that the user can look at the relative layers or loci the
excavator established during the removal of debris in that

Archave
Daniel Acevedo Feliz and Eileen Vote

A Aerial of the Great Temple site in Petra, Jordan.
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allel human wetware to interpret the results. Computa-
tional steering—inappropriate for massive, lengthy pro-
duction runs—often proves useful for smaller-scale
problems with coarser spatiotemporal resolution or for
test cases to help set up parameters for production runs.

Computer-based scientific visualization exploiting
human pattern recognition is scarcely a new idea. It
started with real-time oscilloscope data plotting and
offline paper plotting in the 1950s. Science and engi-
neering applications were the first big customers of the
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trench. As the user dictates, information about artifacts can
be viewed throughout the site (see Figures C1 and C2).

We believe that the system makes it easier to associate
objects in all three dimensions, so it can accommodate
objects that cannot be related to each other in 2D or even
3D map-based GIS. In addition, multiple data types such as
pottery concentrations, coin finds, bone, sculpture,
architecture, etc. can be visualized together to test for
patterns and latent relationships between variables.

Users have commented that they feel more comfortable
using the system in a cave because it allows them to access
the data at a natural, life-size scale. The immersion provided
by the cave gives the users improved accessibility to the
objects they need to identify and study, and a very flexible
interface for exploring the data at different levels of detail,
going smoothly from close-range analysis to site-wide
overviews. More importantly, the wide field of view provided
by the cave’s three walls and floor let the user assimilate and
compare a larger section of data at once. For example, a user
working at close range in a trench has full visual access to
neighboring trenches or other parts of the site. Therefore, it’s
possible to assimilate and compare more information at one
time. This becomes crucial when users look for patterns or try
to match elements throughout the site or between trenches.

Conclusion
The Archave system lets the user establish new hypotheses

and conclusions about the archaeological record because
data can be processed comprehensively in its natural 3D
format. However, along with the ability to visually process a
coherent, multidimensional data sample comes the need for
an intuitive and flexible environment. IVR provides the user
with the ability to access the system in an environment

similar to the conditions that a working archaeologist
encounters on site.

As stated in the beginning, current tendencies to
implement VR for reconstruction and visualization need not
be the only use for this technology. The standard
archaeological method provides a rich record in which high-
level analysis can occur, and IVR can provide a significant test-
bed for advanced forms of analysis not heretofore available.
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B Color-coded excavation trenches from the past seven years
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The color saturation indicates the concentration of pottery, and
the density of the texture indicates the concentration of bone—
here only a significant difference in bone concentration exists.
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expensive interactive 2D vector displays commercial-
ized in the 1960s. Graphing packages of various kinds
were designed for both offline and interactive viewing
then as well. In the mid-1980s considerably higher-level

interactive visualization packages such as Mathemati-
ca and AVS leveraged the power of raster graphics and
modern user interfaces.
The landmark 1987 National Science Foundation
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IVR can enable students to interact with ideas in new
ways. In an IVR environment, students can engage in
simulations of real-world environments that are inaccessible
due to financial or time constraints (high-end chemistry
laboratories, for instance) or that cannot be experienced,
such as the inside of a volcano or the inside of an atom. IVRs
also enable students to interact with visualizations of
abstract ideas, such as mathematical equations or elements
of color theory. The hands-on, investigative learning most
natural in IVR offers an excellent way to train new scientists
and engineers. In addition, because the environment is
computer-generated, it’s an ideal future platform for
individual and collaborative distance-learning efforts.

We’ve used our cave to teach elements of color theory.1

Color theory is often highly abstract and multidimensional,
making it difficult to explain well with static diagrams or
even 3D real-world models. The desktop environment
provides valuable flexibility in the study of color (for
example, making it easy to modify colors rapidly), but
doesn’t address the difficulty of understanding the 3D
nature of color spaces and the complex interactions
between lights and colored objects in a real-world setting.
In the cave, users of our Museum of Color can view fully 3D
color spaces from any point of view and use a variety of
interaction and visualization techniques (for example, a rain
of disks colored by their location in a space and an
interactive cutting plane) to explore individual spaces and
compare spaces with one another (see Figure D). In
addition, viewers can enter the spaces and become fully
immersed in them, seeing them from the inside out.

We believe that the experience of entering a color space
in an IVR differs fundamentally from examining 3D desktop
models and that the experience will help users develop a
better understanding of color structures and the relative
merits of different spaces. For example, our color space
comparison exhibit lets the user move a cutting plane in
Munsell space and see it mapped into both RGB and HSV
spaces. The plane is defined by gradients of constant hue,
saturation, and value, and thus is flat in the perceptually
based Munsell space. In RGB, and especially HSV, however,
the plane deforms, at times quite radically, demonstrating
the nonlinearities of those color spaces. Although we could
show a single example of such a comparison in a picture
(see Figure E), actual use of this technique in the cave lets
users actively explore different areas of the spaces and
experience their changing degrees of nonlinearity.

In other interactive exhibits in the museum, users can
experiment with the effects of additive and subtractive
mixing by shining colored lights on paintings and 3D
objects. This provides a hands-on approach impossible with
desktop software while offering a more easily controlled and
more varied environment than practical in a real-life
laboratory. Future plans include more exhibits (such as one
on color scale that shows the user why choosing a color from
a little swatch for one’s walls is often misleading), as well as
user testing of the pedagogy and interaction techniques.
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D Falling disks are colored according to their changing posi-
tions within the color space.

E A plane of constant perceived value is flat in Munsell space
(right) but warped in HSV space (left).
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report “Visualization in Scientific Computing”7 stressed
the importance of interactive scientific visualization,
especially for large-scale problems, and reminded us of
Hamming’s famous dictum: “The purpose of comput-
ing is insight, not numbers.” The authors’ observation
that “Today’s data sources [simulations and sensors] are
such fire hoses of information that all we can do is gath-
er and warehouse the numbers they generate” is unfor-
tunately as true today as it was then.

Why use IVR for scientific visualization?
Several factors prompt the use of IVR for scientific

visualization. IVR also shows potential to surpass other
forms of desktop-based visualization.

Exponential growth of data set size
Moore’s Law for computer processing power and sim-

ilar improvements in storage, network, and sensing
device performance continue to give us ever-greater
capacity to collect and compute raw data. Unfortunate-
ly, computational requirements and data set size in sci-
ence research are growing faster than Moore’s Law.
Thus, the gap between what we can gather or create and
what we can properly analyze and interpret is widening
(see the sidebar “Examples of Data Set Size”). In the
limit, the real issue is nature’s overwhelming complex-
ity. Galaxy or plasma simulations, for example, are
seven-dimensional problems, so doubling resolution can
increase computation by a factor of 128. It’s extremely
difficult to make headway against problems this hard,
and there are hundreds of comparable complexity.

Problems and proposed solutions
The 1998 DOE report “Data and Visualization Corri-

dors”8 proposed three technology roadmaps to address
the crisis: data manipulation; visualization and graph-
ics; and interaction, shared spaces, and collaboration.
This document and subsequent reports show that sys-
tems are unbalanced today and that our ability to pro-
duce and collect data far outweighs our ability to
visualize or work with it. The main bottleneck continues
to be the ability to visualize the output and gain insight.
While the raw polygon performance of graphics cards

may be on a faster track than Moore’s law, visualization
environments aren’t improving commensurately. In
graphics and visualization, the key barriers to achiev-
ing really effective visualizations are underpowered
hardware, underdeveloped software, inadequate visu-
al idioms/encoding representations and interaction
metaphors not based on a deep understanding of human
capabilities, and disproportionately little funding for
visualization. We address some of these problems as
research issues in the sections below.
The accelerating data crisis demands new approach-

es short term and long term, new forms of abstraction,
and new tools. Short term, Moore’s Law, visualization
clusters (parallel approaches), tiled displays (increased
image fidelity), and IVR should help the most. Long term,
artificial-intelligence-based techniques will cull, orga-
nize, and summarize raw data prior to IVR viewing,
while ensuring that the links to the original data remain.
These techniques will support adjustable detail-and-con-
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At the Department of Energy’s Accelerated Strategic Computing
Initiative (ASCI, http://www.llnl.gov/asci/), a wide range of
applications that generate huge amounts of data are run to gain
understanding through simulations. Table A gives an overview of
the size of current and anticipated ASCI simulations. These
estimates are based on an actual run of a “multi-physics code.” The
very largest ASCI simulation runs, known as hero calculations,
produce even larger data sets that generate an order of magnitude
more data than typical runs. Developing techniques to manage
and visualize these data sets is a formidable problem being actively
researched at both DOE laboratories and universities.

The National Center for Atmospheric Research (NCAR,
http://www.ncar.ucar.edu/ncar/index.html) studies data volumes
associated with earth system and related simulation. Climate,
weather, and general turbulence are of particular interest. Climate
simulations generally produce about 1 TBytes of raw data per 100-
year run. Running ensemble runs—several simulations with small
differences—is important and multiplies the amount of data that
must be analyzed.

Monthly time dumps are currently used; in the future, these time
dumps may be hourly for certain studies, increasing the data size
by many orders of magnitude. Hurricane simulations at 1 km
resolution and sampled every 15 minutes may produce as much as
3 TBytes of raw data. Unlike some simulations, all this data (in
terms of both time and space) must be visualized for many
variables. In addition, geophysical and astrophysical turbulence has
been a particularly active and fruitful research area at NCAR, but
researchers are limited by both computational and analytical
resources.

One current effort in astrophysical turbulence runs at 2.5 km
resolution, and even with what is considered a crude and
insufficient time sampling, produces net data volumes of about .25
TBytes. Given more resources, researchers could use a finer time
sampling, add more variables, and conduct several runs for
comparison with one another. This would result in a final data set
size of about 6 TBytes. As soon as it’s practical to do so, researchers
will double the resolution of the simulation, yielding a 50-TByte
data set. And if it were possible, researchers would benefit from
running at four times the resolution.

Sensors that collect data produce data sets on the order of
petabytes today. For example, the compact muon solenoid
detector experiment on CERN’s Large Hadron Collider
(http://cern.web.cern.ch/CERN/LHC/pgs/general/detectors.html)
will collect about a petabyte of physics data per year. A more
visualizable data set is CACR’s collection of all-sky surveys known as
the Digital Sky (http://www.cacr.caltech.edu/SDA/DigiSky/
whatis.html); this is starting out at tens of terabytes and will grow.

Another example comes from developmental biology. Using
multispectral, time-lapse video microscopy, it’s now possible to
acquire volume images showing where and when a gene is
expressed in developing avian embryos. To accomplish this, a
given gene is modified so that when expressed it produces not
only the protein it represents, but also an additional marker
protein. The marker can be imaged in a live avian embryo as it
develops, producing a time-varying volume image.

continued on p. 32



text views to let researchers zoom in on specific areas
while maintaining the context of the larger data set.

IVR versus 3D desktop-based visualization
Visualization that leverages our human pattern-

recognition ability can be a powerful tool for under-
standing, and any technique that lets the user “see more”
enhances the experience. Complex 3D or higher-dimen-
sional and possibly time-varying data especially benefit
from interactive exploration to see more. One way of
seeing more is to use greater levels of abstraction/encod-
ing in the data. However, for a given data representa-
tion, the more the eye can rapidly take in, the better.
IVR allows much more use of peripheral vision to pro-

vide global context. It permits more natural and thus
quicker exploration of three- and higher-dimensional
data.9 Additionally, body-centric judgments about 3D
spatial relations come more easily,10 as can recognition
and understanding of 3D structures.11 It’s easier to do
such tasks when 3D depth perception is enhanced by
stereo and motion parallax (via head tracking).
In a sense, using IVR’s kinesthetic depth perception

to visualize phenomena represents the life-size interac-
tive generalization of stereo pairs in textbooks. Bryson
made the case that real-time exploration is a desirable
capability for scientific visualization and that IVR great-
ly facilitates exploration capabilities.11 In particular, a
proper IVR environment provides a rich set of spatial
and depth cues, and rapid interaction cycles that enable
probing volumes of data. Such rapid interaction cycles
rely on multimodal interaction techniques and the high
performance of typical IVR systems. While any of IVR’s
input devices and interaction techniques could, in prin-
ciple, work in a desktop system, IVR seems to encour-
age more adventurous use of interaction devices and
techniques. (See the sidebar “Interaction in Virtual Real-
ity: Categories and Metaphors.”)
Other interesting differences separate IVR and con-

ventional desktop environments. Current research at
Carnegie Mellon University and the University of Vir-

ginia shows that users make the
same kinds of mistakes in spatial
judgments in the virtual world that
they do in the real world (such as
overestimating height-width differ-
ences of objects), which isn’t the
case in 3D desktop graphics. Also,
certain kinds of hand-eye coordina-
tion tasks, such as rotating small
objects, are easier in IVR. Typical
times for rotating objects to match a
target orientation using a virtual
trackball or arcball at the desktop12

fall in the range of 17 to 27 seconds,
but having the user’s hand and the
virtual object collocated in 3D space
for optimal hand-eye coordination
can reduce this time by an order of
magnitude to around two seconds.13

All these phenomena exemplify
how the IVR experience comes clos-
er to our real-world experience than

does 3D desktop graphics. Indeed, IVR produces an
undeniable qualitative difference. Looking at a picture
of the Grand Canyon, however large, differs funda-
mentally from being there. Again, IVR is more like the
real world than any photograph, or any conventional
“through the window” graphics system, could be.
IVR is used in scientific visualization in two sorts of

problems: human-scale and non-human-scale prob-
lems. The case for using IVR is more obvious for the for-
mer, as Brooks described,1 citing vehicle operation,
vehicle design, and architectural design. For example,
an architectural walkthrough will, in general, be more
effective in an IVR environment than in a desktop envi-
ronment because humans have a lifetime of experience
in navigating through, making spatial judgments in, and
manipulating 3D physical environments. Ergonomic val-
idation tasks, like checking viewable and reachable
cockpit instrumentation and control placement, can be
performed more quickly and efficiently in a virtual pro-
totyping environment than with labor-intensive physi-
cal prototyping. Bryson’s pioneering work on the virtual
wind tunnel lets researchers “experience” fluid flow over
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The acquired data sets are large. Changes recorded every 90
minutes—a moderate timestep in the scale of development,
corresponding to the formation of one somite in a developing
embryo—over the first four days of development roughly correspond
to the first trimester of human development. A single acquisition can
measure expression of three genes in a volume of 512 × 768 × 150
spatial points for 64 time steps, producing 22 gigabytes of data. As
many as 10 images are necessary to cover an entire embryo. Images
of the 100,000 genes expressed in avians would exceed a petabyte.
The real complexity of the problem, and its true potential, lies in
correlating hundreds or thousands of these images in order to
understand the many different proteins working in concert. IVR has
the potential to help solve this problem by showing the multivalued
data simultaneously so that the human visual system, arguably the
best pattern-finding system known, can search for these correlations.

Table A. Data output from one ASCI code.*

FY00 FY02 FY04
Sizing Requirements 4 TFLOP 30 TFLOP 100 TFLOP

Number of zones (locations where 
material properties such as pressure, 
temperature, chemical species, stress 
tensor, and so on are tracked) 25 million 200 million 1 billion
Number of material properties per zone 10-50 10-50 10-50
Small visualization file (such as description 
of mesh, one zonal, one nodal) 2 GBytes 12 GBytes 50 GBytes
Large plot/restart file size (with all 
physics variables saved) 60 GBytes 450 GBytes 1,500 GBbytes
Average length of run 20.5 days 20-40 days 20-40 days
Number of visualization files per run 100 – small 200 – small 200 – small

180 – large 180 – large 180 – large
Visualization data set size per major run 6.4 TBytes 84 TBytes 280 TBytes
*Data has been scaled linearly to FY02 and FY04 using data from a recent run. Data courtesy of Terri
Quinn, Lawrence Livermore National Laboratory.

continued from p. 31
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When discussing 3D user interfaces for IVR, it’s important
to break down different interaction tasks into categories so as
to provide a framework for the design of new interaction
metaphors. In contrast to 2D WIMP (windows, icons, menus,
pointing) interfaces, which have a commonality in their
structure and appearance, only a few standard sets of
sophisticated interface guidelines, classifications, and
metaphors for 3D user interfaces1 have emerged due, in
part, to the complex nature of the interaction space and the
additional degrees of freedom. However, 3D user interaction
can be roughly classified into navigation, selection and
manipulation, and application control.

Navigation
Navigation can be classified into three distinct categories. Exploration is

navigation without any explicit target (that is, the user simply explores the
environment). Search tasks involve moving through the environment to a
particular location. Finally, maneuvering tasks are characterized by short, high-
precision movements usually done to position users better for performing
other tasks. The navigation task itself is broken up into a motor component
called travel, the movement of the viewpoint from place to place, and a
cognitive component called wayfinding, the process of developing spatial
knowledge and awareness of the surrounding space.2For example, with large
scientific data sets, users must be able to move from place to place and make
spatial correlations between different parts of the data visualization.

Most travel interaction metaphors fall into one of five
categories:

■ Physical movement: using the motion of the user’s body to
travel through the environment. Examples include walking,
riding a stationary bicycle, or walking in place on a virtual
conveyer belt.

■ Manual viewpoint manipulation: the user’s hand motions
effect travel. For example, in Multigen’s SmartScene navi-
gation, users grab points in space and pull themselves along
as if holding a virtual rope.

■ Steering: the continuous specification of the direction of
motion. Examples include gaze-directed steering, in which
the user’s head orientation determines the direction of trav-
el, or two-handed flying, in which the direction of flight is
determined by the vector between the user’s two hands and
the speed is proportional to the user’s hand separation.3

■ Target-based travel: the user specifies the destination and the
application handles the actual movement. An example of
this type of travel is teleportation, in which the user imme-
diately jumps to the new location.

■ Route planning: the user specifies a path and the application
moves the user along that path. An example is drawing a path
on a map of the space or actual environment to plan a route.

Selection and manipulation
A number of metaphors have been developed for

selecting, positioning, and rotating objects. The classical
approach provides the user with a virtual hand or 3D cursor
whose movements correspond to the physical movement of
the hand tracker. This metaphor simulates real-world
interaction but is problematic because users can pick up and

manipulate objects only within the area of reach.
One way around this problem is to use ray-casting or hand-

extension metaphors such as the Go-Go technique4 for object
selection and manipulation. The Go-Go technique
interactively “grows” the user’s arm using a nonlinear
mapping. Thus the user can reach and manipulate both near
and distant objects. Ray-casting metaphors are based on
shooting a ray from the virtual hand into the scene. When the
ray intersects an object, the user can select and manipulate it.

With simple ray casting the user may find it difficult to
select very small or distant objects. Variants of ray casting
developed to handle this problem include the spotlight
technique5 and aperture-based selection.6 Another approach
within the metaphor of ray casting is the image-plane family
of interaction techniques,7 which bring 2D image-plane
object selection and manipulation, commonly found in 3D
desktop applications, to virtual environments.

Instead of having users reach out into the virtual world to
select and manipulate objects, another metaphor for this
interaction task is to bring the virtual world closer to the user.
One of the first examples of this approach, the 3DM
immersive modeler,8 lets users grow and shrink themselves
to manipulate objects at different scales. In another
approach, the World-In-Miniature (WIM) technique9

provides users with a handheld copy of the virtual world. The
user can indirectly manipulate the virtual objects in the world
by interacting directly with their representations in the WIM.

In addition to direct manipulation of objects, users can
control objects indirectly with 3D widgets.10 They extend
familiar 2D widgets of WIMP interaction and are
combinations of geometry and behavior. Some are general,
such as transformer widgets with handles to constrain the
translation, rotation, and scale of an object. Others are task-
specific, such as the rake emitting colored streamlines used in
computational fluid dynamics (shown to the left of the user’s
left hand in Figure F). They’re used to modify parameters
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F A user interacting with a scientific data set. He uses a multi-
modal interface combining hand gesture and speech to change
modes and application state, such as creating and controlling
visualization widgets, and starting and stopping recorded
animations.
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associated with an object and to invoke particular operations.
A third way of selecting and manipulating virtual objects is

to create physical props, or phicons,11 that act as proxies for
virtual objects, giving users haptic feedback and a cognitive
link between the virtual object and its intended use.

A number of other techniques and metaphors have been
developed for selection and manipulation in virtual
environments. For references see Poupyrev and Kruijff’s
annotated bibliography of 3D user interfaces of the 20th
century, available on the Web at
http://www.mic.atr.co.jp/~poup/3dui/3duibib.htm.

One of the areas we must continue to explore is how to
combine the various interaction styles to enrich user
interaction. For example, physical props can help to increase
the functionality of virtual widgets and vice versa. The Virtual
Tricorder12 (see Figure F), which uses a physical prop and has
a corresponding virtual widget, is a good example of this
combination. These types of hybrid interface approaches
help reduce the user’s cognitive load by providing familiar
transitions between tools and their functionality.

Application control
Application control tasks change the state of the

application, the mode of interaction, or parameter
adjustment, and usually include the selection of an element
from a set. There are four different categories of application
control techniques: graphical menus, voice commands,
gestural interaction, and tools (virtual objects with an implicit
function or mode). Example application control tools include
the Virtual Tricorder and rake widgets mentioned above.

These application control techniques can be combined in
a number of different ways to create hybrid interfaces. For
example (see Figure G), combining gestural and voice input
provides users with multimodal interaction, which has the
potential of being a more natural and intuitive interface.
Although application control is a part of most VR
applications, it hasn’t been studied in a structured way, and
evaluations of the different techniques are sparse.

The future
Within the last couple of years, we’ve seen a significant

slowdown in the number of novel IVR interaction techniques
appearing in the literature, largely because it’s becoming
more and more difficult to develop them. Among the new
directions to pursue in 3D user interface research should be
more evaluations of already existing techniques to see which
ones work best for which applications and IVR environments.
Despite our many different 3D interaction metaphors, we
lack an application-based structure to tell us where these
metaphors are best used.

Another direction to consider is extending 3D interaction
techniques with artificial intelligence. For example, with
increasing data set size, AI techniques will become essential
in feature extraction and detection so that users can visualize
these massive data sets. Another example is using machine-
learning algorithms so that the application can detect
various user patterns that could aid users in interaction tasks.
Incorporating AI into 3D interaction has the potential to
spawn new sets of 3D interface techniques for VR
applications that would otherwise not be possible.
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a life-sized replica of the space shuttle.14 Finally, in com-
plex 3D environments such as oil refineries, orientation
and navigation seem easier with IVR—the simulated
environment stays fixed while your body moves—than
with desktop environments, where the mouse or joy-
stick makes the VE rotate around you.
While some problems (such as visualizing numerical

simulation of arterial blood flow) aren’t naturally
human-scale, they can be cast into a human-scale set-
ting. There they can arouse the normal human reactions
to 3D environments. For example, in arterial flow (see
the “Artery” sidebar), when our users enter the artery,
they think of it as a pipe—a familiar object at their own
macro scale. By entering the artery and viewing the 3D
vorticity geometry in 3D, they can make better decisions
about which viewpoints and 2D projections are most
meaningful. A similar example, which Brooks
described,1 is the University of North Carolina nanoma-
nipulator project, in which the humans and their inter-
actions are scaled down to the nanoscale.
The key question for non-human-scale problems is

whether the added richness of life-size immersive dis-
play allows faster, easier, or more accurate perceptions
and judgment. So far, not enough controlled studies
have been done to answer this question definitively.
Anecdotal evidence indicates that it’s easier, for exam-
ple, to do molecular docking15 for drug design in IVR
than on the desktop.
In addition to varying perspectives of scale in data

sets with inherent physical geometries, we often face
data that have no inherent geometry (such as flow field
data) and perhaps even no physical scale (such as data
describing statistical phenomena). The 3D abstractions
through which we visualize these data sets often pre-
sent very irregular structure with complicated geome-
tries and topologies. Just as IVR allows better
navigation through complicated architectural-scale
structures, we believe that IVR will be a better envi-
ronment for conception, navigation, and exploration
in any visualization of complex 3D structure. Indeed,
what’s often far more difficult in nonimmersive inter-
active visualizations is to gain rapid insight through
simple head movement and natural multimodal inter-
action. As Haase et al. pointed out in 1994, “[IVR can
provide] easy-to-understand presentations, and more
intuitive interaction with data” and “rather than relying
almost exclusively on human cognitive capabilities,
[IVR applications for analysis of complex data] engage
the powerful human perceptual mechanisms directly.”16

Despite the lack of conclusive evidence that today’s
IVR “is better” for scientific visualization, we remain
optimistic that in due time it will improve sufficiently in
cost, performance, and comfort to become the medium
of choice for many visualization tasks.

Research challenges
First we summarize the field’s current state. Next we

explore some IVR research challenges: display hardware,
rendering (including parallelism in rendering), haptics,
interaction, telecollaboration, software standards and
interoperability, and user studies. Finally, we cover the
challenges for scientific and information visualization.

Where is IVR today?
Thanks to Moore’s Law and clever rethinking of graph-

ics architecture at both the hardware and algorithm lev-
els, 3D graphics hardware has seen much progress
recently. Commodity chips and cards, such as those in
NVidia’s GeForce2 Ultra and Sony’s PlayStation-2, pro-
vide an astonishing improvement over previous genera-
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Artery
Andrew Forsberg

In collaboration with Spencer Sherwin of Imperial College,
researchers at Brown University are studying blood flow in arterial
branches.1 Understanding flow features and transport properties within
arterial branches is integral to modeling the onset and development of
diseases such as arteriosclerosis.

We’re currently examining the geometries of arterial bypass grafts,
which are surgically constructed bypasses around a blockage in an
artery. They have a downstream (proximal) junction where the bypass
vessel attaches to the original (host) artery and an upstream (distal)
junction where the bypass vessel is reattached after the blockage. The
disease occurs most frequently at this downstream junction, therefore
this geometry is of greatest interest (see Figure H).

These flows are typically unsteady and have no clearly defined
symmetries. The fields we’re interested in can be expressed in terms of
a vector, velocity, and scalar field. Interpreting this type of data requires
understanding the forces on a fluid element due to local pressure and
viscous stresses. In general, these forces aren’t collinear or aligned with
any preferred Cartesian direction. The use of traditional 2D visualization
can therefore be limiting, especially when considering a geometrically
complicated situation with no planes of symmetry.

It’s useful to consider the coherent structure identification as a whole
to get a general picture. The scale of this structure is typically of the
order of the artery’s diameter. The physical scales of the problem are
bounded from above by the geometry diameter and from below by
the viscosity length scale (the length at which structures disappear).
These coherent structures typically occur along the local primary axis of
the vessels. Therefore, at the junction of the vessels we have two sets of
flow structures in different planes. At higher flow speeds smaller flow
features can also occur due to the nonlinear nature of the flow as the
transition to turbulence takes place.

Output data is often so large it cannot be visualized. In their work
on suppressing turbulence, Du and Karniadakis2 processed only a
small percentage of this data, typically in terms of statistics such as

Occluded Region

Bypass Graft

Artery

Original Flow Direction 

H Diagram of an arterial graft.
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tions of even high-end workstations. These advances are
made possible by graphics processor designs larger than
those of microprocessors and produced on a timetable
even more aggressive. One could construct a very decent
personal IVR system from a PC with such a high-end
card, a high-quality lightweight HMD, and robust, high-
resolution, large-volume trackers for head-tracking and

interaction devices. Of these three components, tracker
technology is actually the most problematic, given
today’s primitive state of the art.
Meanwhile, the number of IVR installations, includ-

ing semi-immersive workbenches plus fully immersive
caves and HMD-based environments, is steadily
increasing. Wall-sized single or tiled displays offer an
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mean value at one point. However, it’s difficult to relate
these point-wise quantities to the flow structures to
construct theories: the statistics can show the effect, but not
the cause. Examining the detailed small-scale flow structures
can lead to discovery of the cause.

The challenge is how to interpret the dynamics at the
junction. One problem is that, when viewed from the
outside, some of the structures block each other; thus
viewing from inside the junction can let us understand how
each flow feature interacts with others. Note that viewing a
time-varying isosurface alone will not be sufficient to
understand the whole flow pattern.

Figure I shows snapshots of the user visualizing the arterial
flow data. In Figure I, part 2, the user is positioned just
downstream from the bifurcation, facing the bypass graft
from which three streamlines emanate. The bifurcation
partially occludes the graft passage, and to the right of the
bifurcation is the occluded region (see the corresponding
features in Figure H). The user holds a wand to control a
virtual menu of options (“Streamline” is the current
selection) and to create and adjust the parameters of
visualization widgets.

IVR may help in understanding the artery data in several
ways. Most immediately, viewing the 3D data from the
inside is easier in IVR than in desktop environments. IVR’s
fundamental attributes (such as a wide field of view, a larger
number of pixels, and head-tracked stereo) contribute to
enhanced 3D viewing. In an immersive environment you
can stand at a point such as the intersection of the bypass
graft and consider how flow features such as rotation and
straining occurring in different physical planes can interact
and exchange information. Multimodal user interfaces
enable users to control the visualization process rapidly and
more naturally than desktop WIMP interfaces. Group
interaction is also a benefit of IVR.

Of course, problems remain to be solved. For example, we
desperately need to increase the fidelity (both in terms of
spatio-temporal resolution and overall aesthetic quality) of
the visualization while maintaining interactive frame rates.
When more than one person views the data, they can have
difficulties communicating because each person has a
different point of view. Consequently, very natural and
common tasks like pointing at features are deceptively
difficult to implement (despite some research to enhance
multi-user interaction3).
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I (1) A view within the artery looking downstream from the
bifurcation. Shear-stress values on the artery wall are shown
using a standard color mapping technique in which blue repre-
sents lower values and red represents higher values. Regions of
low shear stress tend to correlate with locations of future
lesions. (2) A view within the artery looking upstream at the
bifurcation. The user holds a wand that controls a virtual menu
and has created three streamline widgets and a particle advec-
tion widget. A texture map on the artery wall helps the user
perceive the 3D geometry.

(1)

(2)
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increasingly popular alternative to IVR, particularly for
group viewing. IVR environments augment tradition-
al design studios and “wet labs” in such areas as bio-
chemistry and drug design. Lin et al.17 reported
increasing use in the geosciences. Supercomputer cen-
ters, such as those at the National Center for Super-
computing Applications and the Cornell Theory Center,
provide production use of their IVR facilities. Thus it’s
fair to say that, slowly but surely, scientists are becom-
ing acquainted with IVR in general and multimodal
post-WIMP interaction in particular.
On the downside, while money does go into immer-

sive environments, scientists and their management
continue to treat investments in all visualization tech-
nologies as secondary to investments in computation
and data handling.

Challenges in IVR
The following list of research issues in IVR is a partial

one; space and time constraints prevent a more detailed
listing. As often with systems-level research areas,
there’s no way to partition the issues neatly into cate-
gories such as hardware and software. Also, latency—
a key concern for IVR—affects essentially all issues. 
Furthermore, many of the issues outlined apply equal-

ly to 3D desktop graphics. Indeed, IVR can be consid-
ered as merely the most extreme point on the spectrum
for all these research issues; solutions will come from
researchers and commercial vendors not focused
uniquely on IVR. A telling example is the Sony GScube,
shown at Siggraph 2000, which demonstrated very high
end performance using a special-purpose scalable
graphics solution based on 16 PlayStation-2 cards. The
carefully hand-tuned demo showed 140 ants (from the
PDI movie AntZ), made up of around 7,000 polygons
each, running in real time at 60 Hz at HDTV resolution,
effectively over 1M polygons per frame at 1920 × 1080
resolution. A Sony representative quoted about 60M tri-
angles per second and peak rates of roughly 300M tri-
angles. Load-balancing algorithms helped improve the
performance of the 16 PlayStation-2 cards and addi-
tional graphics hardware.
While 2D graphics is mature, with the most progress

occurring in novel applications, we’ve reached no such
maturity in 3D desktop graphics, let alone in IVR. This
immaturity is manifested at all levels, from hardware
through software, interaction technology, and appli-
cations. Progress will have to be dramatic rather than
incremental to make IVR a generally available pro-
ductive environment. This is especially true if our hope
that IVR will become a standard work environment is
to be realized.

Improve display technologies. Hardware dis-
play systems for IVR applications have two important
and interrelated components. The first is the technolo-
gy underlying how the light we see gets produced; the
second is the type and geometrical form of surface on
which this light gets displayed.

Invent new light production technologies. A number of
different methods exist for producing the light displayed

on a surface. While CRTs—and increasingly LCD panels
and projectors—are the workhorses for graphics today,
newer light-producing techniques are still being invent-
ed. Texas Instrument’s Digital Micromirror Device (DMD)
technology is available in digital light projectors. Even
more exotic technology from Silicon Light, which uses
Grating Light Valve technology, will soon handle theater
projection of digital films. There’s hope that this kind of
technology may be commoditized for personal displays.
Jenmar Visual System’s BlackScreen technology (used

in the ActiveSpaces telecollaboration project of Argonne
Laboratories) captures image light into a matrix of opti-
cal beads, which focus it and pass it through a black layer
into a clear substrate. From there it passes relatively uni-
formly into the viewing area. This screen material pre-
sents a black level undegraded by ambient light, making
it ideal for use with high-luminosity projection sources
and nonplanar tiled displays such as caves.
A very different approach to light production, the Vir-

tual Retinal Display (VRD), projects light directly onto
the retina.18 The VRD was developed at the Human
Interface Technology (HIT) Lab in 1991 and is now
being commercially offered by Microvision in a VGA
form factor with 640 ×480 resolution. Because the laser
must shine directly onto the retina, visual registration
is lost if the eye wanders. Autostereoscopic displays such
as that described by Perlin et al.19 are less obtrusive than
stereo displays, which require shutter glasses. Light-
emitting polymers hold the promise of display surfaces
of arbitrary size and even curved shape. The large, sta-
tic, digital holograms of cars displayed at Siggraph 2000
demonstrated an impressive milestone toward the real-
time digital holography we can expect in the far future.

Create and evaluate new display surfaces. Unfortu-
nately, no “one size fits all” display surface exists for IVR
applications. Rather, many different kinds offer advan-
tages and disadvantages. Choosing the appropriate dis-
play surface depends on the application, tasks required,
target audience, financial and human resources avail-
able, and so on. In addition to Fish Tank VR, work-
benches, caves, HMDs and PowerWalls, new ways of
displaying light continue to emerge.
Tiled display surfaces, which combine many display

surfaces and light-producing devices, are very popular
for visualization applications. Tiled displays offer
greater image fidelity than other immersive and desk-
top displays today due to an increased number of pixels
displayed (for example, 6.4K ×3K in Argonne’s 15-pro-
jector configuration, in contrast to typical display reso-
lution of 1280 × 1024) over an area that fills most of a
user’s, or often a group of users’, field of view.20 For a
thorough discussion of tiled wall displays, see CG&A’s
special issue on large displays.6

Not surprisingly, practical drawbacks of IVR display
systems are their cost and space requirements. This
problem plays a significant role in inhibiting the pro-
duction use of IVR by scientists. However, semi-immer-
sive personal IVR displays such as CMU’s CUBE
(Computer-driven Upper Body Environment) are
emerging. In addition, the VisionStation from Elumens
and Fakespace Systems’ conCAVE are hemispheric per-
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sonal displays that use image warping to compensate
for the nonplanar display topology.
Understanding which IVR display surfaces best suit

which application areas occupies researchers today. For
example, head-tracked stereo displays typically provide
a one-person immersive experience, since current pro-
jection hardware can only generate accurate stereo
images for one person. (Some proposed strategies time-
multiplex the output of a single projector,21 but exhibit
problems such as decreased frame rate and darker
images.) Non-head-tracked displays, such as a Power-
Wall, which takes some advantage of peripheral vision,
proves much better for group viewing. Given the still
primitive state of IVR, scientists—not surprisingly—gen-
erally choose a higher-resolution, nonimmersive, sin-
gle-wall display over a much lower-resolution immersive
display. Our optimism about the use of IVR for scientif-
ic visualization is bolstered by the belief that the same
high resolution will eventually be available for IVR.

Improve immersion in multiprojector environments.
Although large-scale display systems, such as multipro-
jector tiled and dome-based displays, show promise in
providing more pixels to the user’s visual field, a number
of technological and research challenges remain to be
addressed. For example, even though cave technology is
more than eight years old, the seams between display
walls still have visual discontinuities that can break the
illusion of immersion. Large-scale tiled wall and dome
displays also have problems with seams. Making images
seamless across display surfaces and multiple projectors
requires sophisticated image blending algorithms.22

We must also continue to explore methods for main-
taining projector calibration and alignment, and color
and luminosity matching. In addition, with front-pro-
jected displays (typical for domes), the user may occlude
the projected images when performing various spatial
3D interaction tasks.
Finally, large-scale displays also require higher reso-

lution than is currently possible. To match human acu-
ity, we need to display at least 200 pixels per inch in the
circular region with a 0.16 to 0.31 inch radius roughly 18
inches distant in the gaze direction (the region of foveal
vision); lower resolution could be displayed outside this
region (for example, on portions of the display more dis-
tant from the viewer position, and outside the cone of
foveal gaze).
A simple calculation assuming a limiting discernable

resolution of an arc-minute (typical for daylight grating
discrimination23) yields a requirement for a convention-
al desktop display of 2400 × 1920 pixels—achieved, for
example, by IBM’s Roentgen active-matrix LCD display.
However, for a 10-foot-diameter cave environment, in
which today’s typical projection systems evenly distrib-
ute pixels on a display surface and users can in principle
come as close to the walls as they do to a normal monitor,
each wall must have 23,000 × 23,000 pixels to achieve
the same resolution. Variable-resolution display tech-
nology could use many fewer pixels because the pixels
could be positioned to best accommodate the human eye.
Human visual acuity also varies with the task. For

example, our visual acuity increases dramatically with

stereo vision (so-called hyperacuity). For discriminat-
ing the relative depth of two lines in stereo, our acuity
is 10 to 20 times finer than the value quoted for daylight
grating discrimination,23 resulting in a 10-to-20-fold
increase in the numbers quoted here or a 100-to-400-
fold increase in the total number of pixels needed
(though careful and sophisticated antialiasing could
permit coarser resolutions).

Develop office IVR.The history of computing has shown
that only a few early adopters will flock to a new tech-
nology as long as it remains expensive and fragile, and
requires using a lab away from one’s normal working
environment. IVR will not become a normal component
of the scientist’s work environment until it literally
becomes indistinguishable from that environment.
UNC’s ambitious Office of the Future project24 and its

various near-term and longer-term variations are
designed to bring IVR to the office in a powerful and yet
affordable way. The system is based on a unified appli-
cation of computer vision and computer graphics. It com-
bines and builds on the notions of the cave, tiled display
systems, and image-based modeling. The basic idea is to
use real-time computer vision techniques to dynamical-
ly extract per-pixel depth and reflectance information
for the visible surfaces in the office, including walls, fur-
niture, objects, and people, and then to project images
on the surfaces or interpret changes in the surfaces.
To accomplish the simultaneous scene capture and

display, computer controlled cameras and projectors
replace ceiling lights. By simultaneously projecting
images and monitoring geometry and reflectivity of the
designated display surfaces, we can dynamically adjust
for geometric, intensity, and resolution variations result-
ing from irregular and dynamic display geometries, and
from overlapping images.
The projectors work in two modes: scene extraction

(in coordination with the cameras) and normal display.
In the scene extraction mode, 3D objects within each
camera’s view are extracted using imperceptible struc-
tured light techniques, which hide projected patterns
used for scene capture through a combination of time-
division multiplexing and light cancellation techniques.
In display mode, the projectors display high-resolution
images on designated display surfaces.25 Scene capture
can also be achieved passively and in real time26 using
a cluster of cameras and view-independent acquisition
algorithms based on stereo matching.
Ultimately, such an office system will lead to more

compelling and useful systems for shared telepresence
and telecollaboration between distant individuals. It will
enable rich experiences and interaction not possible
with the through-the-window paradigm.

Improve rendering performance and flexi-
bility. Although display processors have become fast,
we still need additional orders of magnitude in perfor-
mance. This problem increases in the context of tiled
displays on a single wall or multiple walls—we have
megapolygons-per-second rates, while we need
gigapolygons-per-second, not to mention texels, voxels,
and other display primitives.
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A question pertaining to both hardware and software
is how rendering can take advantage of the full capabili-
ties of the human visual and cognitive systems. Examples
of this concept include rendering with greater precision
where the eye is focusing and with less detail in the
peripheral vision, and rendering so as to emphasize the
cues most important for perception and discrimination.27

The field of rendering remains in flux as new tech-
niques such as perceptually based rendering, volumetric
rendering, image-based rendering, and nonphoto-
realistic rendering28 join our lexicon. (Volume-
renderinghardware—particularly important in scientific
visualization—is specialized now in dedicated chips like
Mitsubishi’s VolumePro, whose output goes into a con-
ventional polygon graphics pipeline as texture maps.)
Current systems don’t integrate all these rendering tech-
niques completely. (For example, the Visualization Tool-
Kit can integrate 2D, 3D polygonal, volumetric, and
texture-based approaches, but not interactively for all sit-
uations, such as when translucent geometric data is
used.29) Integrating all these techniques into a common
framework is difficult, both at the API level, so that the
application programmer can mix and match as suits the
occasion, and at the system level, where the various types
of data must be efficiently rendered and merged. Espe-
cially at the hardware level, this will require considerable
redesign of the conventional polygon-centric graphics
pipeline. Furthermore, visual rendering needs to be coor-
dinated with audio rendering and haptic rendering.

Use parallelism to speed up rendering. Parallel render-
ing aims to speed up the rendering process by decom-
posing the problem into multiple pieces that can execute
in parallel. We need to learn how to make scalable
graphics systems by ganging together commodity
processors and graphics components in the same way
as high-performance parallel computers are built by
ganging together commodity processors. Projects at
Stanford, Princeton, Argonne National Lab, and other
labs use this strategy to create tiled displays.6 Some
groups are also experimenting with special-purpose
hardware such as compositors. For example, Stanford
has built the experimental, distributed, frame-buffer
architecture Lightning2.
Parallel rendering is a less well studied problem than

parallel numerical computing, except for the embar-
rassingly parallel problem of ray tracing, which has been
well studied.30 While multiple parallel rendering
approaches are known (object or image space parti-
tioning,31 for example), vendors haven’t committed to
any standard scalable parallel approach. Furthermore,
the typical goal of parallel computation is to increase
batch throughput, while the goal for IVR is to maximize
interactivity. For IVR this is accomplished by minimizing
latency and maximizing frame rate (discussed later).
Another way of looking at it is that scientific comput-

ing is most interested in asymptotic performance,
whereas IVR is most interested in worst-case perfor-
mance on a subsecond time-scale. Parallel rendering
has much in common with parallel databases (for exam-
ple, efficient distribution and transaction mechanisms
are needed), but is focused at the hardware level (for

example, the memory subsystem and the rendering
pipeline).
Whitman31 proposed the following criteria for evalu-

ating parallel graphics display algorithms:

■ granularity of task sizes
■ nature of algorithm decomposition into parallel tasks
■ use of parallelism in the display algorithm without
significant loss of coherence

■ load balancing of tasks
■ distribution and access of data through the commu-
nication network

■ scalability of the algorithm on larger machines

An important requirement is making a parallel ren-
dering system easy to use—that is, isolating the applica-
tion programmers from the complexities of driving a
parallel rendering system. Hereld et al.32 stated that “the
ultimate usability of tiled display systems will depend on
the ease with which applications can be developed that
achieve adequate performance.” They suggested that
existing applications should run without modification,
that the details of rendering should be hidden from the
user, and that new applications should have simple mech-
anisms to exploit advanced properties of tiled displays.
WireGL33 is an example of a system that makes it easy

for the user and application programmer to leverage
scalable rendering systems. Specifically, an OpenGL pro-
gram needs no modification to run on a tiled display.
The distributed OpenGL (DOGL) system at Brown Uni-
versity is a similar, although less optimized, library—it
requires minor modification to an OpenGL program, but
can drive a tiled, head-tracked, stereo cave display. It
uses MPI, a message-passing interface common in par-
allel scientific computing applications. These and other
systems work by intercepting normal (nonparallel)
OpenGL calls and multicasting them, or channeling
them to specific graphics processors.
WireGL includes optimizations to minimize network

traffic for a tiled display and, for most applications, pro-
vides scalable output resolution with minimal perfor-
mance impact. The rendering subsystem relies not only
on parallelism, but also on traditional techniques for
geometry simplification, such as view-dependent culling.
(We discuss geometry simplification techniques later.)
To run a sequential OpenGL program written for a con-

ventional 3D display device without modification requires
that the interceptor deal with the complexities of man-
aging head-tracking and stereo. In particular, this requires
transformations that conflict with those in the original
OpenGL code. Furthermore, the application program-
mer must provide any additional interaction devices
needed. Retaining the simplicity of the WireGL approach
(running an OpenGL application in an IVR environment
without modification) while extending its capabilities to
a wider range of display types is an open problem.

Make haptics useful for interaction and sci-
entific visualization.Haptic output devices need sig-
nificant improvements before they can become
generally useful. Commodity haptic devices, including
the Phantom, the Wingman Force Feedback Mouse, and
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a number of gaming devices such as the Microsoft
Sidewinder Force Feedback joystick and wheel, deliver
six degrees of freedom at best; handling objects requires
many more degrees of freedom to distribute forces more
widely, such as over a whole hand.
Probably the most compelling use of force feedback

today (besides in games and certain kinds of surgical
training) comes from UNC’s nanomanipulator project,
where a natural mapping takes place between the atom-
ic forces on the tip of the probe and what the Phantom
can provide.
In addition to force displays that emphasize the force

itself, the other major kind of haptic display is tactile.34

Tactile feedback has been simulated with vibrating com-
ponents such as Virtual Technologies’ CyberTouch
Glove, pin arrays, and robot-controlled systems that pre-
sent physical surfaces at the appropriate locations, like
those in Tachi’s lab at the University of Tokyo
(http://www.star.t.u-tokyo.ac.jp/), but these tech-
niques are either experimental or unable to span a suf-
ficient range of tactile sensations.
Earlier molecular docking experiments showed that

a robot-arm force-feedback device could significantly
speed up the exploration process.35 Feeling forces, as in
electromagnetic or gravitational fields, can also aid visu-
alization.35 Haptics used in a problem-solving environ-
ment for scientific computing called SCIRun lets the user
feel vector fields.36

Because of their small working volume, today’s com-
modity haptic rendering devices better suit Fish Tank
VR than walk-around environments like the cave, let
alone larger spaces instrumented with wide-area track-
ers. There are three basic approaches to haptics in such
larger spaces:

■ make a larger ground- or ceiling-based exoskeleton
with a larger working area,

■ put a desktop system such as a Phantom on a pedestal
and move it around, or

■ ground the forces in a backpack worn by the user,34

for example to apply forces by pulling on wires
attached to the fingers.37

None of these options is ideal. The first can be expen-
sive and involve lesser fidelity and greater possibility of
hitting bystanders in the device’s working volume. The
second is clumsy and may cause visual occlusion prob-
lems, and the third makes the user carry around signif-
icant extra weight.
Besides distributed and mobile haptics, we list two

additional research problems:

■ Developing real-time haptic rendering algorithms for
complex geometry. Forces must be computed and cre-
ated at high rates (on the order of 1,000 Hz) to main-
tain a realistic sensation of even the simplest solid
objects.

■ Actually using haptics for interaction, not just doing
haptic rendering. Miller and Zeleznik described a
recent example of adding haptics to the 2D user inter-
face,38 but only a much smaller effort has begun on
the general problem of what should be displayed hap-

tically in general 3D environments, in addition to the
surfaces of objects.39

Make interaction comfortable, fast, and
effective. Several options tackle the problem of mak-
ing interaction better: improving the devices, minimiz-
ing system latency, maximizing frame rate, and scaling
interaction techniques. We consider each in turn.

Improve interaction device technology.Any input device
provides a way for humans to communicate with com-
puter applications. A major distinction can be made,
however, between traditional desktop input devices,
such as the keyboard and mouse, and post-WIMP input
devices for IVR applications. In general, traditional desk-
top input devices have both a level of predictability that
users trust and good spatiotemporal resolution, accu-
racy, and repeatability. For example, when a user manip-
ulates a mouse, hand motions typically correspond
directly to cursor movement, and the control-to-display
ratio (the ratio of physical mouse movement to mouse
pointer movement) is set in a useful mapping from
mouse to display.
In contrast, many IVR input devices, such as 3D track-

ers, often exhibit chaotic behavior. They lack good spa-
tiotemporal resolution, range, accuracy, and
repeatability, not to mention their problems with noise,
ergonomic comfort, and even safety (in the case of hap-
tics). For example, a 2D mouse has good accuracy and
repeatability regardless of whether the mouse pointer
is at the center or at the edges of the screen, but a 3D
mouse has adequate accuracy and repeatability only in
the center of its tracking range, deteriorating as it moves
towards the boundaries of this range. IVR input devices
thus frequently have a level of unpredictability that
makes them frustrating and difficult to use. Although
the HiBall Tracker,40 originally developed at UNC and
now available commercially from 3rdTech, has extreme-
ly low latency, and high accuracy and update rates, it’s
too big for anything other than head tracking. Indeed,
miniaturization of tracking devices is another impor-
tant technological challenge.
Position and orientation tracking is a vital input tech-

nology for IVR applications because it lets users get the
correct viewing perspective in response to head motion.
In most IVR applications, the user’s head and either one
or both hands are tracked. However, to go beyond tra-
ditional IVR interaction techniques, we need to track
very precisely other parts of the body such as the fingers
(not just fingertips), the feet, pressure on the floor that
changes as a user’s weight shifts, gaze direction, and the
user’s center of mass. With the standard tracking solu-
tions, the user would potentially have not just two or
three tethers, but perhaps 10 to 15, which is complete-
ly unacceptable.
Another example of this tethering problem is the cur-

rent IVR configuration at the Brown University Virtual
Environment Navigation Lab. An HMD and wide-area
tracking system (40 × 40 feet) enables scientists to per-
form IVR-based navigation, action, and perception exper-
iments. An assistant must accompany the human
participant to manage the tethered cables for HMD video
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and tracking. Although wireless tracking solutions are
commercially available, for instance the Polhemus Star
Trak, they have a limited working volume and require the
user to somehow carry signal transmitting electronics.
An alternate method of tracking employs computer

vision-based techniques so that users can interact with-
out wearing cumbersome devices. This type of tracking
is commonly found in perceptual user interfaces (PUIs),
which work towards the most natural and convenient
interaction possible by making the interface aware of
user identity, position, gaze, gesture, and, in the future,
even affect and intent.41 Vision-based tracking has a
number of drawbacks, however. Most notably, even with
multiple cameras, occlusion is a major obstacle. For
example, it’s difficult to track finger positions when the
hands are at certain orientations relative to the user’s
body. The form factor of an IVR environment can also
play a role in vision-based tracking—consider using
camera-based tracking in a six-sided cave without
obstructing the visual projection. Vision-based tracking
systems are commercially available (for example, the
MotionAnalysis motion capture system), but they’re
mostly used in motion-capture applications for anima-
tion and video games. Like the wireless tracking tech-
nologies from Polhemus and Ascension, these
vision-based systems are expensive, and they also
require users to wear a body suit.
In addition to researching robust, accurate, and unob-

trusive tracking that scientists can use easily, we must
continue to develop other new and innovative interac-
tion devices. Many input devices are designed as gener-
al-purpose devices, but, as with displays, one size doesn’t
fit all. We need to develop specific devices for specific
tasks that leverage a user’s learned skills. For example,
flight simulators don’t use instrumented gloves that
sense joint angles or finger contact with a virtual cockpit,
but instead recreate the exact physical interface of a real
cockpit, which is manipulated with the hands. Physical
hand-held props are also useful devices for some task-
and application-specific interactions (see the sidebar
“Interaction in Virtual Reality” for specific examples).
Another task-specific device is the Cubic Mouse,42 an

input device designed for viewing and interacting with
volumetric data sets. Intended to let users specify 3D
coordinates intuitively, the device consists of a box with
three perpendicular rods passing through the center and
buttons for additional input. The rods represent the x-,
y-, and z-axes of a given coordinate system. Pushing and
pulling the rods specifies constrained motion along the
corresponding axes. Embedded within the device is a
6DOF tracking sensor, which permits the rods to be con-
tinually aligned with a coordinate system located in a
virtual world.
Other forms of interaction device technology still

need improvement as well. For example, speech recog-
nizers remain underdeveloped and suffer from accura-
cy and speed problems across a range of users. Motion
platforms such as treadmills and terrain simulators are
expensive, clumsy, and not yet satisfactory.
A main interface goal in IVR applications is to devel-

op natural, human-like interaction. Multimodal inter-
faces, which combine different modalities such as

speech and gesture, are one possible route to human-
to-human style interaction. To create robust and pow-
erful multimodal systems, we need more research on
how multiple sensory channels can augment each other.
In particular, we need better sensor fusion “unification”
algorithms43 that can improve probabilistic recognition
algorithms through mutual reinforcement.

Minimize system latency.According to Brooks,1 “end-
to-end system latency is still the most serious technical
shortcoming of today’s VR systems.” IVR imposes far
more stringent demands on end-to-end latency (includ-
ing both command specification and completion) than
a desktop environment. In the latter, the major concern
is task performance, and the general rule of thumb is
that between 0.1- and 1.0-second latency is acceptable.44

In IVR we’re concerned not only with task performance
but also with retaining the illusion of IVR—and more
importantly, not causing fatigue, let alone cybersick-
ness. It’s useful to think of a hierarchy of latency bounds:

■ Some human subjects can notice latencies as small as
16 to 33 ms.45

■ Latency doesn’t typically result in cybersickness until
it exceeds a task- and user-dependent threshold.
According to Kennedy et al., any delay over 35 ms can
cause cue conflicts (such as visual/vestibular mis-
match).46 Note that motion sickness and other dis-
comforts related to cybersickness can occur even in
zero-latency environments (like the real world, which
effectively has no visual latency) because cue conflicts
can result from factors other than latency.

■ For hand-eye motor control in navigation and object
selection and manipulation, latency must remain less
than 100 to 125 ms.46 For visual display, latency
requirements are more stringent for head tracking
than for tracking other body parts such as hands and
feet. The HiBall tracking system40 uses Kalman filter-
based prediction-correction algorithms to increase
accuracy and to reduce latency.

■ Permissible latency until the result of an operation
appears (as opposed to feedback while performing it)
is a matter of the user’s expectations and patience. For
example, a response to a data query ranging from sub-
seconds to a few seconds may be adequate. Converse-
ly, if time-series data produced by sampling either
simulation or observational data plays back too rapid-
ly, the user may become confused. The problem can
worsen if the original sampling rate is too low and tem-
poral aliasing occurs. (For the purpose of discussion,
we assume the time to render a query’s result doesn’t
affect frame rate—not always the case in practice.)

■ Latency affects user performance nonlinearly; when
latencies exceed 200 ms, user interaction strategies
tend to change to “move and wait” from more con-
tinuous and fluid control.47

In IVR the dominant criterion is that the overall sys-
tem latency must fall below the cybersickness thresh-
old. Latency per se doesn’t cause cybersickness.
However, in the context of IVR, where the coupling
between body tracking (especially of the head) and dis-
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play is so tight, latency can cause cybersickness. In addi-
tion, minimizing latency is important to make it easier
for users to transition from performing tasks at the cog-
nitive level to the perceptual level (that is, using muscle
memory to perform tasks). Worse, in the context of vari-
able latency, it’s even more difficult to make this transi-
tion. It’s still a significant research problem to identify
and especially to minimize all the possible causes of
latency at the tracking device, operating-system, appli-
cation, and rendering levels48 for a local system, let
alone for one whose components are networked, as dis-
cussed next.
Unfortunately, latency thus poses a system-wide prob-

lem in which no single cause is fatal in itself but the com-
bination produces the equivalent of “the death of a
thousand cuts.” Singhal and Zyda49 pointed out that
latency is one of the biggest problems with today’s Inter-
net, yet has received relatively little attention. Networks
introduce uncontrollable, indeed potentially unpre-
dictable, time delays. The causes are numerous, includ-
ing travel time through routers to and from the network,
through the network hardware, operating system, and
into the application.
Research in modern network protocols deals with

minimizing and guaranteeing maximum network laten-
cy, and other aspects of quality-of-service management,
but clearly a lower bound exists on network latency due
to the speed of light. Since latency in network trans-
mission is inevitable, we need strategies for making the
user experience acceptable. Some strategies for masking
network latency include using separate time frames and
filters for each participant with periodic resynchro-
nization when more accurate information becomes
available,50 and visual effects allowing immediate inter-
action with proxies at each location and subsequent
resynchronization.51

Unfortunately, the networking research community
isn’t well aware of the needs of the real-time graphics
community, let alone the far more demanding IVR com-
munity. Conversely, the graphics community is insuffi-
ciently aware of ongoing developments in networking.
An urgent need exists to bring these communities
together to come up with acceptable algorithms. How-
ever, no matter how good these networking algorithms
turn out to be, some IVR tasks are clearly inappropriate
for today’s networks. Head tracking, for example, isn’t
a candidate for distributed processing.

Maximize frame rate to meet application needs. Close-
ly related to latency is frame rate—the number of dis-
tinct frames generated per second. While most sources
quote a rate of 10 Hz as the minimum for IVR, the game
community has long known that for fluid interactivity
and minimal fatigue 60 Hz is a more acceptable mini-
mum. Worse, given the complexity of scenes that VR
users want to generate and the fact that stereo auto-
matically doubles rendering requirements, attaining an
acceptable frame rate for real smoothness in interactiv-
ity will be an ongoing battle, even with faster hardware.
While developers often switch to using lower resolutions
in stereo to compensate for the extra computation time
required to render left and right eye images, this is hard-

ly a solution, since it compromises the already-inade-
quate resolution to gain frame rate.
The comparison with the requirements of video

games also doesn’t take into account the inordinate
investment of time by game designers in constructing
and tuning their geometry and behavior models to
achieve high frame rates, an investment typically impos-
sible for IVR applications. Nonetheless, some of the
geometry simplification techniques used in the game
community can transfer to IVR, such as level-of-detail
management and view-dependent culling. These tech-
niques were, in fact, first developed for IVR walk-
throughs. We review them briefly below.
A distinction separates simulation frame update rate

and visualization frame update rate. Many scientific sim-
ulations will probably never be fast enough to overwhelm
the human visual system. However, animated sequences
derived from a sequence of simulation time steps may
need to be slowed down so that viewers don’t miss impor-
tant details. (Think of watching a slow-motion replay of
a close play in a baseball game because the normal—or
fastest—playing speed is inappropriate.)
Vogler and Metaxas52 showed that applications with

a lot of motion (such as decoding American Sign Lan-
guage) require more than a 60-Hz update frame rate to
capture all the information. It’s unlikely that many sci-
entific visualization situations will require such a strin-
gent update rate, since typically the scientist can control
the dynamic visualization’s speed (slow motion play-
back or fast-forward). Of course, actually providing
these capabilities in real time may be a formidable prob-
lem, given the large size of some data sets.
Finally, the frame rate and system latency often

change over time in IVR applications, which can play a
significant role in user performance. Watson et al.53

showed that for an average frame rate of 10 fps, 40 per-
cent fluctuations in the frame rate about the mean can
degrade user performance. However, the same experi-
ment showed that for an average frame rate of 20 fps,
no significant degradation occurred.

Scale up interaction techniques with data and model
size. To combat the accelerating data crisis, we need not
only scalable graphics and massive data storage and
management systems, but also scalable interaction tech-
niques so that users can view and manipulate the data.
Existing interaction techniques don’t scale well when
users visualize massive data sets. For example, the state-
of-the-art interaction techniques for selection, manip-
ulation, and application control described in the sidebar
"Interaction in Virtual Reality" are mostly proof-of-con-
cept techniques designed for and tested only with small
sets of objects. Techniques that work well with 100
objects in the scene won’t necessarily work with 10,000,
let alone 100,000. Consider, for example, selecting one
out of 100 objects versus selecting one out of 100,000
objects. If culling techniques are used for object selec-
tion, some objects of interest may not even be visible,
and some kind of global context map may be needed.
Unfortunately, IVR remains in an early stage of devel-
opment, and performance limitations are one of the
main reasons that our interaction techniques are based
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on small problems. We must either modify existing inter-
action techniques or develop novel techniques for han-
dling massive data sets.
In considering how we interact with data during an

exploration, we must consider all the various steps in a
typical process: sensing or computing the raw data,
culling a subset to visualize, computing the presenta-
tion (the visualization itself), and the interaction tech-
niques themselves. Below we discuss only the last three
steps. A more in-depth discussion on managing gigabyte
data sets in real time appears elsewhere.54 Here we dis-
cuss various techniques for cutting down the size of the
data set, automatic feature extraction techniques, a class
of algorithms known as time-critical computing that
compute on a given time budget to guarantee a speci-
fied frame rate, and the high-performance demands for
computing the visualization itself.
A standard approach to interacting with massive data

sets is first to subset, cull, and summarize, then to use
small-scale interaction techniques with the more man-
ageable extracts from the original data. Probably our
best examples of this type of approach are vehicle and
building walkthroughs. These require a huge amount
of effort in real-time culling and geometry simplifica-
tion, but the interaction is fairly constrained. While the
underlying geometry of, say, a large airplane or subma-
rine may be defined in terms of multiple billions of poly-
gons, only 100,000 to a million polygons may be visible
from a particular point of view.
After semantically filtering the data (for example,

displaying only HVAC or hydraulic subsystems), we
must use a number of approximation techniques to best
present the remaining geometry. Nearby geometry may
be rendered using geometric simplification, typified by
Hoppe’s progressive meshes,55 while distant geometry
may be approximated using a variety of image-based
techniques, such as texture mapping and image warp-
ing. Objects or scenes with a high degree of fine detail
approaching one polygon per pixel may benefit from
point cloud or other volumetric rendering techniques.
UNC’s Massive Model Rendering System offers an
excellent example of a system combining many of these
techniques.56 Rendering may be further accelerated
through hardware support for compression of the tex-
ture or geometric data57 to reduce both memory and
bandwidth needs.
Similarly, a scientific data set size can be reduced to

allow visualization algorithms to operate on a relevant
subset of the full data set if additional information can
be added to the data structure. Two techniques for
reducing the data set on which visualization algorithms
operate are

■ precompution of data ranges via indices so that pieces
can quickly be identified at runtime, and 

■ spatial partitioning for view-dependent culling.

Data compression and multiresolution techniques are
also commonly used for reducing the size of data sets.
However, many compression techniques are lossy in
nature; that is, the original data cannot be reconstruct-
ed from the compressed format. Although lossy tech-

niques have been applied to scientific data, many scien-
tists, especially in the medical field, remain skeptical—
they fear losing potentially important information.
Bryson et al. pointed out that there’s little point in

interactively exploring a data set when a precise descrip-
tion of a feature can be used to extract it algorithmical-
ly.54 Feature extraction tends to reduce data size because
lower-level data is transformed into higher-level infor-
mation. Some examples of higher-level features that can
be automatically detected in computational fluid dynam-
ics data are vortex cores,58 shocks,59 flow separation and
attachment,60,61 and recirculation.62We need many more
techniques like these to help shift the burden of pattern
recognition from human to machine and move toward
a more productive human-machine partnership.
Time-critical computing (TCC) algorithms also prove

useful for interacting with large-scale data sets.63 TCC
techniques64,65,54 guarantee some result within a time
budget while meeting user-specified constraints. A
scheduling algorithm balances the cost and benefit of
alternatives from the parameter space (such as time
budget per object, algorithm sophistication, level-of-
detail, and so forth) to provide the best result in a given
time. TCC suits many situations; here we discuss how
visualization techniques can benefit from TCC.
Two important challenges face TCC: determining the

time budgets for the various visualizations—a type of
scheduling problem—and deciding which visualization
algorithms with which parameter settings best meet that
budget. In traditional 3D graphics, time budgets often
depend on the position and size of an object on the
screen.63 In scientific visualization applications, the tra-
ditional approach doesn’t work, since it can take sub-
stantial time to compute the visualization object’s
position and size on the screen, thereby defeating the
purpose of the time-critical approach. A way around this
problem is to have equal time budgets for all visualiza-
tion objects, possibly augmented by additional informa-
tion such as explicit object priorities provided by the user.
Accuracy versus speed tradeoffs can also help in com-

puting visualization objects within the time budget. Of
course, sacrificing accuracy to meet the time budget
introduces errors. Unfortunately, we have an insufficient
understanding of quality error metrics that would allow
us to demonstrate that no significant scientific informa-
tion has been lost. Metrics such as image quality used for
traditional graphics don’t transfer to scientific data.54

Transforming data into a visualization takes visualiza-
tion algorithms that depend on multiple resources. In
many cases, the time required to create visualizations cre-
ates a significant bottleneck. For example, an analysis of
the resources used by visualization algorithms reveals
that many techniques (such as streamlines, isosurfaces,
and more sophisticated algorithms) can result in severe
demands on computation and data access that can’t be
handled in real time. These resources include many com-
ponents—raw computation, memory, communication,
data queries, and display capabilities, among others.
To help illustrate the situation, consider part of

Bryson’s 1996 analysis11 based on just the floating-point
operation capabilities of a typical 1996 high-perfor-
mance workstation. He showed that you could expect
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25 streamlines to be computed in one tenth of a second.
Bryson’s assumptions for this result were instantaneous
data set access, second-order Runge-Kutta integration,
a single integration of a streamline required about 200
floating-point operations, a 20 megaflop machine, and
most systems perform about half their rated perfor-
mance. Today, the same calculation scaled up by
Moore’s Law would yield about 130 streamlines. How-
ever, when you consider the cost of data access and
today’s very large data sets, these performance figures
drop substantially to perhaps tens of streamlines, or
even fractions of a single streamline, depending on the
data complexity and algorithms used. We need a bal-
anced, high-performance computational system in con-
junction with efficient algorithms, with both designed
to support interactive exploration.
Many approaches to large data management for visu-

alizing large data sets operate on the output of a simu-
lation. An alternative approach would investigate how
ideas used to produce the data (that is, ideas in the sim-
ulation community) might be leveraged by the visual-
ization community. At Brown University we’re exploring
the use of spectral element methods66 as a data struc-
ture for both simulation and visualization. Their natur-
al hierarchical and continuous representation are
indeed desirable traits for visualization of large data
sets. Nonetheless, we see significant research issues in
discovering how best to use them in visualization, min-
imizing the loss of important detail and accuracy, and
visualizing high-order representations.
Spectral elements combine finite elements, which

provide discretization flexibility on complex geometries,
and spectral methods using higher-order basis functions,
which provide excellent convergence properties. A key
benefit of spectral elements is that they support two
forms of refinement: allowing the size and number of
elements to be changed, and allowing the order of poly-
nomial expansion to be changed in a region. Both can
occur while the simulation is running. This attribute can
be leveraged to perform simulation steering and hier-
archical visualization. As in the use of wavelets, you
could choose the necessary level of summarization or
zoom into a region of interest. Thus you could change
the refinement levels to increase resolution only where
needed while running a simulation.
Using scalable interfaces means not just interacting

with more objects, but also interacting with them over
a longer period of time. Small enough problems or a
reduced-complexity version of a large problem (with a
coarser spatio-temporal resolution) may run in real
time, but larger simulations won’t be able to engage the
user continuously. One interesting aspect of the system
proposed by de St. Germain et al.67 is the “detachable”
user interface, which lets the user connect to a long-run-
ning simulation to monitor or steer it. This type of inter-
face allows the user to dynamically connect to and
disconnect from computations for massive batch jobs.
This system also lets multiple scientists steer disjoint
parts of the simulation simultaneously.

Facilitate telecollaboration. The problems of
interaction multiply when multiple participants inter-

act with a shared data set and with one another over a
network. Such collaboration—increasingly a hallmark
of modern science and engineering—is poorly support-
ed by existing software. The considerable literature in
computer-supported collaborative work primarily con-
cerns various forms of teleconferencing, shared 2D
whiteboards, and shared productivity applications; very
little literature deals with the special problems of 3D,
let alone of teleimmersion, which remains embryonic.
Singhal and Zyda49 detailed many of the network-relat-
ed challenges involved in this area.
An interesting question is how participants share an

immersive 3D space, especially one that may incorpo-
rate sections of their physical offices acquired and recon-
structed via real-time vision algorithms.26A special issue
in representing remote scenes is the handling of partic-
ipant avatars—an active area of research, particularly
for the subcase of facial capture. Participants want to see
not just their collaborators, but especially their manip-
ulation of the data objects. This may involve avatars for
hands, virtual manipulation widgets, explanatory voice
and audio, and so on. As in 2D, issues of “floor control”
arise and are exacerbated by network-induced latency.
Collaborative telehaptics present extremely difficult
problems, especially because of latency considerations,
and have scarcely been broached.
Other interesting questions involve how to handle

annotation and metadata so that they’re available and
yet don’t clutter up the scene, and how to record visual-
ization sessions for later playback and study. In addition
to the common interaction space, participants must also
have their own private spaces where they can take notes,
sketch, and so on, shielded from other participants. In
some instances, small subgroups of participants will
want the ability to share their private spaces.
An excellent start on many of these questions appears

in Haase’s work,16 and in the Cave6D and TIDE (Tele-
Immersive Data Explorer)68 projects at EVL. In particu-
lar, TIDE has demonstrated distributed interactive
exploration and visualization of large scientific data sets.
It combines a centralized collaboration and data-storage
model with multiple processes designed to allow
researchers all over the world to collaborate in an inter-
active and immersive environment. In Sawant et al.68 the
researchers identified annotation of data sets, persis-
tence (to allow asynchronous sessions), time-dependent
data visualization, multiple simultaneous sessions, and
visualization comparison as immediate research targets.
In a telecollaboration setting with geographically dis-

tributed participants, one strategy Bryson and others
adopt is that architectures must not move raw data, but
instead move extracts. Extracts are the transmitted visu-
al representation of a structure computed from a sepa-
rate computation “close to the raw data.” In other
words, raw data doesn’t move from the source (such as
a running simulation, processor memory, or disk);
rather, the result of a visualization algorithm is trans-
mitted to one or more recipients. The extracts strategy
also provides a mechanism for decoupling the compu-
tation of visualization objects and rendering, which is
essentially a requirement for interactive visualization
of very large data sets.
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The visualization server the US Department of Ener-
gy (DOE) expects to site at Lawrence Livermore,
attached to the 14 teraop “ASCI White” machine, offers
an example of the use of extracts. This server will 
compute extracts for all users, but do rendering only
for local users. One option being explored for remote
visualization is to do some form of partial rendering,
such as producing RGBZ images or multilayered images
that can be warped in a final rendering step at the
remote site. Such image-based rendering techniques
can effectively mask the latency of the wide-area net-
work and provide smooth real-time rotation of objects,
even if the server or network can handle only a few
frames per second.

Cope with lack of standards and interoper-
ability. A Tower of Babel problem afflicts not just
graphics but especially the virtual environments com-
munity—a situation about which Jaron Lanier, a pio-
neer of modern IVR, is vocal. Lanier laments that the job
of building virtual environments, already hard enough,
is made even harder by the lack of interoperability—no
mechanism yet exists by which virtual worlds built in
different environments can interoperate.
Dozens of IVR development systems exist or are cur-

rently under development at the OpenGL and scene-
graph level. Unlike the early 1990s, when the most
high-performance and robust software was available
only commercially and ran on expensive workstations,
currently multiple open-source efforts are available for
many platforms. Nevertheless, the existence of so many
options addressing similar problems hinders progress.
In particular, code reuse and interoperability prove very
difficult. 
This is a general graphics problem, not just an IVR

problem. The field has been plagued since its inception
by the lack of a single, standard, cross-platform graph-
ics library that would permit interoperability of graph-
ics application programs. Among the proto-standards
for interactive 3D graphics are the oldest and most
established SGI-led OGL, as well as newer packages such
as Microsoft’s DirectX, Sun’s Java3D, Sense 8’s World
ToolKit, W3C’s X3D (previously called VRML), and
UVA/CMU’s Alice. Only a few of these support IVR, and
many only the bare essentials, such as projection matri-
ces for a single-pipe display engine. Multiple efforts may
be the only path in the short term to find a best of breed,
but ultimately a concerted effort is needed.
Interoperability is especially important in immersive

telecollaboration, in which collaborators share a virtu-
al space populated potentially by their own application
objects and avatars. The problem isn’t just one of shar-
ing geometry; it also concerns interoperability of behav-
iors and especially interaction techniques, intrinsically
very difficult problems.
One simple but partial solution conceived by Lanier

and implemented under sponsorship of Advanced Net-
work & Services, whose teleimmersion project he
directs, is Scene Graph as Bus (SGAB).69This framework
permits writing applications to different scene graphs
to interoperate over a network. This approach also cap-
tures behavior and interaction because object attribute

modifications such as transformation changes are
observed and distributed on the bus.
Other systems have been built to allow interoper-

ability of 3D applications, but most assume homoge-
neous client software70 or translate only between two
scene graphs (without the generality of SGAB). The Dis-
tributed Interactive Simulation (DIS)71 and High-Level
Architecture (HLA)72 standards, for example, make pos-
sible cooperation between heterogeneous clients, but
only as long as they follow a set of network protocols.
The SGAB approach instead attempts to bridge the infor-
mational gap between independently designed stand-
alone systems, with minimal or no modification to those
systems. More research needs to be done to create inter-
operability mechanisms as long as no single networked,
component-based development and runtime environ-
ment standard is in sight.
For scientific visualization in IVR, rendering and inter-

action libraries are only the beginning. A whole layer of
more discipline-specific software must be built on top.
A number of such scientific visualization toolkits exist
or are under development (such as VTK,73 SCIRun,
EnSight Gold, AVS, Open DX, Open RM Scene Graph).
As with lower-level libraries, no interoperability exists
between these separate software development and
delivery platforms, and users must choose one or anoth-
er. In some cases, conversion routines may be used to
link individual packages, but this solution becomes inef-
ficient as problem size increases.
One group beginning to address the problem, the

Common Component Architecture Forum (http://
www.acl.lanl.gov/cca-forum), plans to define a com-
mon-component software architecture approach to
allow more interchanging of modules. While not yet
focused on visualization, the group has explored how
the same approaches can apply to visualization software
architectures.

Develop a new design discipline and valida-
tion methodology. IVR differs sufficiently from con-
ventional 3D desktop graphics in terms both of output
and interaction that it must be considered not just an
extension of what has come before but a medium in its
own right. Furthermore, as a new medium, new met-
rics and evaluation methodologies are required to deter-
mine which techniques are effective and why.

Create a new design discipline for a fundamentally new
medium. In IVR, all the conventional tasks (navigation—
travel for the motor component and wayfinding for the
cognitive component—object identification, selection,
manipulation, and so on) typically aren’t simple exten-
sions of their counterparts for the 2D desktop—they
require their own idioms. Programming for the new
medium is correspondingly far more complex and
requires a grounding in computer, display, audio, and
possibly haptics, hardware, and interaction device tech-
nology, as well as component-based software engineer-
ing and domain-specific application programming.
In addition, while IVR may provide an experience

remarkably similar to the real world, it differs from the
real world in significant ways:
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■ Cybersickness is similar to but not the same as motion
sickness, and its causes and cures are different.

■ Avatars don’t look or behave like human beings
(extending the message of the classic cartoon “On the
Internet, no one knows you’re a dog”).

■ The laws of Newtonian physics may be augmented or
even overturned by the laws of cartoon physics.

■ Interaction isn’t the same. It’s both less (for example,
haptic feedback is wholly inadequate ) and more,
through the suitable use of magic (for example, nav-
igation and object manipulation can mimic, extend,
or replace comparable real-world actions).

■ Application designers may juxtapose real and fictional
entities.

In short, IVR creates a computer-generated world with
all the power and limitations that implies.
Furthermore, because so much of effective IVR deals

with impedance-matching the human sensorium,
designers must have a far better understanding of per-
ceptual, cognitive, and even social science (such as small
group interaction for telecollaboration) than the tradi-
tionally trained computer scientist or engineer. It’s espe-
cially important to know what humans are and aren’t
good at in executing motor, perceptual, and cognitive
tasks. For example, evidence indicates that humans have
one visual system for pattern recognition and a separate
one for the hand-eye coordination involved in motor
skills. Interactive visualization techniques must be
designed to take into account, if not take advantage of,
these separate processing channels.
Finally, since IVR focuses on providing a rich, multi-

sensory experience with its own idioms, we can learn
much from other design and communication disciplines
that aim to create such experiences. These include print
media (books and magazines), entertainment (theater,
film and video, and computer games), and design
(architectural, user interface, and Web page).

Prove immersion’s effectiveness for scientific visualiza-
tion applications and tasks. One of the most important
research challenges is proving, for certain types of sci-
entific visualization applications and tasks, that IVR pro-
vides a better medium for scientific visualization than
traditional nonimmersive approaches. Unfortunately,
this is a daunting task, and very little formal experi-
mentation has tested whether IVR is effective for scien-
tific visualization.
Application-level experimentation is extremely diffi-

cult to do for a number of reasons. Experimental sub-
jects must be both appropriately familiar with the
domain and the tasks to be performed, and willing to
devote sufficient time to the experiment. Simple, sin-
gle-parameter studies not related to application tasks
aren’t necessarily meaningful. It’s also difficult to define
meaningful tasks useful to multiple application areas.
From a technological standpoint, the hardware and soft-
ware may still be too primitive and flaky to establish
proper controls for the experiments. Finally, the cost in
manpower and money of doing controlled experiments
is large, and funding for such studies is lacking.
Although some anecdotal evidence from informal

user evaluations and demos supports IVR’s effective-
ness for certain tasks and applications in scientific visu-
alization, the literature contains only a few examples
of quantified user studies in these areas, with mixed
results. For example, Arns et al.74 showed that users per-
form better on statistical data visualization tasks, such
as cluster analysis, in an IVR environment than on a tra-
ditional desktop. However, users had a more difficult
time performing interaction tasks in an IVR environ-
ment.1 Salzman et al.75 showed that students were bet-
ter able to define electrostatics concepts after their
lessons in an IVR application than in a traditional 2D
desktop learning environment. However, retention tests
for these concepts after a five-month period showed no
significant difference between the desktop and IVR
environments. Lin et al.17 showed that users preferred
visualizations of geoscientific data in an IVR environ-
ment but also found the IVR interaction techniques less
effective than desktop techniques. Although this study
presented statistical results based on questionnaires, it
collected no speed or accuracy data, and only a hand-
ful of the human participants actually used the system
during the experiment.
Hix et al.76 showed how to use heuristic, formative,

and summative evaluations to iteratively design a bat-
tlefield visualization VE. Although they didn’t try to
show that the VE was better than traditional approach-
es to battlefield visualization, their work was significant
in being among the first on developing 3D user inter-
faces using a structured, user-centered design approach.
Salzman et al.75 used similar user-centered design
approaches for their IVR application development.

Challenges in scientific (and information)
visualization
To address the challenges facing scientific and infor-

mation visualization, we can pull from the knowledge
in other fields, specifically art, perceptual psychology,
and artificial intelligence.

Develop art-motivated, multidimensional,
visual representations.The size and complexity of
scientific data sets continues to increase, making more
critical the need for visual representations that can
encode more information simultaneously. In particular,
inherently multivalued data, like the examples in the
sidebar “Art-Motivated Textures for Displaying Multi-
valued Data,” can in many cases be viewed only one
value at time. Often, correlations among the many val-
ues in such data are best discovered through human
exploration because of our visual system’s expertise in
finding visual patterns and anomalies.
Experience from art and perceptual psychology has

the potential to inspire new, more effective, visual rep-
resentations. Over several centuries, artists have evolved
a tradition of techniques to create visual representations
for particular communication goals. Inspiration from
painting, sculpture, drawing, and graphic design all
show potential applicability. The 2D painting-motivat-
ed example in the “Art-Motivated Textures” sidebar
offers one example. That work is being extended to show
multivalued data on surfaces in 3D. These methods use
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relatively small, discrete, iconic “brush strokes” layered
over one another to represent up to nine values at each
point in an image of a 2D data set.77,78

Applying these ideas to map multivalued data onto
surfaces in 3D comes up against some barriers. First,
parts of surfaces may face away from a viewpoint or be
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Concepts from oil painting and other arts can
be applied to enhance information representation
in scientific visualizations. This sidebar describes
some examples developed in 2D. I’m currently
extending this work to curved surfaces in 3D
immersive environments and facing many of the
challenges described in the article.

Examples of methods developed for displaying
multivalued 2D fluid flow images1 appear in Figure
J and 2D slices of tensor-valued biological images2

in Figure K. While the images don’t look like oil
paintings, concepts motivated by the study of
painting, art, and art history were directly applied
in creating them. Further ideas gathered from the
centuries of artists’ experience have the potential
to revolutionize visualization.

The images are composited from layers of small
icons analogous to brush strokes. The many
potential visual attributes of such strokes—size,
shape, orientation, colors, texture, density, and so
on—can all represent components of the data.
The use of multiple partially transparent layers
further increases the information capacity of the
medium. In a sense, an image can become several
images when viewed from different distances. The
approach can also introduce a temporal aspect
into still images, using visual cues that become
visible more or less quickly to direct a viewer
through the temporal cognitive process of

understanding the relationships among the data
components.

Figure J, created through a collaboration with R.
Michael Kirby and H. Marmanis at Brown, shows
simulated 2D flow around a cylinder at Reynolds
number 100. The quantities displayed include two
newly derived hydrodynamic quantities—
turbulent current and turbulent charge—as well as
three traditional flow quantities—velocity,
vorticity, and rate of strain. Visualizing all values
simultaneously gives a context for relating the
different flow quantities to one another in a search
for new physical insights.

Figure K, created through a collaboration with
Eric Ahrens, Russ Jacobs, and David Kremers at
Caltech, shows a section through a mouse spinal
cord. At each point a measurement of the rate of
diffusion of water gives clues about the
microstructure of the underlying tissues. The
image simultaneously displays the six interrelated
values that make up the tensor at each point.

Extending these ideas to display information on
surfaces in 3D has the potential to increase the
visual content of images in IVR.
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Art-Motivated Textures for Displaying Multivalued Data
David H. Laidlaw

J Using art-motivated methods to display multival-
ued 2D fluid flow around a cylinder at Reynolds
number 100. Shown at each point are velocity, vortic-
ity, the rate-of-strain tensor, turbulent change, and
turbulent current.

K 3D tensor-
valued data
from a slice of a
mouse spinal
cord. The visual-
ization methods
show six inter-
related data
values at each
point of the
slice.



obscured by other surfaces. In an interactive environ-
ment, moving an object around can alleviate this prob-
lem, but doesn’t eliminate it. Second, and perhaps more
fundamental, the human visual system can misinterpret
the visual properties that represent data values.
Many visual cues can be used to map data. Some of

the most obvious are color and texture. Within texture,
density, opacity, and contrast can often be distinguished
independently. At a finer level of detail, texture can con-
sist of more detailed shapes that can convey informa-
tion. What makes the problem complex is that the
human visual system takes cues about the shape and
motion of objects from changes in the texture and color
of surfaces. For example, the shading of an object gives
cues about its shape. Therefore, data values mapped
onto the brightness of a surface may be misinterpreted
as an indication of its shape.
Just as brightness cues from shading are wrongly

interpreted as shape information, the visual system uses
the appearance and motion of texture to infer shape and
motion properties of an object. Consider a surface cov-
ered with a uniform texture. The more oblique the view
of the surface, the more compressed the texture appears.
The human visual system is tuned to interpret that
change in the density of the texture as an indication of
the angle of the surface. Thus any data value mapped
onto the density of a texture may be misinterpreted as an
indication of its orientation. Texture is also analyzed
visually to infer the motion of an object. These shape
and motion cues are important both for understanding
objects and for navigating through a virtual world, so
confounding their interpretation by mapping data val-
ues to them carries a risk.
The visual system already “knows” how to interpret

the visual attributes that we “know” how to map our
data onto. Unfortunately, the interpretation doesn’t
match our intent, and the results are ambiguous. Avoid-
ing these ambiguities requires an understanding of per-
ception and perceptual cues as well as how the cues
combine and when they can be discounted. Because
stereo and motion are the primary cues for shape, per-
haps shading can be overloaded with a different inter-
pretation. Only on a task-by-task basis can hypotheses
like this be evaluated.
A third barrier to representing multivalued data with

textures is the difficulty of defining and rendering mean-
ingful textures on arbitrary surfaces. Interrante79 and
others have made some excellent progress here, but
many unsolved problems in representing details of sur-
face appearance efficiently remain.

Learn from perceptual psychology.Perceptu-
al psychology has the potential to yield important
knowledge for scientific visualization problems. His-
torically, the two disciplines of art history and percep-
tual psychology have approached the human visual
system from different perspectives. Art history provides
a phenomenological view of art—painting X evokes
response Y—but doesn’t consider the perceptual and
cognitive processes underlying the responses. Percep-
tual psychology investigates how humans understand
those visual representations. A gap separates art and

perceptual psychology: no one knows how humans
combine the visual inputs they receive to arrive at their
responses to art.
Shape, shading, edges, color, texture, motion, and

interaction are all components of an interactive visual-
ization. How do they interact? And how can they most
effectively be deployed for a particular scientific task?
We need to look to perceptual psychology for lessons
on the effectiveness of our visualization methods. Eval-
uating this is difficult, because not only are the goals
difficult to define and codify, but tests that evaluate
them meaningfully are difficult to design and execute.
These evaluations are akin to evaluating how the
human perceptual system works. Visual psychophysics
can help to understand how an observer interprets and
acts upon visual information,80 as well as how an
observer combines different sources of information into
coherent percepts.81

The experience of perceptual psychologists in design-
ing experiments has much to offer, and the study of per-
ception provides several clear directions for data
visualization. First, a better understanding of how visu-
al information is perceived will allow the creation of
more effective displays. Second, modeling how differ-
ent types of information combine to create structures
will allow the presentation of complex multivalued data.
Third, psychophysical methods can be used to assess
objectively the effectiveness of different visualization
techniques.
Perceptual psychology can also help us to understand

limitations of IVR environments and the impacts of
those limits. For example, cybersickness is believed to
arise from conflicting perceptual cues—our visual sys-
tem perceives us as moving in one way, but the vestibu-
lar system in our inner ears senses no motion. IVR
systems today include many causes of discrepancies like
this. One is the time lag in visual feedback due to input,
rendering, and output latencies. A second is the dis-
agreement between where our eyes focus (on the IVR
projection surface) and where a virtual object is locat-
ed (usually not on the surface).
Visualized data almost always includes some amount

of error. IVR’s stringent update and latency constraints
force the issue of accuracy tradeoffs. A thorough under-
standing of error is critical to a theory of techniques for
scientific visualization. Pang et al.82 reported that the
common underlying problem is visually mapping data
and uncertainty together into a holistic view. There is
an inherent difficulty in defining, characterizing, and
controlling the uncertainty in the visualization process,
coupled with a lack of methods that effectively present
uncertainty and data.

Transcend human limitations with scalable
AI techniques.As technology improves, displays will
approach the limits of human visual bandwidth, and
data sets will become so large that even with the best
resolution and tools we can never look at more than a
tiny fraction of them. Even after we finish leveraging
and impedance-matching the human visual system opti-
mally, we’re still going to hit a brick wall. We need intel-
ligent software to perform human-like pattern
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recognition tasks on massive data sets to winnow the
potential areas of interest for further human study. We
lump such intelligent software under the title of AI.
While many researchers remain skeptical of AI’s track
record, other enthusiasts such as Ray Kurzweil83 feel
that the expected exponential increase in computational
power and algorithms together will make significant
advances possible—a bet that’s clearly fueling data min-
ing projects, for example.
As Don Middleton of the National Center for Atmos-

pheric Research (NCAR) wrote in an e-mail,

It’s not clear the commercial marketplace or the
community efforts currently under way will
address the visualization and analysis require-
ments of the largest problems—the terascale
problems. It’s my own belief that by mid-decade
we’ll need to be looking very seriously at quasi-
intelligent and autonomous analysis agents that
can sift through the data volumes on behalf of the
researcher.

These kinds of techniques are precisely the focus of the
Intelligent Data Understanding component of NASA’s
new Intelligent Systems Program (http://ic.arc.nasa
.gov/ic/nra/).
Scaling, which has always been a problem in adapting

AI techniques to real-world needs, is a particularly cru-
cial issue here, especially if we consider the conse-
quences of latency. Thus, we must not only develop the
techniques, but also ways of evaluating their scalability
to terabyte and petabyte data sets.

Conclusion
It’s generally accepted that visualization is key to

insight and understanding of complex data and models
because it leverages the highest-bandwidth channel to
the brain. What’s less generally accepted, because there
has been so much less experience with it, is that IVR can
significantly improve our visualization abilities over
what can be done with ordinary desktop computing. IVR
isn’t “just better” 3D graphics, any more than 3D is just
better 2D graphics. Rather, IVR can let us “see” (that is,
form a conception of and understand) things we could
not see with desktop 3D graphics.
We need to push any means available for making visu-

alization more powerful, because the gap between the
size and complexity of data sets we can compute or sense
and those we can effectively visualize is increasing at an
alarming rate. IVR’s potential to display larger and more
complex data, to interact more naturally with that data,
and possibly to reveal new patterns in the data through
the use of our intrinsic 3D perception, navigation, and
manipulating skills, is tantalizing. We anticipate increas-
ing interest in both the research agenda and in produc-
tion uses of IVR for visualization. 
However, many barriers block rapid progress. Tech-

nology for IVR remains primitive and expensive, and
investment for visualization—let alone IVR visualiza-
tion—both for R&D and for deployment, lags far behind
investment in computation and data gathering. Scien-
tific computing facilities typically spend 10 percent or

less of their hardware budget on visualization systems.
Nonetheless, we see considerable cause for optimism,
given the success stories and partial success stories avail-
able and the inexorable improvements in hardware,
software, and interaction technology. Those of us in the
field, sensing the potential, wonder whether we are
roughly at the 1903 Kitty Hawk stage of powered flight,
with the equivalent of modern jet-airplane travel and
same-day package delivery inevitably to come, or
whether we are deluded by the late-1930s popular sci-
ence prediction of a helicopter in every garage.
We do believe that we’re seeing the slow and some-

what painful birth of a new medium, although we’re far
from being at “Stage 3” (see The Three Stages of a New
Medium, http://www.alice.org/stage3/whystage3
.html) of using the new medium to its fullest potential,
that is, with idioms unique to it rather than imitating
the old ones. Much research is needed to develop visu-
alization and interaction techniques that take proper
advantage of the IVR medium. The learning curve for
the new medium is far steeper than for 3D, let alone 2D
graphics, at least in part because the technology is so
much more complex and our lack of knowledge of
human perception, cognition and manipulation skills is
so much greater a limitation.
The research agenda for progress in using IVR for sci-

entific visualization is long and provides interesting
challenges for researchers in many fields, especially in
interdisciplinary problems. The agenda includes the tra-
ditional research areas of dramatically improving device
technology, producing scalable high-performance
graphics architectures from commodity parts, and
developing ways of significantly reducing end-to-end
latency and of coping strategies for unavoidable laten-
cy. Among the interesting newer research problems are

■ how to do computational steering of exploratory com-
putations and monitoring of production runs, espe-
cially in IVR

■ how to use art-inspired visualization techniques for
showing large multivalued data sets

■ how to use our growing knowledge of perceptual, cog-
nitive, and social science to construct effective and
comfortable IVR environments and visualizations

■ how to do application-oriented user studies that show
under what circumstances and for what reasons IVR
is or isn’t effective

We hope that this article will stimulate serious inter-
est in the research agenda we have highlighted here.
Also, we hope that a review of this kind done in a decade
will start by listing important scientific discoveries or
designs that would not have happened without the pro-
duction use of IVR-based scientific visualization as an
integral part of the discovery or design process. ■
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Abstract

We present a new visualization method for 2d flows which allows
us to combine multiple data values in an image for simultaneous
viewing. We utilize concepts from oil painting, art, and design as
introduced in [1] to examine problems within fluid mechanics. We
use a combination of discrete and continuous visual elements ar-
ranged in multiple layers to visually represent the data. The repre-
sentations are inspired by the brush strokes artists apply in layers to
create an oil painting. We display commonly visualized quantities
such as velocity and vorticity together with three additional math-
ematically derived quantities: the rate of strain tensor (defined in
section 4), and the turbulent charge and turbulent current (defined
in section 5). We describe the motivation for simultaneously ex-
amining these quantities and use the motivation to guide our choice
of visual representation for each particular quantity. We present vi-
sualizations of three flow examples and observations concerning
some of the physical relationships made apparent by the simulta-
neous display technique that we employed.

1 Introduction

Within the study of fluid mechanics, many mathematical constructs
are used to enhance our understanding of physical phenomena. The
use of visualization techniques as tools for developing physical in-
tuition of mathematically defined quantities is common. Scientific
visualization not only expands our understanding of physical phe-
nomena, by allowing us to examine the evolution of quantities like
momentum, but also it provides a catalyst for the development of
mathematical models which describe the time evolution of complex
flows. In addition to the examination of the primitive variables, i.e.
the velocity and the pressure, the examination of derived quantities
such as the vorticity has provided a better understanding of the un-
derlying processes of fluid flow.

Vorticity is a classic example of a mathematical construct which
provides information not immediately assimilated by merely view-
ing the velocity field. In Figure 1, we illustrate this idea. When
examining only the velocity field, it is difficult to see that there is a
rotational componentof the flow in the far wake region of the cylin-
der. But, when vorticity is combined with the velocity field, the
underlying dynamics of vortex generation and advection is more
apparent.

Though vorticity cannot be measured directly, its relevance to
fluid flow was recognized as early as 1858 with Helmholtz’s pi-
oneering work. Vorticity as a physical concept is not necessarily
intuitive to all, yet visualizations of experiments demonstrate its
usefulness, and hence account for its popularity. Vorticity is de-
rived from velocity, andvice versaunder certain constraints [2].
Hence, vorticity does not give any new information that was not
already available from the velocity field, but it does emphasize the

rotational component of the flow. The latter is clearly demonstrated
in Figure 1, where the rotational component is not apparent when
one merely views the velocity.

In the same way that vorticity as a derived quantity provides
us with additional information about the flow characteristics, other
derived quantities such as the rate of strain tensor, the turbulent
charge and the turbulent current could be of equal use. Because the
examination of the rate of strain tensor, the turbulent charge and
the turbulent current within the fluids community is relatively new,
few people have ever seen visualizations of these quantities in well
known fluid mechanics problems. Simultaneous display of both
the velocity and quantities derived from it isdone both to allow the
fluids’ researcher to examine these new quantities against the can-
vas of previously examined and understood quantities, and also to
allow the fluids’ researcher to accelerate the understanding of these
new quantities by visually correlating them with well known fluid
phenomena.

To demonstrate the application of these concepts, we present
visualizations of a geometry that, although simple in form, demon-
strate many of the major concepts which motivate our work. By
examining the well studied problem of flow past a cylinder we
demonstrate the usefulness of the visualizations in a context fa-
miliar to most fluids’ researchers. We examined two-dimensional
direct numerical simulation of flow past a cylinder for Reynolds
number 100 and 500 [3]. This range of Reynolds numbers pro-
vides sufficient phenomenological variation to allow us to discuss
the impact of visualization of the newly visualized quantities. In
addition to the simulation results presented, we examine data ob-
tained experimentally for a different geometry. This comparison
demonstrates one use of the visualization method for experimen-
talists: data verification.

We extend the visualization methods presented in [1] to prob-
lems in fluid mechanics. As in [1], we seek representations that are
inspired by the brush strokes artists apply in layers to create an oil
painting. We copied the idea of using a primed canvas or under-
painting that shows through the layers of strokes. Rules borrowed
from art guided our choice of colors, texture, visual elements, com-
position, and focus to represent data components. Our new meth-
ods simultaneously display 6-9 data values, qualitatively represent-
ing the underlying phenomena, emphasizing different data values
to different degrees, and displaying different portions of the data
from different viewing distances. These qualities lead a viewer
through the temporal cognitive process of understanding interrela-
tionships in the data much as a painting can lead a viewer through
a process designed by the painter.

In the remainder of the paper we first discuss the related work
in visualizing multivalued data. We then describe the painting-
motivated method we employed, with specific details concerning
the combination of scaler, vector, and tensor data into one visu-
alization. In Sections 4 and 5 we present fluid flow examples
where multivalued data visualization was used. We summarize and



Figure 1: Typical visualization methods for 2D flow past a cylinder at Reynolds number 100. On the left, we show only the velocity field.
On the right, we simultaneously show velocity and vorticity. Vorticity represents the rotational component of the flow. Clockwise vorticity is
blue, counterclockwise yellow.

present conclusions in Section 6.

2 Related work

2.1 Multivalued data visualization

Hesselink et al. [4] give an overview of research issues in visu-
alization of vector and tensor fields. While they describe several
methods that apply to specific problems, primarily for vector fields,
the underlying data are still difficult to comprehend; this is particu-
larly true for tensor fields. The authors suggest that “feature-based”
methods, i.e., those that visually represent only important data val-
ues, are the most promising research areas, and our approach em-
braces this idea.

Statistical methods such as principal component analysis (PCA)
[5] and eigenimage filtering [6] can be used to reduce the number
of relevant values in multivalued data. In reducing the dimension-
ality, these methods inevitably lose information from the data. Our
approach complements these data-reduction methods by increasing
the number of data values that can be visually represented.

Different visual attributes of icons can be used to represent each
value of a multivalued dataset. In [7], temperature, pressure, and
velocity of injected plastic are mapped to geometric prisms that
sparsely cover the volume of a mold. Similarly, in [8] data values
were mapped to icons of faces: features like the curve of the mouth
or size of the eyes encoded different values. In both cases, the icons
capture many values simultaneously but can obscure the continu-
ous nature of fields. A more continuous representation using small
line segment-based icons shows multiple values more continuously
[9]. Our work builds upon these earlier types of iconic visual rep-
resentation.

Layering has been used in scientific visualization to show mul-
tiple items: in [10, 11], transparent stroked textures show surfaces
without completely obscuring what is behind them. These results
are related to ours, but our application is 2D, and so our layering
is not as spatial as in the 3D case. Our layering is more in the
spirit of oil painting where layers are used more broadly, often as
an organizing principle.

2.2 Flow visualization

A number of flow-visualization methods display multivalued data.
The examples in [12, 13] combine surface geometries represent-
ing cloudiness with volume rendering of arrows representing wind

velocity. In some cases, renderings are also placed on top of an im-
age of the ground. Unlike our 2D examples, however, the phenom-
ena are 3D and the layering represents this third spatial dimension.
Similarly, in [14], surface particles, or small facets, are used to vi-
sualize 3D flow: the particles are spatially isolated and are again
rendered as 3D objects.

A “probe” or parameterized icon can display detailed informa-
tion for one location within a 3D flow [15]; it faithfully captures
velocity and its derivatives at that location, but does not display
them globally. Our data contain fewer values at each location, be-
cause we are working with 2D flow, but our visualization methods
display results globally instead of at isolated points.

Spot noise [16] and line integral convolution [17] methods gen-
erate texture with structure derived from 2D flow data; the tex-
tures show the velocity data but do not directly represent any ad-
ditional information, e.g., divergence or shear. The authors of [16]
mention that spot noise can be described as a weighted superposi-
tion of many “brush strokes,” but they do not explore the concept.
Our method takes the placement of the strokes to a more carefully
structured level. Of course, placement can be optimized in a more
sophisticated manner, as demonstrated in [18]; we would like to
explore combining these concepts with ours. Currently our stroke
placement is simple and quick to implement while providing ade-
quate results.

2.3 Computer graphics painting

Reference [19] was the first to experiment with painterly effects
in computer graphics. Reference [20] extended the approach for
animation and further refined the use of layers and brush strokes
characteristic for creating effective imagery. Both of these efforts
were aimed toward creating art, however, and not toward scientific
visualization. Along similar lines, references [21, 22, 23] used soft-
ware to create pen and ink illustrations for artistic purposes. The
pen and ink approach has successfully been applied to 2D tensor
visualization in [24].

In reference [1], painterly concepts as used in our work were
presented for visualizing diffusion tensor images of the mouse
spinal cord. In that work both a motivation and a methodology
for the techniques used here were presented. The goal of our work
is to visualize simultaneously both new and commonly used scien-
tific quantities within the field of fluid mechanics by building on
those concepts.



3 Visualization methodology

We use the methodology and system of [1] to develop our visual-
izations. We review the methodology here. Developing a visual-
ization method involves breaking the data into components, explor-
ing the relationships among them, and visually expressing both the
components and their relationships. For each example we explored
different ways of breaking down the data so that we could gain
understanding as to how the components were related. Once we
achieved an initialunderstanding, we proceeded to the next step:
designing a visual representation.

In the design, we used artistic considerations to guide how we
mapped data components to visual cues of strokes and layers. Our
brush strokes are affinely transformed images with a superimposed
texture. In choosing mappings we looked for geometric compo-
nents and mapped them to geometric cues like the length or direc-
tion of a stroke. We considered the relative significance of differ-
ent components and mapped them to cues that emphasized them
appropriately. For example, two related parameters could map to
the length and width of a stroke, giving a clear indication of their
relative values. We also considered the order in which compo-
nents would best be understood and mapped earlier ones to cues
that would be seen more quickly. The set of mappings we selected
defined a series of stroke images and a scheme for how to layer
them.

An iterative process of analysis and refinement followed. Some-
times our refinements involved choosing a mapping we found ef-
fective in one visualization and incorporating it into another. Some-
times we needed to change the emphasis among data components
by adjusting transparency, size, or color or by representing a com-
ponent with a different or additional mapping. Sometimes we
needed to go further back in the process and choose a new way
of breaking down the data.

4 Example 1: Rate of strain tensor

The rate of strain tensor (sometimes called the deformation-rate
tensor [25]), is a commonly used derived quantity within fluid me-
chanics. Though commonly used and reasonably well compre-
hended, few have visualized this tensor due to the added complex-
ity necessary to view multivalued data. Our motivation for com-
bining visualization of the rate of strain tensor with velocity and
vorticity is that despite many years of intense scrutiny, scientific
understanding of fluid behavior is still not complete, and qualita-
tive descriptions can still be helpful. Researchers often examine
images of individual velocity-related quantities. We thought that
good intuition might come from a visual representation that related
these values to one another in a single image.

4.1 Data breakdown

We began by choosing a breakdown of data values into components
that can be mapped onto stroke attributes. Both the velocity and
its first spatial derivatives have meaningful physical interpretations
[25], and hence we treat them independently. The velocity is a 2-
vector with a direction and a magnitude in the plane, and can be
visually mapped directly. The spatial derivatives of velocity form
a second-order tensor known at the velocity gradient tensor. This
tensor can be written as the sum of symmetric and antisymmetric
parts,
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= eij + 
ij: (2)

The antisymmetric part
ij reduces to the vector quantity vorticity
(!k = 1

2
�ijk
ij), and the symmetric parteij is known as the rate

of strain tensor [26]. The vorticity field determines the axis and the
magnitude of rotation for all fluid elements. The rate of strain ten-
sor determines the rate at which a fluid element changes its shape
under the particular flow conditions. In incompressible flows, the
instantaneous rate of strain consists always of a uniform elonga-
tion process in one direction and a uniform foreshortening process
in a direction perpendicular to the first. That is, a small circle will
change its shape into an ellipse, whose major and minor axes rep-
resent the rate of elongation and the rate of squeezing, respectively.
In compressible flows, the latter statement is not necessarily true
since expansion and compression is allowed. Nevertheless, the vi-
sualization of the rate of strain remains valuable and instructive in
these flows as well.

4.2 Visualization design

We wanted the viewer to first read velocity from the visualization,
then vorticity and its relationship to velocity. Because of the com-
plexity of the second-order rate of strain tensor we want it to be
read last. We describe the layers here from bottom up, beginning
with a primed canvas, adding an underpainting, representing the
tensor values transparently over that, and finishing with a very dark,
high-contrast representation of the velocity vectors.
� Primer The bottom layer of the visualization is light gray,

selected because it would show through the transparent layers to
be placed on top.
� Underpainting The next layer encodes the scalar vorticity

value in semi-transparent color. Since the vorticity is an important
part of fluid behavior, we emphasized it by mapping it onto three
visual cues: color, ellipse opacity, and ellipse texture contrast (see
below). Clockwise vorticity is blue and counter-clockwise vorticity
yellow. The layer is almost transparent where the vorticity is zero,
but reaches 75% opacity for the largest magnitudes, emphasizing
regions where the vorticity is non-zero.
� Ellipse layer This layer shows the rate of strain tensor and

also gives additional emphasis to the vorticity. The logarithms
of the rates of strain in each direction scale the radii of a circu-
lar brush shape to match the shape that a small circular region
would have after being deformed. The principal deformation direc-
tion was mapped to the direction of the stroke to orient the ellipse.
The strokes are placed to cover the image densely, but with mini-
mal overlap. The color and transparency of the ellipses are taken
from the underpainting, so they blend well and are visible primar-
ily where the vorticity magnitude is large. Finally, a texture whose
contrast is weighted by the vorticity magnitude gives the ellipses a
visual impression of spinning where the vorticity is larger.
� Arrow layer The arrow layer represents the velocity field

measurements: the direction of the arrows is the direction of the
velocity, and the brush area is proportional to the speed. We chose
a dark blue to contrast with the light underpainting and ellipses,
to make the velocities be read first. The arrows are spaced so that
strokes overlap end-to-end but are well separated side-to-side. This
draws the eye along the flow.
�Mask layer The final layer is a black mask covering the image

where the cylinder was located.
These painting concepts help create a visual representation for

the data that encodes all of the data in a manner that allows us to
explore the data for a more holistic understanding.
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Figure 2: Visualization of simulated 2D flow past a cylinder at Reynolds number = 100 and 500 (top left and top right), and experimental 2D
flow past an airfoil (bottom). Velocity, vorticity, and rate of strain (including divergence and shear) are all encoded in the layers of this image.
With all six values at each point visible, the image shows relationships among the values that can verify known properties of a particular flow
or suggest new relationships between derived quantities.

4.3 Observations

Figure 2 (top left and top right) shows visualizations of 2d flow
simulation results obtained using HybridN"�T �r [27], a spec-
tral element code for solving the incompressible Navier-Stokes
equations. These results were obtained from the work presented
in [3]. Figure 2 (bottom) shows data measured experimentally as
an airfoil is drawn through a tank of initially stationary water. An
image is taken perpendicular to the axis of the airfoil using laser
induced fluorescence (LIF) imaging [28]. Velocity data calculated
from the LIF images lies on a rectangular grid, with some portions
missing, as the figure shows in the black region.

The visualization of single quantities is useful by itself. For in-
stance, if we contrast the simulation results (Figure 2 top right and
left) with the experimental data of the airfoil (Figure 2 bottom),
we observe that all the ellipses have the same area in the former
case whereas they do not have the same area in the latter case. In
incompressible flows, the continuity equation implies that the ve-
locity field is divergence-free, which in turn implies that the trace
of the rate of strain tensor (i.e. the sum of its diagonal elements) is
always zero. This simply means that the area of the fluid elements
remains constant in time, regardless of their instantaneous shape.
Hence, we can infer that the simulation has reproduced properly
the incompressible character of the fluid flow whereas the airfoil

data show either compressibility effects or out of plane motion,
neither of which can easily be detected by other means.

The multivalued data visualization, however, has additional mer-
its. For instance, we observe that the simultaneous viewing of the
vorticity field and the rate of strain tensor provides us with a phys-
ical understanding about the deformation of the fluid elements. It
clearly shows that at the centers of the vortices the deformation can
be rather small, dependent on the eccentricity of the fluid element
with respect to the center of the vortex, whereas at the edges of
vortices the fluid elements suffer a huge shearing effect. Thus the
mathematical decomposition of the velocity gradient tensor (i.e.
@ui=@xj ) into its symmetric (i.e. the rate of strain) and antisym-
metric (i.e. the vorticity) parts acquires a visual representation.

Until now the deformation of the fluid elements was represented
with qualitative sketches [29] whose direct connection to the rest
of the flow field was not obvious. Through our visualization tech-
nique, we obtain not only the qualitative character of the fluid el-
ement deformation but also its quantitative properties. Moreover,
all the information about the deformation can now be visually cor-
related to the velocity and the vorticity fields.



5 Example 2: Turbulent charge and tur-
bulent current

Turbulent charge and turbulent current are flow quantities that have
not been extensively visualized. Our motivation for viewing these
quantities, in conjunction with other well-studied quantities (e.g.
the vorticity), has its roots in our desire to solve problems that are
concerned withdrag reduction. The importance of fluid mechanics
to the problem of reducing the drag on a moving body is unequiv-
ocal. All airplane, boat, and car designers, at some stage of their
research, have consulted engineers about possible ways of reducing
the drag. This is quite reasonable, since drag reduction translates
to less fuel consumption.

One method of reducing the drag on a body is the appendage of
riblets on the surface of the body. Though experimentally verified,
the physical mechanism behind the drag reduction is not well un-
derstood. For example, some configurations and shapes of riblets
do give drag reduction but some others do not. Thus, the question
arises as to why this happens. What are the shapes and which are
the configurations that produce drag reduction? The use of riblets
everywhere on the surface is costly, thus another question is: what
is the location, on the surface of an object, that will provide max-
imum drag reduction? The answers to the above questions can be
found by inspecting visually the turbulent charge on the surface of
the body [30].

Suppose we are interested in reducing the drag on a submarine.
Our goal from the engineering standpoint is to find geometric mod-
ifications to our structure so that we get reasonable drag reduction
with a minimum cost (and without inhibiting the purpose of our
submarine). Modeling the turbulent charge on the surface of the
submarine immediately delineates those regions of the geometry
which could most benefit from drag reduction techniques. Unlike
all other drag reduction models, the conceptof turbulent charge and
turbulent current succinctly provide information that is applicable
to engineering design.

Unlike the case of simple flows, which can be described easily
in terms of vorticity, there are cases in which the visualization of
vorticity, and the subsequent description of the flow by it, can be as
complex as the one in terms of velocity. For example, in the case of
turbulent flows, vortices are shed from the boundaries of the flow
domain, they are convected away from it, and subsequently interact
with each other in a fashion that has defied a satisfactory solution
of practical importance for more than a century. Hence, we can
legitimately ask whether we can find other quantities whose visu-
alization in these cases can be as beneficial to our understanding as
vorticity is in more simple flows.

5.1 Data breakdown

We began by choosing a breakdown of data values into compo-
nents that can be mapped onto stroke attributes. It has recently
been suggested that two newly introduced quantities, namely, the
turbulent chargen(x; t) and the turbulent currentj(x; t), collec-
tively referred to as the turbulent sources, could substitute the role
of vorticity in more complicated flows. The nomenclature is not co-
incidental, it reflects the fact that the derivation of these quantities
was based on an analogy between the equations of hydrodynamics
and the Maxwell equations [31].

In particular, if we denote byu the velocity and byp the pressure
then the vorticity,w, is given byr � u, and the Lamb vector
is given byl � w � u. The turbulent sources are given by the

following expressions:
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The later two quantities (i.e.n, j) are related to each other through
a continuity type of equation where the turbulent current is the
flux of the turbulent charge. In the cases where turbulent charge is
generated solely at the wall, small turbulent charge implies small
turbulent current.

5.2 Visualization design

We designed the turbulent source visualizations so that the over-
all location of the turbulent charge would be visible early. The
vorticity was our next priority, since comparison between the two
quantities was important. Our third priority was the structure of the
flow, as represented by the velocity field. Finally, we wanted fine
details about the structure of all the fields, charge, current, velocity,
and vorticity, available upon close examination.

We describe the layers here from bottom up, as in the last ex-
ample. Beginning with the same primed canvas and underpainting,
continuing with a low-contrast representation of the velocity vec-
tors, and finishing with a high-contrast representation of the turbu-
lent sources. A final layer represents the geometry of the cylinder.
� Primer and underpainting Same as first example.
� Arrow layer The arrow layer for this example has the same

geometric components – brush area proportional to speed, velocity
direction mapped to brush direction, and strokes arranged closer
end-to-end to give a sense of flow. This layer differs in that its em-
phasis is decreased. It has a low contrast with the layers below it.
The low contrast is partly achieved through the choice of a light
color for the arrows and partly through transparency of the arrows.
Without the transparency, the arrows would appear very indepen-
dent of the underlying layers.
� Turbulent sources layerIn this layer we encode both the tur-

bulent charge and the turbulent current. The current, a vector, is
encoded in the size and orientation of the vector value just as the
velocity in the arrow layer. The scalar charge is mapped to the color
of the strokes. Green strokes represent negative charge and red
strokes positive. The magnitude of the charge is mapped to opac-
ity. Where the charge is large, we get dark, opaque, high-contrast
strokes that strongly emphasize their presence. Where the charge
is small, the strokes disappear and do not clutter the image. For
these quantities, that tend to lie near surfaces, this representation
makes very efficient use of visual bandwidth. The strokes in this
layer are much smaller than the the strokes in the arrow layer. This
allows for finer detail to be represented for the turbulent sources,
which tend to be more localized. It also helps the turbulent sources
layer to be more easily distinguished from the arrows layer than in
the previous visualization, where the stroke sizes were closer and,
therefore, harder to disambiguate visually.
� Mask layer The final layer is a mask representing the geom-

etry of the cylinder. The mask is white in this example to contrast
better with the turbulent sources layer.

5.3 Observations

The regions where the turbulent charge achieves its maximum val-
ues are the regions where the vorticity field has also very large
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Figure 3: Visualization of the turbulent charge and the turbulent current for a Reynolds number 500 simulated flow. Observe that charge
concentrates near the cylinder and is negligible in other parts the flow. The cylinder geometry is now white to contrast with the visual
representation for the turbulent sources

Reynolds number 100 Reynolds number 500

Figure 4: Close up visualization of the turbulent charge and the turbulent current at Reynolds number 100 and 500 (left and right). We are
able to see the high concentrations of negative charge at the places where vorticity is being generated.

values. Nevertheless, as we have already mentioned, the advantage
in thinking of terms of turbulent charge is related to its permanence
close to the boundaries, in contrast to the vorticity field which is
conveyed downstream.

The theory proposed in [31] predicts that the turbulent charge,
n, and turbulent current,j, are the source terms of the following
linear system of equations

r �W = 0 ;

@W

@t
= �r�L � �r�r�W ;

r �L = N(x; t) ;

@ L

@t
= c2r�W � J(x; t) + �r�r�L ; (5)

wherec2 = hu2i, and the use of capital letters denotes that the cor-
responding quantities have been averaged. From these equations
it can be shown that the turbulent current is the dominant forcing
term for the velocity. An immediate consequence of this is that the
turbulent current and the velocity field should be aligned. In Fig-
ure 4 we observe this alignment, especially in the region near the
cylinder where we have the most significant change of flow veloc-
ity.

Finally, in Figure 5, we add the rate of strain tensor to the tur-
bulent sources visualization, adjusting the blending of the different
layers to control their relative emphasis. We observe that the high
values of turbulent charge are associated with an extreme deforma-
tion of the fluid elements, since it is the shear between adjacent
fluid layers that transforms the kinetic energy of the fluid to molec-
ular heat.



Figure 5: Combination of velocity, vorticity, rate of strain, turbu-
lent charge and turbulent current for Reynolds number 100 flow. A
total of nine values are simultaneously displayed.

Visualizing the turbulent sources is very informative for turbu-
lent non-equilibrium flows. In fact, a plot of the turbulent charge
distribution immediately allows us to determine whether a particu-
lar configuration of the riblets, discussed earlier, is reducing or en-
hancing the drag. A plot of the turbulent current can immediately
reveal which flow directions are dominant (e.g. the streamwise di-
rection in a pipe flow), even if no other information about the flow
field is given. The distribution of the turbulent sources reflects suc-
cinctly the responses of the flow due to boundary conditions or
external fields.

6 Summary and Conclusions

We have presented results of applying the scientific visualization
approach outlined in [1] to multivalued incompressible fluid data.
The approach borrows concepts from oil painting. Underpaintings
showed form. We used brush strokes both individually, to encode
specific values, and collectively, to show spatial connections and
to generate texture and an impression of motion. We used layer-
ing and contrast to create depth. Stroke size, texture, and contrast
helped to define a focus within each image and also to influence
the order in which different parts of an image were viewed.

The methods we employed produce images that are visually rich
and represent many values at each spatial location. From different
perspectives, they show the data at different levels of abstraction
– more qualitatively at arm’s length, more quantitatively up close.
Finally, the images emphasize different data values to different de-
grees, leading a viewer through the temporal cognitive process of
understanding the relationships among them.

We visualize quantities that have rarely been viewed before: rate
of strain, turbulent charge, and turbulent current. We visualize
these new quantities together with more commonly viewed quan-
tities, allowing a scientist to use previously acquired intuition in
interpreting the new values and their relationships to one another
and to the more traditional quantities.

Our visualization of the rate of strain tensor combined with both

the velocity and vorticity fields provides a unique pedagogical tool
for explaining the dominant mechanisms responsible for certain
fluid flow phenomena. Because an understanding of the deforma-
tion tensor (i.e.@ui=@xj) is of paramount importance for one’s
understanding of fluid flow phenomena, visualizing its symmetric
and antisymmetric parts separately (i.e. the rate of strain tensor
and the vorticity, respectively) clearly accentuates the interplay be-
tween rotational and shearing mechanisms within the flow.

The visualization of turbulent charge and turbulent current com-
bined with both velocity and vorticity allows us to use knowledge
concerning the latter fields in our effort to understand the useful-
ness of the newly visualized quantities. It is evident from the visu-
alizations shown that, unlike vorticity, the turbulent charge and the
turbulent current are far more localized. This validates the conjec-
tures about the potential usefulness of the model, and also suggests
that we focus our attention on viewing the turbulent charge and
turbulent current regions close to the surface of the cylinder. By
focusing our examination to regions close to the cylinder, we see
a high visual correlation between regions where turbulent charge
accumulates and regions of vorticity generation.

By visualizing velocity with all the subsequently derived quanti-
ties presented here, we can observe through one visualization mul-
tiple properties of the flow. The freedom to display multivalued
data simultaneously allows us to get a more complete idea of both
the dynamics and the kinematics of the flow, and hence provides a
catalyst for future understanding of more complex fluid phenom-
ena.
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simulated flow, Reynolds number 100 experimental flow

Figure 2: Visualization of 2D flow. Velocity, vorticity, and rate of strain (including divergence and shear) are all encoded in image layers.

Figure 5: (left) Combination of velocity, vorticity, rate of strain, turbulent charge and turbulent current for Reynolds number 100 flow. A total
of nine values are simultaneously displayed. Figure 3: (right) Visualization of the turbulent charge and the turbulent current together for a
Reynolds number 500 simulated flow. Observe that charge concentrates near the cylinder and is negligible in other parts the flow.

Reynolds number 100 Reynolds number 500

Figure 4: Close up visualization of the turbulent charge and the turbulent current at Reynolds number 100 and 500 (left and right). We are
able to see the high concentrations of negative charge at the places where vorticity is being generated.



Art and Visualization: Oil and Water?
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Victoria Interrante, University of Minnesota Computer Scientist
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INTRODUCTION

Art and visualization have progressed on parallel paths, often visiting similar points in the space of imagery. This
panel session brings together artists who have scientific interests with scientists who have artistic interests. Together,
we hope to stimulate excitement about searching the collective experience of centuries of artists to find concepts salient
to visualization. Each of the panelists will discuss some of their work, giving concrete examples of joint art/science
endeavors. We have organized our statements around the following questions:

1. How can artistic experience benefit visualization? What artistic disciplines have the most to offer?

2. What are the dangers of mixing the two disciplines?

3. How should we proceed? What are the rich research areas to explore?

POSITION STATEMENTS

David Laidlaw

For six centuries artists have developed methods for representing complex scenes in oil paintings. The work that I will
show excavates concepts from oil painting and applies them to visualization. We have used multiple layers of brush
strokes, motivated by Van Gogh’s style, to represent multi-valued data. The resulting images simultaneously display
up to eight values at each point. I’ll show results of several different types of data displayed with these methods.
Surprisingly, these images are richly detailed, and offer different views from different perspectives, much as paintings
often do.

Creating visual representations with these methods is a delicate process of balancing the visual bandwidth used for
one component of a dataset against the visual bandwidth used for another. Maintaining a relatively continuous repre-
sentation in one layer without obscuring underlying information also creates tension. And choosing which parts of the
data to map to quickly seen visual cues and which to map to cues with a longer latency adds a temporal dimension to
the resulting images.

Of course, there are dangers in the process. The potential for misrepresentation is high because the process is subjec-
tive. The balancing act can fail, and important features can be obscured or de-emphasized enough that they are missed.
More subtle misrepresentations can accidentally map data to cues that have a strong unintended impact. Chernoff used
iconic facial features to represent the different values in multi-valued data. Some of the features, such as the upward
curve of the mouth, have a very strong emotional impact on western viewers.

There are a number of areas ripe for exploration. Only the surface of painting has been scratched. Van Gogh’s brush
strokes are wonderfully expressive and discrete in relation to those of many other artists. The work of other painters
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is likely to provide many more ideas applicable to visualization. Other artistic disciplines also hold promise. Graphic
design, illustration, and sculpture all spring to mind as relevant to visualization, and some exploration has begun in
these areas. Consistent “standard” visualization techniques and test cases will make comparisons possible. How to
standardize something related to “art” is an interesting problem. And, finally, more visibility for this fledgling yet
ancient process of mining the past will help stimulate essential interest and enthusiasm.

davidkremers

the naked human eye can distinguish intervals up to 1/100 of an inch. in order to conceptualize events beyond this
limit we developed mathematics and art.

mathematics, along with the tools it helped create, took opinion out of scientific observation. what had once been
metaphysics became physics. even better, the church didn’t argue with these new views of the universe so long as they
remained mathematics, a place invisible to the masses.

in the modern world, our combination of electronics and molecular biology is allowing humans to perceive the invisible
at a resolution in sync with the limitations of the human eye. this is putting opinion back into scientific observation.

the fact that we are moving from studying inert samples to working with complex dynamic systems is forcing us
to meld art and science into something new. recently i participated in experiments using optical sectioning and 3d
reconstruction of stained mouse somites. the first discovery to be made was that our new visualization techniques far
outstripped the standards of “artistry” at the bench. our second discovery was that the existing schematic idea of these
structures doesn’t match up with our organic results.

so we are testing the samples with two forms of high resolution pattern recognition. we are increasing the technical
resolution afforded by recent advances in 2-photon microscopy and we are also increasing the observational resolution
by taking the unique step of including an artist in the team. artists are very highly trained “eyes” in pattern recognition,
and they bring an unbiased eye to biology which can question recurring patterns overlooked by the “practiced” eye of
a biologist who is only looking to see what she expects to find.

art is good at qualitative questions, the chief question of art has historically been why? the question facing modern
artists is how much objectivity can we afford to let in before we begin to lose the discoveries afforded art by intuition?

science is good at quantitative answers, the chief answer so far has been finding out how things work. the question
facing modern science is how much intuition can we afford to let in before we begin to lose the discoveries afforded
science by objectivity?

is there a new visual language out there like calculus lying in wait for newton? or are we merely performing a
rehabilitation of descriptive biology with high tech pencils? we may be able to make stunning advances in math and
simultaneously codify our intuitive complex actions in art to form a new hybrid math/art language. or it may be that
the increasing sophistication of our art practice will afford a clearer picture of subatomic phenomena resulting in some
new quantum/chemistry language.

Victoria Interrante

Is visualization a science or is it an art? Is there a science behind the art of creating an effective visual representation?
How do we know how to begin designing methods for generating pictures that convey the essential information in a
dataset in an accurate, efficient, and intuitively meaningful way? How do we know when we have succeeded? When
we are on the right track? When we have utterly failed?

Visualization differs from art in that its ultimate goal is not to please the eye or to stir the senses but, far more
mundanely, to communicate information – to portray a set of data in a pictorial form that facilitates its understanding.
As such, the ultimate success of a visualization can be objectively measured in terms of the extent to which it proves
useful in practice. But to take the narrow view that aesthetics don’t matter is to overlook the complexity of visual
understanding.
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Research in perceptual psychology provides a rich source for insight into the fundamental principles underlying the
creation of images that can be effectively interpreted by the human visual system. Observation of the practices of artists
and illustrators provides a rich source of inspiration for the design of more complex and possibly more intuitively
appealing methods for translating data into pictures.

I will present several case study examples, drawn from my research in 3D shape and flow representation, that attempt
to demonstrate the potential of looking to art and illustration for insights into design of techniques for more effective
visual communication. I will also discuss some of the perceptual issues that underlie the art of representing information
in an accessible manner.

Visualization can be viewed as the art of creating a pictorial representation that eloquently conveys the layered com-
plexity of the information in a complicated dataset. But it should also be viewed as the science, behind this art, of
defining for others the process through which such pictures can be evolved, providing a theoretical foundation for
knowing /em how to create useful images and offering insight into /em why certain representational approaches can
be expected to hold more promise than others.

Felice Frankel

The following is excerpted with permission from an original essay [1].

The images I will show are photographs of scientific research, and I state that at the outset because their aesthetic
qualities, being immediately apparent, so often seem to dominate initial reactions to them. But I, in fact, created them
primarily to serve the scientific community, to record and communicate data, and to further the research. However, I
have also recently become aware that the visual impact itself of the photographs I make in the lab can have significant
consequences, allowing them to communicate important information about science research not only to other scientists
in the lab, or in the field, but to a broader, nonscientific public, as well. So I have come to recognize and to embrace the
two worlds my work inhabits, scientific and aesthetic. On the one hand, I bring to science photography my passionately
curious, fresh and aesthetic eye. And on the other hand, though I am not an optical or electron microscopist, I use their
tools, but I use them with a different point of view: to locate the innate beauty of the research, and to capture it with
the kind of technical accuracy that can add information and generate new ways of thinking.

In my work I take the position that we who are privileged to see science’s splendor, who image it, diagram it, model it,
graph it, and compose its data, can turn the world around, dazzling it with what inspires and nourishes our thinking, if
we refine the visual vocabulary we use to communicate our investigations and incorporate - beautifully and above all
accurately - the visual component that is already there. Our goal must be to share the visual richness of our world, to
make it accessible.

For me, form, shape and composition are integral to a scientific image or representation; I compose data, making it
readable and comprehensible and the theorists and experimentalists with whom I work agree that visually clarified
information adds another dimension to the exchange of ideas. They tend to be the investigators who are expanding
their boundaries, sometimes into scientific disciplines of which they never dreamed. They are learning to use their
equipment for visualizing the increasing complexity and dimensions of their work in new ways, with the same rigor
in their imaging as in their scientific thinking; when what was once “good enough” is no longer good enough.

Although some of the images I take are displayed in art galleries and museums and are reproduced in books that
resemble “art” books, they are not art. I do not view myself as an artist because an artist has a personal agenda and
a very particular point of view, that of communicating the part of herself she wants the world to perceive. One may
view the images I take as artistic, but their primary purpose is to communicate scientific information. My photographs
are spare – compositions of three-dimensional forms and structures recorded on two dimensions. I frame the images
in a way that emphasizes the particular point of the investigation, carefully choosing only the components essential
for communicating a specific idea; more details do not necessarily add clarity. I find a readable order in the data,
a hierarchy of information, guiding the viewer’s eye to know where and how to look. If I digitally eliminate a dust
particle or scratch, I indicate that I have done so. In sharp contrast, an artist is not necessarily committed to conveying
data and may inadvertently subvert the essence of scientific investigation, its intellectual rigor, so to suggest that art
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and science are related may dangerously redefine each. Science may be artful, but art is not scientific.

In fact, perpetuating a false connection between science and art cannot provide a permanent basis for greater public
interest in science. Science itself in its wonder and beauty can attract enough attention, even if at first it is only
a glance. While an amateur, in the true sense of the word, does not deeply understand science, it is a mistake to
underestimate the power of enthusiasm from outside the laboratory. For example, my enthusiasm comes with enough
understanding of the subject to ask the right questions, to fashion the appropriate visual vocabulary for communication,
using images as scientists use equations and formulae. But then there is the more general enthusiasm from the public,
whose direct contribution to research is less obvious but whose support is just as important in the long run. That
enthusiasm will only expand when science is made more accessible. Accessibility is the first step to convincing the
non-scientific community no longer to accept nor be content with ignorance of physical phenomena. It will encourage
the confidence to curious; and that curiosity will be reason enough to look at the remarkable world we investigate, to
question it, and to attempt to understand it. But first, we must all begin toseeit.

Thomas Banchoff

Visualizing complicated surfaces in three-dimensional space demands the ability to manipulate and illuminate objects
so that their essential features and their interrelationships become more and more apparent. Much more challenging is
the process of trying to visualize surfaces in four-dimensional space, requiring even more views and more explorations
of shapes from many different perspectives. Communicating the insights gained from visualization activities involves
decisions about the best ways of presenting multiple views or animations, especially in circumstances where an object
is undergoing deformations.

There is an art to making these decisions, and it is no accident that the choices made by geometers correspond in
striking ways with the selections made by professional artists considering the same collections of images.

“Surfaces Beyond the Third Dimension” is the title of a one-person show at the Providence Art Club that first took
place in March of 1996 in Providence RI. That exhibit lives on as a virtual art gallery on the Internet [2], and we can
learn new ways of interacting with such geometric art by considering the different pieces and their relation to one
another.

What have we lost when we no longer have the chance to walk through the actual physical space of the gallery? What
have we gained, by allowing each viewer to interact with the various pieces at his or her own level of appreciation
of the color, rendering, and shape of the displayed objects, as well as the mathematical background and context that
causes these pieces to be chosen for investigation?

Does such a multi-layered gallery enhance the artistic experience of viewers, or can the amount of subsidiary informa-
tion get in the way of their appreciation? Can the same objects double as art works and illustrations of mathematical
relationships? Does the answer to this question depend in essential ways on the kinds of computer renderings or the
kinds of mathematical objects under investigation? What lies in the future, as computer graphics opens up new areas
for geometric exploration, and new views of geometric objects provide challenges both for communication and for
aesthetics?
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ABSTRACT  
While many factors contribute to shape perception, psychological 
research indicates that the direction of lines on the surface may 
have an important influence.  This is especially the case when 
other techniques (shading, silhouetting) do not present suff icient 
shape information.  The psychology literature suggests that lines 
in the principal directions of curvature may communicate surface 
shape better than lines in other directions.  Moreover, principal 
directions have the quality of geometric invariance so line 
directions are based on the surface geometry and are viewpoint 
and light source independent, and the lines do not move above 
over the surface during animation unless desired.   In this work 
we describe principal direction line drawings which show the 
flow of curvature over the surface.  The technique is presented for 
arbitrary surfaces represented by either 3D volume data or a 
polygonal surface mesh.  The latter format is common in the field 
of computer graphics yet thus far has not been widely used for 
principal direction estimation.  The methods offered in this paper 
can be used alone or in conjunction with other NPR techniques to 
improve artistic 3D renderings of arbitrary surfaces. 

Keywords: non-photorealistic rendering, principal direction line 
drawings, line direction, line drawings, geometrically invariant 
line drawings.  

1  INTRODUCTION 
Amongst the varied goals of artistic Non-Photorealistic Rendering 
(NPR) is the pursuit of perceptually efficient images.  A 
perceptually eff icient visual representation emphasizes important 
features and minimizes extraneous detail and is essential for 
making comprehensible artistic images.  Computer-generated line 
drawings are a particularly effective form of NPR since lines’ 

features (length, width, intensity, density, quality, direction, etc.) 
can be combined to create shaded, textured, and expressive 
images which capture the essence of the form of an object.  In the 
field of computer-generated line drawing, 3D representations of 
curved surfaces generally focus on the silhouette edges, 
disregarding large amounts of interior curvature information.  
These depictions often rely on either previous knowledge of the 
surface or the use of motion (movement of the surface, viewpoint, 
or light source).  In this work we explore a 3D line drawing 
technique which is independent of the surface’s orientation, the 
viewpoint, or the light source.  In particular, we examine line 
direction and use this paper to raise the question: Does line 
direction matter?  

We argue that line direction does matter, and suggest the use of 
the principal directions of curvature for directing lines to improve 
the depiction of surface shape in artistic line drawings.  The 
advantages of principal directions (see Appendix A for a 
mathematical definition) are that they are geometrically-invariant, 
highlight the most direct path on a surface between two points, 
indicate the directions of the curvature extrema at any point, and 
have been suggested by psychologists as the preferred 
interpretation for making surface shape judgments.   

The importance of geometric invariance should not be 
underestimated.  Geometrically-invariant cues are based on 
properties of the surface geometry and are by definition viewpoint 
and light source independent.  While shading and silhouetting 
provide substantial shape information, valuable curvature 
information can be lost in shadows or the interior of the surface.  
Furthermore, viewpoint dependent lines may move around in a 
distracting manner during motion or animation.  Geometric 
invariance does not imply that lines must be rigidly “pasted” onto 
the surface during animation.  If line movement is desired, the 
geometrically-invariant vector field can help guide more fluid 
movement over the surface.  Combining geometrically-invariant 
cues with shading or silhouetting can be especially powerful.  
Geometrically-invariant line attributes such as color and density 
can be manipulated with respect to viewpoint or light source [7].   

Despite the promise for principal directions, their full potential in 
NPR has yet to be realized.  The reasons perhaps may be related 
to the diff iculties in estimating an accurate, smoothly continuous 
vector field of principal directions.  The problem is most 
challenging for polygonal surface meshes, a particularly common 
data format for arbitrary 3D surfaces.  Additionally, principal 
direction line drawings must address the complex issues of 
creating uniformly distributed, non-intersecting, long smooth 
lines which gracefully traverse umbili cs, planar regions, and 
transitions of directional dominance.  Here we examine both 3D 
volume datasets and polygonal surface meshes, and suggest some 
techniques for line tracing. 
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The main contribution of this work is to show that for a 3D line 
drawing, line direction can matter and principal direction line 
drawings can be used to better convey surface shape.  In the next 
section we motivate the importance of line direction with 
psychological evidence.  We follow with related work in 
computer-generated 3D line drawing.  In section four, we provide 
a brief overview of principal direction estimation techniques.  
Section five shows the effects of line direction and section six 
presents techniques for principal direction line drawings.  In the 
final section we draw some conclusions and discuss areas of 
future work. 

2  PSYCHOLOGICAL EVIDENCE FOR 
THE IMPORTANCE OF LINE DIRECTION 
The psychology literature gives us a sense of how the human 
visual system perceives images and is an essential reference for 
making perceptually eff icient renderings.  Early research asserted 
that humans can use surface markings, or texture, to perceive 
surface orientation.  Gibson [8] was amongst the first to 
emphasize the significance of texture cues for shape and depth 
perception.  He was able to show convincingly that observers 
could reliably interpret the slant of the planar surface by the cues 
provided by the projection distortion of the texture patterns. 

Of relevance to this work is the open question of whether 
anisotropic (directed) textures are as suitable for conveying shape 
information as isotropic (undirected) textures.  Interrante [12] was 
unable to show an effect of texture type in shape perception under 
conditions of stereo and motion for various plausible isotropic 
and anisotropic textures for transparent surfaces, including grids 
and principal direction textures.  Yet Cumming et al. [3] found an 
indicative effect of texture type for stereoscopic shape perception 
between a plausible and unlikely texture.  While shape-from-
texture research often makes assumptions of isotropy or 
homogeneity, Knill [16] hypothesized that there are different 
modes to visually perceive isotropic and anisotropic textures. 

While the question of effects of isotropic versus anisotropic 
texture still remains open, it is evident that when anisotropic 
surface markings are dependent on surface geometry, surface 
depth and orientation perception is improved.  Knill [16] found 
that in an anisotropic texture processing mode, the curvature of 
geodesic surface markings determines perception of local surface 
orientation.  The experiments of Johnston et al. [14] showed that 
stereoscopic depth perception of curved surfaces with texture 
which provided a good indication of surface geometry was 
superior to random dot textures.  Stevens [24] was among the first 
to suggest that humans can make surface shape judgments by 
assuming that surface contours (lines on the surface) are aligned 
with the principal directions of curvature. In later work Stevens 
and Brookes [23] demonstrated that principal direction surface 
contours are also good indications of relative surface slant.  More 
recently, Mamassian and Landy [17] found that surface shape 
judgments are biased by the assumption that surface contours are 
aligned with the principal directions.   From the above literature, 
it is reasonable to believe that surface shape and depth perception 
may be generally aided by textures, and also by anisotropic 
textures based on surface geometry, particularly lines aligned 
with the principal directions 

3  RELATED WORK 
Computer-generated 3D line drawings borrow from centuries of 
artists’ techniques and have recently received significant attention 
in the NPR community.  Winkenbach and Salesin used stroke 
textures to create depth and shape in line drawings of parametric 
surfaces [26]. Markosian et al. emphasized the silhouette edges 
for viewpoint-dependent images of arbitrary 3D surfaces [18]. 
Curtis used 3D models to generate loose and artistic  sketches and 
animations [4]. Elber rendered geometrically-invariant line 
drawings and textures of parametric and implicit surfaces [6].         

Principal directions have been suggested [11,26] and approached 
[2,6] in line drawings.   In [26,6], lines were traced along the 
parametric lines of parametric surfaces, which sometimes 
coincided with the principal directions. Saito and Takahashi [20] 
rendered line drawings lines of parametric surfaces along 
geodesic lines.  Interrante et al. [11] used 3D principal direction 
textures to ill ustrate surface shape in volume data.  However, 
none of these works addressed the challenge of estimating the 
principal directions from arbitrary surfaces (particularly 
polygonal surface mesh formats) nor that of tracing long strokes 
in one direction (rather than cross-hatching) through umbili cs, 
planar regions, and areas of changing directional dominance. This 
work is based upon a preliminary sketch by Girshick and 
Interrante [9]. 

4  PRINCIPAL DIRECTION ESTIMATION 
For data of any format, the first step towards a principal direction 
line drawing is to estimate the principal direction vector field, 
comprised of the principal directions at a set of points on the 
surface.  There are a variety of methods for  estimating principal 
directions, each with its various strengths and weaknesses, 
however a full discussion of the computational details is not in the 
scope of this paper.  Do Carmo outlines analytic calculations of 
principal directions for parametric surfaces in [5].  For iso-
intensity surfaces in 3D volume data, Monga et al. used the 
Hessian of the 3D data to compute the principal directions [19].  
Interrante et al. used a similar technique based on Gaussian- 

 
Figure 1 Polygonal surface mesh of arbitrary 3D “blob” .



 

 

  
Figure 2  Random vector field of object in figure 1. Figure 3 Uniform (vertical) vector field of object in figure 1. 

  
Figure 4  First principal direction vector field of object in figure 1. Figure 5 Second principal direction vector field of object in figure 1. 

     

6a Shaded surface mesh 6b Random vector field 6c Uniform vector field 6d First principal direction 
vector field 

6e Second principle direction 
vector field 

Figure 6 Close-ups of the same region of the object in figure 1.  



weighted finite-differencing [12].  We used this approach for the 
volume datasets in this paper. 

As of yet there is no reliable standard technique for locally 
estimating principal directions from a polygonal surface mesh. 
Samson and Mallet [21] fit cubic patches to the local 
neighborhood around a vertex, using the vertex’s normal and 
neighboring normals, and then compute the partial derivatives to 
obtain principal directions.  Hamann [10] employs a similar 
approach except uses quadratic patches and relies solely on 
deviation from a vertex’s tangent plane without using 
neighboring vertex normals.  Joshi et al. provide good examples 
of this approach in [15]. Chen and Schmitt [1]  and Taubin [25] 
avoid explicitl y describing surface patches but instead construct 
a quadratic form at each vertex.  In [25] the quadratic form 
represents an orthonormal basis whose eigenvectors are the 
principal directions.  The principal curvatures are the directional 
curvatures in the principal directions.  For the polygonal surface 
meshes in this work, we use variations of both Hamann’s and 
Taubin’s methods, with similar results.  The accuracy of both is 
highly dependent on the symmetry of the local surface geometry 
and is an area of current work.   

5  EFFECTS OF LINE DIRECTION 
The significance of line direction for a line drawing is perhaps 
best ill ustrated visually with the underlying vector field.  As will 
be explained in the next section, a line drawing can be rendered 
by tracing strokes which follow the flow of a vector field [22].  
Figures 1–5 show various vector fields on the same arbitrary 
“blob” dataset, shown as a polygonal surface mesh in figure 1.  
A 3D volume dataset would produce similar results.  The vector 
field is ill ustrated by projecting the field direction at each vertex 
of the underlying mesh onto the tangent plane at that point.  The 
random vector field in figure 2 and the uniform vector field in 
figure 3 convey surface shape only through texture compression, 
which provides hints of the silhouette edges, but not through the 
use of line direction.  When the silhouette edges are not visible, 
as in the close-ups in figures 6b and 6c, the surface shape is 
largely ambiguous.  

Figures 4 and 5 show first and second principal direction vector 
field respectively.  Compared to figures 2 and 3, these vector 
fields appear to better convey local surface orientation, 
including ridges and valleys, subtle surface undulations, changes 
in curvature, and interior silhouette edges.  Figure 6 shows the 
close-ups of the vector fields in the absence of silhouette edges.  
When comparing the four close-ups in figures 6b through 6e, 

 

 

Figure 7 First principal direction vector field of a brain represented by a polygonal surface mesh. Data source: Ron Kikinis, Harvard 
Medical School. 



 

 

Figure 8 First principal direction vector field of a bunny represented by a polygonal surface mesh. Data source: Stanford University 
Computer Graphics Lab. 

 

it seems to be easier to judge the surface shape from principal 
direction vector fields than the random and uniform vector 
fields.  Figures 7 and 8 provide more examples of f irst principal 
direction vector fields on more complex surfaces.  One can 
predict the diff iculty in perceiving the surface shape if these 
figure used random or uniform vector fields. 

6  PRINCIPAL DIRECTION LINE 
DRAWINGS 
Principal direction line drawings ill ustrate the flow through the 
principal direction vector fields described in the previous 
section.   In this section we describe the details for both 3D 
volume data and polygonal surface meshes.  For 3D volume 

data, the vector field is a 3D volume and the strokes are traced 
through the volume.  For polygonal surface data, the vector field 
lies on the explicitl y defined surface mesh and the strokes must 
be drawn on the surface.   

6.1 Principal Direction Line Drawings of 3D 
Volume Datasets 
Figures 9 and 10 show different styles of principal direction line 
drawings of the same human pelvis CT volume dataset.  Both 
figures underwent the same preprocessing stage.  Initially a first 
principal direction volume vector field is generated using the 
technique described in section four.  Then a sparse set of strokes 



 

 
Figure 9 Principal direction line drawing (with shading and without hidden line removal) of a bone/soft tissue boundary  

iso-intensity surface in a CT 3D volume dataset of a human pelvis. 
 

 
Figure 10 Principal direction line drawing with silhouette edges and hidden line removal of the volume dataset in figure 8. 

 
is traced through the vector field, each stroke originating from a 
point near the surface which is not too close to neighboring 
starting points, such that the set has the approximate distribution 
of a Poisson disk. 

In figure 9, the strokes represent individual streamlines [22] 
through the vector field.  The lines are shaded according to the 
surface normal direction indicated by the gray level gradient in 
the volume data, but  hidden line removal has not been done.  
The result is especially powerful during animation, when the 
geometrically-invariant lines “stick” to the surface. 

In figure 10 we attempted to create a freer sketch of the volume 
data set, using hidden line removal, including silhouettes and 

selecting only a subset of possible strokes.  Because it is 
viewpoint-dependent, by definition it is not geometrically-
invariant.  However the lines are still directed in the principal 
directions and defined based on the geometry of the surface, so 
the static 2D image should provide the same visual cues to the 
surface shape, at least near the silhouette edges.  The subset of 
lines to render was selected with a preference towards placing 
lines in areas of higher curvature lines and near silhouette edges.  
Line length is proportional to the magnitude of the first principal 
curvature at the start point.  



 

6.2 Principal Direction Line Drawings of 
Polygonal Surface Meshes 
The main steps in creating a principal direction line drawing 
from a polygonal surface mesh are estimating a smoothly 
continuous principal direction vector field and tracing evenly 
spaced strokes which follow the flow of the vector field.  The 
steps are described separately below, but for eff iciency they can 
be done simultaneously. 

6.2.1 Creating a continuous principal direction vector 
field  

At any point on a 3D surface, each of the orthogonal first and 
second principal directions have a positive and negative 
direction.  Thus there are four possible directions for the vector 
field at each point.  Ideally we would always choose the first 
principal direction (either positive or negative).  However, in 
regions close to umbili cs and planes, where curvature is almost 
similar in all directions, the first and second principal directions 
may suddenly switch places causing a flip of up to 90 degrees, 
resulting in a sudden disruption of f low.  Figure 11a 
demonstrates this for a simple vase mesh.  The first principal 
direction field is continuous except around the girth of the vase 
where it is almost spherical and the curvature is slightly greater 
vertically than horizontally.  In this case, a continuous principal 
direction line drawing minimizes distracting details and is more 
aesthetically pleasing than a first principal direction line 
drawing.  The continuous vector field is created by first 
choosing an arbitrary reference vector.  In the example of f igure 
11, the choice of reference vector can lead to only two possible 
outcomes, but in a more complex dataset it might be 
advantageous to choose a meaningful starting reference vector.  
Next, for each vertex, the direction which is closest to the 
reference vector is chosen.  The reference vector is updated to 
reflect the choice.  Figures 11b and 11c show the two possible 
continuous principal direction vector fields for this dataset.  The 

principal direction line drawing corresponding to 11b is shown 
in 11d.  This approach for creating continuous vector field 
works well for surface regions with well -defined principal 
directions.  However, at true umbili cs, where normal curvature 
is the same in all directions, and on planes, where normal 
curvature is zero in all directions, the principal directions are 
undefined.  For these regions, we interpolate between 
neighboring well -defined regions of the vector field.  Even still , 
for a complex surface such shown in figures 1 and 8, regions 
may occur where it is necessary to make an abrupt switch in line 
direction.  A possible technique for gracefully transitioning 
between line directions is to minimally employ cross-hatching 
using both the first and second principal direction fields 
combined.  However we do not advocate the general use of 
crosshairs such as in figure 12, as the inelegant crosses can 
become distracting and muddle the flow of curvature. 

6.2.2  Tracing strokes through the vector field on a 
polygonal surface 

The objective of this step is to obtain an approximately 
uniformly-distributed set of non-intersecting long curved lines, 
which lie on the surface. The streamline tracing technique of 
Jobard and Lefer [13] is extended from 2D images to 3D 
surfaces to generate evenly-spaced non-intersecting lines.  The 
curvature of each line is achieved by continually redirecting it 
as it traverses the changing vector field. 

Each stroke is composed of a set of control points.  The criterion 
for each valid control point is that it lies at a minimum distance 
threshold from all existing strokes.  The first stroke starting 
point is random, and the remaining stroke starting points are 
chosen to be as close as possible to existing points without 
breaking the minimum distance threshold.   

The direction of the stroke is updated at frequent distance 
intervals as well as when a stroke crosses a polygon boundary.  
The stroke’s direction at any given point on a polygon is 

 

    
11a  First principal direction 

vector field. 
11b  Continuous vector field of 

greatest overall curvature. 
11c  Continuous vector field of 

less overall curvature. 
11d Continuous principal direction 
line drawing for 11b.  Shading and 
slight randomness added to  strokes 

for artistic effect. 
Figure 11  Various principal direction vector fields and principal direction line drawing of a simple vase. 



 

 
Figure 12  First and second principal direction vector field of the object 

in figure 1. 

determined by trilinearly interpolating the principal directions of 
the polygon’s vertices.  Strokes are terminated if they approach 
the minimum distance threshold.  This process is shown in 
figure 13.  To avoid the cost of calculating an implicit surface, 
each segment of a stroke is projected onto the polygonal surface 
mesh.  Provided a suff iciently fine mesh, this approximation is 
worth the savings in computation.   

Regions of opposing force occur when neighboring principal 
directions point in opposing directions.  These vector field 
discontinuities crop up near umbili cs and planar.  The current 
approach is to terminate strokes when this happens.   

The result of this technique is shown in figure 14, with some 
randomness added for wiggly lines.  A more artistic image 
might be achieved by varying the line density according to the 
light source, and adding silhouette lines.  

 
Figure 13 Stroke tracing through a principal direction vector field on a 

polygonal surface mesh. (image for ill ustrative purposes only). 

 

 
Figure 14 Principal direction line drawing of pears, represented by 

triangular surface meshes.  Hidden line removal was used, and slight 
random noise was added to the stroke tracing process. 

6.2.3  Rendering 

The rendering of the line drawing is straightforward.  A stroke is 
a set of control points which can be rendered as either a simple 
polyline or spline.  Our approximations were fine enough to use 
anti-aliased polylines with no perceivable difference over 
splines.     

7  CONCLUSIONS AND FUTURE WORK 
The most troublesome areas in obtaining a continuous principal 
direction line drawing are those where the principal directions 
are undefined and in regions of opposing force.  In the first case, 
the current interpolation technique works well i f the unknown 
regions are small  and bordered by more well -defined principal 
directions, but fails for larger areas and is a topic of future work.  
In the latter case, we would like to eventually gracefully merge 
strokes from neighboring regions of opposing principal 
directions, possibly with subtle cross-hatching, instead of 
terminating them.   

This work outlined the approach for both 3D volume datasets 
and polygonal surface.  Principal direction line drawings for 
parametric surfaces can follow a similar approach.  For 
polygonal surface meshes, we found the existing principal 
direction estimation techniques to be insuff iciently accurate for 
asymmetric local mesh geometries.  We are currently working 
on their improvement which is of great relevance to principal 
direction line drawings. 

We also found that principal direction vector fields work well , 
in conjunction with silhouette lines or shading, as “short stroke” 
principal direction line drawings.  An example of this is shown 
in figure 15.  Future work includes extending these lines with 
the line drawing technique described above, using density 
variations for shading. 

This work poses the important question of whether line direction 
matters for creating a perceptually eff icient line drawing.  We 
have provided compelli ng psychological evidence and visual 
examples to believe that line direction affects surface shape 
perception.  In particular, the principal directions of curvature 
appear to be more effective than non-principal directions at 
conveying surface shape.  Principal direction lines on a surface 
have the advantage that they show the path of greatest curvature 
and are geometrically-invariant, so they appear the same from 
all 



 

 

 
Figure 15  First principal direction vector field and silhouette lines of a horse dataset, courtesy of Cyberware, Inc.    

 

viewpoints and do not shift during animation.  Principal 
direction line drawings are well -suited for showing the subtle 
undulations of an arbitrary, smoothly curved surface in 3D, 
especially when silhouette edges are not visible.  They can be 
used alone or in conjunction with other graphics techniques such 
as shading and drawing silhouette edges.  One intention of this 
work is to serve as a reminder that perceptually eff icient images 
are an important part of artistic NPR.  We also wish to inspire 
more perceptual studies of the effectiveness of principal 
direction line drawings. 
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9  APPENDIX A: DEFINITION OF 
PRINCIPAL DIRECTIONS OF 
CURVATURE 
The normal curvature at p in a given direction T will be referred 
to as the directional curvature κp(T).   The first principal 

direction, T1, is the direction of the maximum magnitude of 
normal curvature, called the first principal curvature (κp

1).  The 
second principal direction, T2, is orthogonal to the first, and is 
the direction of the other curvature extreme, called the second 
principal curvature (κp

2).  For elli ptic surface patches (with 
positive Gaussian curvature) the second principal direction is 
the direction which the surface is most nearly flat.  For 
hyperbolic, (saddle-shaped) patches (with negative Gaussian 
curvature), the second principal direction is the direction of the 
lesser of the two extrema.  The two principal directions T1 and 
T2  are orthogonal and lie in the tangent plane at the point p, 
creating an orthonormal basis with the normal vector N at p.  
Figure 14 shows an example of the orthonormal basis on a 
hyperbolic surface patch.  The product of the two principal 
curvatures equals the Gaussian curvature, K=κp

1 • κp
2. 



 

 

 
Figure 16 Orthonormal basis formed by normal and two principal 

directions and curvature strips in the principal directions at a point on a 
hyperbolic patch.   
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In our ongoing quest to convey more information more
clearly in a single image, harnessing the full potential

of texture for data representation remains an elusive
goal. Others have begun excellent work in this area,1-3

and my efforts are inspired by their example. The grail
that I seek is a partially ordered multidimensional
palette of richly detailed and varying texture patterns
that can be used—in conjunction with lightness and
hue—to represent multivariate information. The goal
is to facilitate the flexible visual appreciation of the cor-
relations of various quantities across the different
dimensions. The approach that I outline here departs a
bit from the norm, but is motivated by a desire to pro-
ceed more directly from my vision of what I want to
achieve, unrestrained by the limitations of the tools I
have on hand. In the following discussion, I motivate
the adoption of rich, natural textures—resembling those
from photographic images4—as elemental primitives
and sketch some of the approaches that we can take to
enhance our understanding of how to effectively har-
ness their properties. My intent here is not to present
results, but to expound on the issues and conclude with
the questions to which we’re still seeking answers.

Why natural textures?
The intricate variety and subtle richness of detail of tex-

ture patterns found in nature support possibilities for data
representation far more vast and comprehensive than we
could ordinarily hope to achieve from standard primi-
tives. Even if we must ultimately rely on synthesized tex-
tures for data visualization, by looking to nature for
inspiration we have the potential to expand our vision of
what to strive for in such a synthesis. The graphic design
community has long held that perfectly regular synthet-
ic textures on a flat plane, in particular the infamous
hatching patterns that Edward Tufte refers to as “chart
junk,”5 are discomforting to the eye and annoying to look
at. Natural textures are not only more aesthetic, but they
also put less extraneous stress on the visual system, leav-
ing our eyes freer to observe and attend to the most intrin-
sically important texture-pattern characteristics.

Understanding human texture
perception

To create a perceptually meaningful multidimen-
sional texture space that can be indexed in the same fash-

ion as a color space, we must begin by knowing what
we’re looking for. We need to proceed from a rigorous
and experimentally supported understanding of how
human observers perceive and interpret texture pat-
terns, under the conditions in which we intend for these
patterns to ultimately be viewed. This grounding pro-
vides a structure for guiding our search through the
complex space of possibilities and formalizes the intu-
ition that a good designer calls upon to create a visual-
ization that works.

A number of researchers6 have conducted studies to
try to elucidate the most significant perceptual dimen-
sions of texture. The results of these experiments will
aid us, though some important questions remain. It’s
beyond the scope of this article to summarize previous
findings further than to say that most of the studies used
unaltered images from the Brodatz album, subjects were
generally asked to cluster the textures into groups, and
there appears to be general agreement that a small num-
ber (about three) of characteristic dimensions seem suf-
ficient to describe most of the structure underlying this
classification. The interpretation of the dimensions
varies from study to study, but most often includes
aspects of the following:

■ periodic (consisting of repeated discrete elements)
<-> nonperiodic

■ strongly directional <-> rotationally invariant
■ coarse <-> fine (spatial frequency of the dominant

detail)
■ regular (deterministic) <-> random
■ high contrast <-> low contrast
■ homogeneous (spatially invariant) <-> heterogeneous

Clearly, there is some overlap in these categorizations.
Also, it’s not evident that we can hope to determine an
orthogonal basis that encompasses all members of the
texture pattern set. However, the apparent low percep-
tual dimensionality of the space and the strong agree-
ment between the studies bodes well for our application.

Open questions in visual texture
perception

Identifying the features according to which people tend
to classify texture patterns gives us important insight into
how to structure a perceptually meaningful texture space.
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But some important issues have been implicitly over-
looked in the studies conducted so far. Foremost are the
uncontrolled-for influences of higher level processes.

Payne et al.7 observed, in studies similar to those ref-
erenced above, that material property categories
appeared to have a strong influence on a fair number of
their observers’ clustering decisions. They also noted
that their subjects often commented that they felt they
were using different criteria to find matches for differ-
ent texture images. Knowing that people tend to make
judgments based on different criteria in different cases,
but not knowing who is considering what when or why,
weakens the general applicability of experimental
results based on these traditional methodologies. I
believe that it might be useful to attempt to control for,
or at least quantify the impact of, some of these effects
by considering alternative paradigms for objectively
measuring texture patterns’ perceptual similarity.

The question of whether to control for rotation, scale,
luminance, and contrast variance among texture sam-
ples when seeking insight into the perceptual groupings
of texture images is a second important issue that stud-
ies using the Brodatz album have frequently overlooked.
How do we want to consider apparent texture pattern
differences that aren’t clearly intrinsic to the pictured
material but that could conceivably be attributed to
external factors such as viewpoint or lighting?8

On the one hand, Ware and Knight3 have said that
orientation, size, and contrast are the primary order-
able dimensions of texture. But samples of a texture
that are differently oriented, scaled, and lit still intrin-
sically appear to be the same thing and thus remain
good candidates for similarity grouping. As pre-atten-
tive features of individual elements, size, contrast, and
orientation differences are undisputedly important in
facilitating “pop-out”. At the same time, our visual sys-
tem is remarkably adept at maintaining perceptual con-
stancy across changes in illumination or viewpoint.
Many computational methods for classifying texture
adopt a rotationally invariant texture recognition
approach for this reason. A strong argument exists for
equalizing characteristics such as scale, luminance, and
contrast before classifying or quantifying texture-pat-
tern differences for the purposes of visualizing multi-
ple distributions across a 2D image. Doing so would let
us retain the ability to introduce variations in these fea-
ture dimensions universally across all the other texture
dimensions and use them to encode additional values.
To this end, it might be illuminating to try to separate-
ly examine the relative effects of rotation, scale, and
contrast differences versus other texture-characteriz-
ing differences. Our considerations will also differ in
the case of visualizing distributions across surfaces
through a 3D domain.

The question of how best to factor out the variations
in contrast and luminance—when we choose to do so—
must also be carefully considered. Although it’s rela-
tively straightforward to equalize the intensity
histograms of sample texture images before processing
them for similarity, it’s not clear that histogram equal-
ization adequately preserves the meaningful qualities
of the texture patterns.

Quantifying the perceptual similarity of
texture patterns

In addition to determining which textures tend to
cluster, it’s important for creating a perceptually linear
texture space to quantify the perceptual distances
between individual texture patterns. It’s also necessary
to estimate the magnitude of the perceived distance
due to the differences along each of the feature 
dimensions.

One possible approach is to estimate the magnitude
of the change required to enable a “just noticeable dif-
ference” between images along individually selected
texture dimensions such as scale, contrast, orientation,
regularity, and so on using psychophysical methods.

Another possibility, which may be more appropriate
for judging the kinds of differences that cannot be eas-
ily brought down to threshold levels, is to measure the
pre-attentive discriminability or salience of differences
in features of individual texture patterns randomly
embedded in homogeneous and heterogeneous fields
of distracters, as illustrated in Figure 1. The objective in
this case then is to determine how large of a difference
is required to allow the effortless identification of the
“odd man out” in brief, masked stimulus presentations.
Studies using individual element arrays have found that
salience (or the tendency to “pop-out”) tends to increase
when the targets are characterized by redundant,
unique properties such as luminance and hue or color
and orientation.9 Similarly, the salience of the target
tends to decrease as the heterogeneity of the distracter
elements increases, even when the heterogeneity occurs
along a different perceptual dimension.

It may additionally be of interest to determine how
many different texture types people can simultaneous-
ly discriminate, using a methodology similar to what
Healey employed for studying color.10

The long and rich history of research on texture clas-
sification algorithms in the image processing commu-
nity also offers valuable resources for constructing a
texture palette. Although the extent and variety of the
possible computational approaches for classifying tex-
ture patterns is somewhat overwhelming, most of the
successful methods work by extracting a finite set of fea-
tures from the texture patterns (via transforms similar
to those shown in Figure 2) and then calculating vari-
ous statistics across these feature sets. Rubner and
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Tomasi8 proposed quantifying texture similarity by
using the Earth Mover’s Distance as a metric for the
goodness of fit between histograms of these features. A
key issue for us is ensuring that the computer vision
results and the human observer criteria agree.

Creating a texture palette
One approach to creating a texture palette (Figure 3)

is to begin with a collection of well-chosen input images.
You can then objectively determine where they lie in the
best-fitting multidimensional texture feature space that
they span and appropriately fill in the remaining open
space with intermediate textures that lie at equal per-
ceptual distances along each of the dimensions.

Some of the difficulties in creating a texture palette are
that the texture space may not be orthogonal, there may be

interaction among certain dimensions
(such as contrast and spatial frequen-
cy), and some texture type mixtures
may not be meaningful. However, my
intuition is that the closer we can get
to aesthetically filling out the space
with real acquired images, the easier
it will be to patch the holes.

Texture synthesis methods such
as those that Portilla and
Simoncelli11 and Zhu et al.12 have
proposed may hold the greatest
potential for creating a set of sample
textures that fill out a multidimen-
sional palette. Working from these
frameworks, we may have the pos-
sibility to deterministically create
natural-looking intermediate tex-
tures that interpolate the character-
istic properties of their neighboring
swatches in texture space or that
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2 (a) Statistics of texture pattern features, such as those evident in this set of power spectra images, form the basis
for many computational texture characterization methods. (b) It’s easy when looking at the original images to form
an intuitive understanding of the types of information carried by the various features of the Fourier coefficients.
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3 A small
potential tex-
ture palette.
Scale increases
along the hori-
zontal axis,
regularity
increases along
the vertical axis,
and intensity
increases along
the left-to-right
descending
diagonal.

4 A set of four
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maps,14 repre-
senting distribu-
tions of four
different vari-
ables across the
US counties.



conform to a prespecified set of desired criteria.
However, these methods currently invoke too many fea-
tures (roughly 800 plus) and are not quite mature
enough to guarantee the realism that we seek.

Efros and Leung13 suggest a very different synthesis
method for seamlessly generating highly realistic sam-
ples of “more of the same” textures from a given sample.
The success of this method is subject to the assumption
of stationarity and a reasonable estimate of the extent of
the lowest spatial frequency detail that must be pre-
served. However the feasibility of extending this
approach to texture interpolation has yet to be shown.

Another issue we face is how to properly deal with the
lighting consistency problems that
will inevitably arise when we try to
combine acquired textures that
exhibit relief. It may be necessary to
solve for the surface relief, allowing
the material intensity texture to be
handled separately. In the 2D case,
the most important consideration is
simply to maintain consistency.
Additionally, it’s desirable to avoid
orienting textures so that to preserve
convexity, observers must envision
the light as coming from below.

Feasibility issues
Some of the questions that we

need to address are

■ What does a reasonable parti-
tioning of a natural texture space
look like?

■ Would it be feasible to try to
choose exemplars at the endpoints
of each perceptually relevant tex-
ture dimension, characterize them
statistically, then interpolate to
obtain intermediate textures that
fill out the space?

■ To what extent do we need to
guarantee that different textures
will meld continuously into each
other at the transitions between
level set regions?

■ How can we most effectively com-
bine color with texture to convey
yet more information in a mean-
ingful way?

Clearly, texture has the greatest
potential to be effective as a tool for
visual data representation when it
conveys local values of an underlying
function across homogeneous cells of sufficient size to
allow the characteristic detail of the resident texture to
be discriminated.

The philosophy behind my attempt to more effective-
ly harness the potential of texture for multivariate data
visualization is that we should begin from a vision of what
we want to achieve and work from there to figure out how

to accomplish the desired results. To more freely explore
the possibilities before becoming bogged down in imple-
mentation issues, I mocked up several tests by hand using
Adobe Photoshop and scanned images from the Brodatz
texture album4 to represent multivariate agricultural
data14 at the county level (Figures 4 through 7).

In Figure 7, texture scale represents one of three
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ranges of the average value of the agricultural products
produced in each county (with the largest scale corre-
sponding to the lowest value, evoking the metaphor of
inhospitable terrain). The texture type represents the
direction of change in the amount of land in farms (with
rocks representing areas with an overall loss of farm-
land and weaves representing areas with an overall
increase in the amount of land used for farming). Color
labels the percentage of the total land area in each coun-
ty used for farming (with the green tones indicating the
higher percentages and the brown tones representing
the lower percentages of land occupied by farms).

Representing uncertainty
Both color and texture admit intriguing possibilities

for representing uncertainty in data measurements.
Texture regularity has particularly good potential as an
intuitive marker for certainty, with texture pattern irreg-
ularities increasing in prominence where measurement
reliability is lower. Color regularity has somewhat weak-
er potential as a marker for measurement certainty, as
textures that contain more balanced or restricted dis-
tributions of hues may appear less distinct or vibrant
(implying decreased noteworthiness) than textures in
which the hues vary more widely across the spectrum.
Figures 8 and 9 provide examples of these two different
configuration series. It remains to be seen how easily
irregularity of the kind shown in Figure 9 can be incor-
porated into a computational texture synthesis defini-
tion for such patterns.

Conclusions
Despite the excellent progress made in recent years,1-3

I believe that there remains great untapped potential
for the effective use of texture in multivariate visual-
ization. I have proposed that we might take important
steps towards realizing more of this potential by
attempting to harness the power of rich natural textures.
I envision that a successful approach will begin from a

fundamental understanding of visual texture percep-
tion and progress toward an understanding of how to
synthesize a multidimensional palette of detailed tex-
ture samples whose variations evoke an intrinsic appre-
ciation of the local and global relationships between
multiple quantities across a 2D domain. ■
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ABSTRACT

Perception of the 3D shape of a smoothly curving surface can be facilitated or impeded by the use of different surface texture
patterns.  In this paper we report the results of a series of experiments intended to provide insight into how to select or design
an appropriate texture for shape representation in computer graphics.  In these experiments, we examine the effect of the
presence and direction of luminance texture pattern anisotropy on the accuracy of observers’ judgments of 3D surface shape.
Our stimuli consist of complicated, smoothly curving level surfaces from a typical volumetric dataset, across which we have
generated four different texture patterns via 3D line integral convolution: one isotropic and three anisotropic, with the
anisotropic patterns oriented across the surface either in a single uniform direction, in a coherently varying direction, or in the
first principal direction at every surface point.  Observers indicated shape judgements via manipulating an array of local
probes so that their circular bases appeared to lie in the tangent plane to the surface at the probe’s center, and the
perpendicular extensions appeared to point in the direction of the local surface normal.  Stimuli were displayed as binocularly
viewed flat images in the first trials, and in stereo during the second trials.  Under flat viewing, performance was found to be
better in the cases of the isotropic pattern and the anisotropic pattern that followed the first principal direction than in the
cases of the other two anisotropic pattems.  Under stereo viewing, accuracy increased for all texture types, but was still
greater for the isotropic and principal direction patterns than for the other two.  Our results are consistent with a hypothesis
that texture pattern anisotropy impedes surface shape perception in the case that the direction of the anisotropy does not
locally follow the direction of greatest normal curvature.

Keywords: texture, shape representation, principal directions, shape perception.

1 INTRODUCTION

A key objective in the field of visualization is to design and implement algorithms for effectively communicating information
through images.  Given a set of data, we must design a visual representation for that data which facilitates its understanding.
The investigations reported in this paper were motivated by applications in which one needs to be able to accurately and
intuitively convey the three-dimensional shape of large, smooth, arbitrarily curving surfaces.  Previous studies [cf. Interrante
et al. 97] have indicated that shape perception can facilitated by the addition of surface texture markings, but the question of
how to characterize the kind of surface texture that will show shape best remains open.  Texture can also be used to mask
surface shape features, as was shown by Ferwerda et al. [1997].  It has been suggested [Cumming et al. 1993] that the
perception of shape from texture can be impeded when the texture pattern is highly anisotropic, consisting of elements that
are systematically elongated in a specific direction.  However a wide variety of textures consisting of line-like elements have
been shown to indicate surface curvature [Todd and Reichel 1990].  Knill [1999] shows that across developable surfaces1 any
homogeneous texture pattern will appear to flow along parallel geodesics2, and suggests that our visual system uses shape-
from-contour3 to infer shape from the systematic projective distortion or flow of the pattern.  Inspired by the considerable
amount of research [Stevens 1983, Mamassian and Landy 1998, Li and Zaidi 2000] that seems to imply that surface shape
may be perceived most accurately from line-like markings when they follow the lines of curvature., we sought in the series of
experiments described in this paper to further experimentally investigate the effect of the direction of surface texture pattern
anisotropy on the accuracy of observers’ shape judgments.  Specifically we wanted to know: can an anisotropic pattern that
follows the principal directions show shape more effectively than a pattern in which the direction of anisotropy follows some
other path?  Than an isotropic pattern?  Are the effects the same in the case of shaded displacement texture?  To what extent
are these effects mitigated by stereo viewing?
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1surfaces that can be unrolled to lay out flat in the plane;
2 curves that do not turn in the surface
3 the set of all points at which the surface normal is orthogonal to the line of sight



2 METHODS

We conducted a series of two experiments intended to investigate the effect of the presence and direction of texture pattern
anisotropy on the ability of observers to accurately perceive the 3D shape of a smoothly curving surface.  The goal of these
experiments was to gain insight that might facilitate our efforts to use texture most effectively to facilitate the accurate
perception of surface shape in renderings of scientific data.  In the following sections we provide the details of the
experimental set up and design.

2.1 Stimuli

The stimuli that we used in our experiments were cropped images of the front-facing portions of textured level surfaces
rendered in perspective projection using a hybrid renderer [Interrante et al. 97] that uses raycasting [Levoy 88] together with
a Marching Cubes algorithm [Lorensen and Cline 87] for surface localization.  The volumetric test data from which we
extract these surfaces is a three dimensional dose distribution calculated for a radiation therapy treatment plan.  We chose to
use the radiation data as our testbed, rather than a more restricted type of analytically-defined surface, because this data is
typical of the kind of data whose shape features we seek to be able to more effectively portray through the use of surface
texture.

The first step in image generation was to define the solid texture patterns that would appear on the level surfaces.  We used a
high-quality three-dimensional line integral convolution algorithm [Stalling and Hege 95] to synthesis the textures in the
vicinity of the selected level surface.  Beginning with a three-dimensional array of binary noise, line integral convolution
produces an output texture in which the input values are correlated along the directions indicated by an accompanying vector
field.  We defined four different vector fields to produce four different types of texture patterns.

The procedure that we used to obtain the principal direction vector field is fully described in [Interrante 97], but is briefly
restated here for completeness.  We begin by computing an orthogonal frame at each sample point in the 433x357x325 voxel
3D volumetric dataset.  We define the third frame vector to be in the direction of the grey-level gradient, which is the normal
to the level surface that passes through the sample.  We compute the gradient using Gaussian-weighted central differences in
the axial directions over the 3x3x3 area surrounding the sample point.  We next choose an arbitrary point in the tangent plane
to define the direction of the first frame vector and then take the cross product of these two vectors to obtain the remaining
orthogonal direction.  Finally, we estimate the 2nd Fundamental Form [Koenderink 90] from the Gaussian-weighted central
differences of the gradients trilinearly interpolated at sample positions over a 3x3x3 grid aligned with the local frame,
diagonalize to obtain the 2D principal directions (eigenvectors) and principal curvatures (eigenvectors) in the tangent plane,
and convert to 3D object space coordinates.  The direction corresponding to the eigenvalue with the greatest unsigned
magnitude is saved in the 3D principal direction vector array and used to create the first anisotropic texture (‘pdir’).

The remaining 3D vector fields are obtained by simpler means.  First, we obtain the vector field of uniform directions by
taking at each point the direction given by the intersection of the tangent plane with the plane orthogonal to the z axis that
passes through the sample point:  udirx = –ny, udiry = nx, udirz = 0, where (nx, ny, nz) is the surface normal or gradient.  Then,
we obtain the vector field of random directions that is used to create the isotropic texture pattern by rotating the uniform
direction previously obtained at each point by a random angle θ1 about the surface normal,–π/2 ≤ θ1 ≤ π/2.  Finally, we obtain
the vector field of coherently varying directions that is used to create the anisotropic texture pattern that contains lines with
non-zero geodesic curvature by rotating the original uniform direction about the surface normal by an angle θ2 =
10π(x+y+z)/n where (x,y,z) is the index of the sample point in the volume and n is the total number of sample points in the
3D array.

Figure 1 illustrates the process of texture synthesis, showing a single slice (z=263) from the 3D input texture volume and
from each of the different 3D output texture volumes.  Not all of the values are filled in, because we have elected to initiate
the streamlines that are used to compute the output texture values only at the voxels that are in the vicinity of the level
surface that is being used to create the test image.

During rendering, the intensity value interpolated from the 3D texture at the ray/surface intersection point is taken as the base
color of the surface at the ray surface intersection point, and Phong shading is then applied to obtain the final surface color.
We rendered 48 test images for the experiment, 24 for the left eye views and 24 for the right eye views, using the four
different textures applied to views from six different vantage points around a single level surface.  Figure 2 shows three of
these images, all computed for the same viewing position.  In order to avoid the potentially confounding influence of shape-
from-contour information, as a last step we cropped each image to a 400x400 pixel region that did not contain any points on
the silhouette edges of the object.



 

Figure 1: Slices from the 3D solid textures.  Left: The slice z=263 before line integral convolution; Right: The same slice
after line integral convolution along (in clockwise order) first principal directions (pdir), random directions (rdir), uniform
directions (udir) and coherently varying or swirling directions (sdir) computed at each sample point.

      
Figure 2: Examples of the 3D textured surfaces.  From left to right: pdir, rdir and sdir.  Note that informal assessment of the
potential impact of texture type on shape judgments is complicated in these images by the prominence of shape-from-contour
cues, which tend to dominate when other information about shape is less readily accessible.  Because we are most interested
in studying how the presence of texture might facilitate shape judgments across non-trivially structured interior regions where
shape-from-contour information is not available, we cropped all of the images to eliminate the edge cues before testing.

2.2 Task

In originally planning these investigations, we had hoped to be able to design an experimental task that could reveal the effect
of different texture types on the accuracy and efficiency of an observer’s perception of the global 3D shape of a displayed
object (shape from a glance).  However we had great difficulty coming up with a means to evaluate observers’ immediate
global impressions of surface shape in a way that avoided confounding influences such as isolated 2D feature recognition or
partial picture matching.  Hence we decided to proceed with estimates of surface shape perception accumulated from
individual judgments of the orientation of the surface at local points.  Because it is well known that our visual system does
not build up an estimate of shape from the accumulation of isolated individual local estimates of surface heading, but rather
obtains shape understanding from the comparative relationships between nearby points, we decided to present an array of
probes [Koenderink et al. 1992] that completely covered the central area of the presented surface and to ask observers not



only to adjust each probe by pulling on its handle until the circular base appeared to lie in the tangent plane to the surface at
its central point and the perpendicular extension appeared to point in the surface normal direction, but also before proceeding
to the next trial to verify that the shape of the surface they had implicitly indicated through the collective orientations of all of
the probes appeared to faithfully match the shape of the underlying textured surface at all points.

Unfortunately, we neglected to recognize, before beginning the experiments, that our decision to place the probes at exactly
evenly spaced intervals over a rectangular grid would interfere with observers’ ability perceive all of the probes as lying in
the surface at the same time, due to violation of the generic viewpoint assumption.  (If the probes did all lie in a smooth
surface that varied in depth, and still appeared to be evenly spaced in a single view, then any tiny translation of the viewing
position would have to break the symmetry of the spacing.  Our visual system hence preferentially adopts the more likely
interpretation that the probes are arrayed on a transparent flat plane in front of the underlying curved surface.)  Our subjects
did not report an inability to see the probes as lying in the surface on an individual basis, but, as will be discussed later,
certain of the individual responses appeared to indicate that the probes were not always consistently visualized as a coherent
unit across each image.  Figure 3 shows the user interface at the beginning of the 5th trial.

Figure 3:  The graphical user interface with all probes displayed in their starting positions.

In designing the experiment we were particularly concerned about avoiding a situation in which differences dues to texture
type might be confounded with differences due to other unanticipated or uncontrolled factors such as individual differences,
or particular surface shape configurations.  Ideally, we would have liked to present identical views of each surface under all
four texture conditions, and to have all subjects make judgements on all of the images.  However we were also concerned
about the possibility of subjects’ current shape judgments being biased by information they obtained from previous trials in
which the same surface had been shown under a different texture condition.  With only 24 binocular images (6 views x 4
texture types), and an small anticipated subject pool size, we had to make some difficult tradeoffs.  What we did was to
divide the subjects and the stimuli into two different groups, so that each subject made shape judgments at the 49 probe
locations on only half of the data (12 images).  Each set contained each view and each texture type, in equal proportions, but
did not contain all of the possible combinations.  Within each set, the stimuli were further grouped into two lots, in which
each lot had no surface repeated.  Figures 4 and 5 show the complete set of stimuli presented to each group of observers.

The six images within each lot were presented in random order, and subjects were required to take a 10 minute rest break
after finishing the 6th trial, thereby avoiding the possibility that any two differently textured but identically shaped surfaces
might be presented immediately in sequence, and minimizing the likelihood of surface recognition and any consequent
possible learning effects.  After adjusting the probes on the 12 images in the flat viewing condition, subjects repeated the
entire process under conditions of stereo viewing.  To facilitate estimation of the effects of viewing condition, subjects were
presented with the same stimuli, differently ordered, in the two viewing conditions.  The entire process took about two hours
for most of the subjects.



Figure 4: The set of stimuli seen by group A.  First row: lot 1; second row: lot 2.  The presentation order was randomly
determined and was different for each subject.

Figure 5: The set of stimuli seen by group B.  First row: lot 1; second row: lot 2.  The presentation order was randomly
determined and was different for each subject.

2.3 Observers

We had five subjects participate in the experiments.  All of the subjects were male EE and CS graduate students from the
University of Minnesota, who agreed to participate as a favor to the second author and for compensation in the form of gift
certificates to local coffee shops and/or eateries.  All subjects were kept fairly naïve to the purposes of this experiment,
though some of the subjects were certainly aware of the authors’ previous work with principal direction texture.  We
informed the subjects that we were conducting experiments to evaluate peoples’ ability to accurately perceive 3D shape in
images but we specifically did not mention anything about texture.  Our goal in doing this was to keep the subjects as free as
possible of any potential biases and to avoid leading them into certain behaviors (such as lining up the direction of probe base
elongation with the direction of the texture pattern) that they might not otherwise have considered.  Before beginning the
experiment, the subjects were asked to read a set of written instructions which described the probe positioning task.  We used
written rather than verbal instructions in an effort to maintain consistency. Subjects were also shown a single “training”
image (figure 6) that portrayed ground truth answers in the form of correctly positioned probes for a seventh surface not
included in the test data and rendered without texture.  Note that several of these probes appear to point straight out of the
screen.  We showed them this image in order to give them an idea of what a set of exactly correctly positioned probes might
look like.  We were fairly selective in attempting to obtain participants that we hoped would be diligent in their efforts, and in
the written instructions we stressed the importance of trying hard to do a consistently good job on all of the images, even if
the shape was difficult to perceive.  As an extra incentive, however, we told the subjects that after all results had been tallied,
we would give a $20 bonus certificate to the student who gave the most accurate answers, overall.



Figure 6:  Training image, showing ground truth answers (correct probe orientations) at points across an untextured surface.

3 RESULTS

Having observed that other investigators studying shape perception using local probes analyze the perceived surface
orientation in terms of slant and tilt, where slant is the angle of rotation out of the fronto-parallel plane, and the tilt is the
angle of rotation about the viewing direction, we had initially hoped to be able to do the same in our studies – measuring the
accuracy of observers’ estimates of local heading in terms of the deviation in slant and tilt from the ground truth answers.
While fairly satisfied with the indication of error provided by deviations in slant, we had several serious problems
interpreting the magnitude of the errors due to incorrect estimates of tilt.  The root of our difficulties was that too many of the
points on our surfaces were too near to being parallel with the image plane.  In numerous incidences the angular deviation in
tilt was degenerate, because the estimated normal projected to a single point, and it was not clear how to appropriately handle
these cases.  We could not simply exclude these samples from our error calculations, because their occurrence was not
uniform but tended to predominate in “bad texture” conditions, where the cues to shape were inadequate and subjects
reverted to the default assumption that the surface lay in the plane of the image, or subjects simply gave up in frustration and
left the probes untouched at their default original positions.  Furthermore, even in the cases where the tilt angle was not
degenerate, the lengths of the projected normal vectors could be exceedingly small, on the order of one or two pixels, and it
was therefore possible to register huge estimated errors in the tilt component in places where the observer had merely
misplaced the endpoint of the vector by two or three pixels (less than 1mm on the screen) in a particularly unfortunate
direction.  We therefore reluctantly decided to break with tradition and simply use as an error metric the angle in ℜ3 between
the estimated normal direction specified by the probe and the true surface normal direction at the probe center.  Figure 7
shows the mean angular error and standard deviations computed over the 49 probe positions at which estimates were made by
each subject for each image, with each texture type, under conditions of binocular flat viewing.  The results are grouped into
different images by texture type, and then grouped within each image by test subject.  Figure 8 shows the results under
conditions of stereo viewing.



Figure 7:  Individual results for the flat viewing condition.  The height of each point represents mean angular error over the
49 probe locations per image.  Subject number is the unspecified independent variable along the horizontal axis.  Judgements
from a single subject for different surfaces rendered with the same texture type are grouped by proximity along this direction.
The textures are (clockwise from the top left): principal direction (pdir), isotropic (rdir), uniform (udir), and swirling (sdir).

Figure 8:  Individual results for the stereo viewing condition.  Each point represents mean angular error over the 49 probe
locations per image. Clockwise from top left: principal direction (pdir), isotropic (rdir), uniform (udir), swirling (sdir).



Figure 9:  Pooled results (mean angle error) for all subjects, all surfaces, by texture type.  Left: flat presentation; Right stereo.

4 DISCUSSION

A definitive statement of the results is hampered by the fact that we have not yet succeeded in doing a thorough statistical
analysis of the data and hence cannot make any claims about the statistical significance of the differences in the mean angular
errors observed under the different texture conditions.  Overall, subjects seem to do somewhat better in the principal direction
oriented and isotropic texture conditions than in either of the other two.  It appears, from inspection of the individual results,
that subjects may be less prone to making catastrophic errors when stimuli are viewed as flat images if the surfaces are
rendered with the pdir texture.  However, closer inspection of the pattern of errors is needed.  A preliminary inspection
suggests the presence of two different types of errors: coherent errors due to perceived depth inversion, and incoherent errors,
as shown in figure 10.  Errors appear to accumulate in the principal direction texture around discontinuities in the pattern
where the first and second principal directions switch places.  We had anticipated the possibility of an advantage in using an
anisotropic texture in which the direction of the anisotropy followed lines of curvature over the surface, but this interpretation
is not strongly supported by the experimental results.  Most subjects appeared to perform equally well or better with the
purely isotropic pattern.  However some subjects were clearly misled in some places by the anisotropic patterns that followed
directions different from the principal direction, suggesting that if one must use an anisotropic pattern, one must be careful
about how it is applied over the object.

Figure 10:  Some detailed individual results: Left: coherent errors due to depth inversion; Middle: incoherent errors
apparently due to shape misperception; Right: errors tend to pile up at texture flow discontinuities, where the first and second
principal directions switch places.



5 FUTURE WORK

There is considerable room for future work.  One of the primary factors motivating this research was the desire to gain insight
into how to select or define a texture pattern that could be used to facilitate the accurate and intuitive appreciation of 3D
shape of a rendered surface.  It appears clear that the principal direction textures defined above leave something to be desired
in this respect.  Shape representation from line orientation seems to be good in places where one of the two principal
curvature values is high, but errors accumulate in the flatter areas where the directional information is less useful and less
reliable.  One direction for future work is to develop a more effective texture model that combines the strengths of several
different texture definition approaches.  A perhaps more immediate direction for future work is the investigation of the effect
of texture orientation on surface shape judgments when the texture pattern is defined by surface relief rather than surface
luminance.  Does texture orientation affect shape perception in the same way in the two cases?  Examples of some
preliminary stimuli for subsequent experiments on this subject are shown in figure 11.

Figure 11:  The same stimuli with the same textures, this time rendered as shaded relief rather than as luminance patterns.
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Abstract

In this paper, we address the problem of how to, seamlessly and without visible projective distortion,

automatically cover the surface of a polygonally-defined model with a texture pattern derived from an

acquired 2D image such that the dominant orientation of the pattern everywhere follows the surface shape in

an aesthetically pleasing way and repetition artifacts in the texture pattern are completely avoided.  We

propose an efficient, automatic method for synthesizing, from a small sample swatch, patches of perceptually

similar texture in which the pattern orientation may locally follow a specified 3D vector field on the surface,

such as the principal directions of curvature, at a per-pixel level, and in which the continuity of large and

small scale features of the pattern is generally preserved across adjacent patches.  We demonstrate the results

of our method with a variety of texture swatches applied to standard graphics datasets.

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism — Texture.

Keywords: Texture synthesis, texture mapping, shape perception, shape representation.

1. Introduction

Adding texture to the surface of a polygonal model can profoundly enhance its visual richness.  In addition to

contributing abundant detail and complexity at minimal computational expense, texture has the potential,

depending upon the characteristics of the pattern, and how it is applied, to affect our perception of an object’s

geometry, masking faceting artifacts [8], or enhancing our appreciation of the curvature of the form [14].

Given a texture pattern and a surface model, the historical challenge has been to determine how to apply the

pattern to the surface in an appropriate manner, minimizing the visual impact of seams and projective

distortion while orienting the pattern so that it flows over the shape in a desirable way.

Many different approaches to this basic problem are possible.  Our solution focuses on the case in which

the desired texture is defined by a provided 2D image.  The method that we propose has the advantages of

being essentially automatic (requiring no manual intervention), reasonably efficient, fairly straightforward to

implement, and applicable across a wide variety of texture types and models.  In addition, the resulting

textured objects can be easily displayed at interactive frame rates using a conventional renderer on a standard

PC with texture mapping hardware.
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Figure 1:  An example of a synthesized surface texture produced by our method.  No manual intervention of any kind

was employed.  This texture was grown from an original 92x92 swatch [4], pre-rotated to 63 orientations each cropped

to 64x64 pixels, to cover 291 surface patches at 128x128 resolution following a vector field locally defined by the

projection of (0,1,0) onto the tangent plane at each point.  The entire process required approximately 12 minutes.
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Our technique consists of the following main steps:

- Partition the polygons of the model into contiguous patches, as nearly planar (to prevent distortion)

and as nearly similarly sized (to simplify texture map handling) as reasonably possible.

- Compute a vector field over the object, or read a pre-defined field from a file.

- Synthesize the texture pattern over each patch, maintaining pattern continuity across the boundaries

with neighboring patches, using an efficient, orientation-adaptive variation of the non-parametric

sampling method proposed by Efros and Leung [7].

An example of the results of our algorithm is presented in figure 1.

2. Previous Work

A variety of methods have been previously proposed for texturing polygonal models with patterns that are as

free as possible of seams and distortion artifacts.

One method is solid texturing [20,21,29], in which the texture pattern is defined over a 3D volume.

Particularly good results have been achieved with this method for water, as well as for objects made of wood

and stone.  However, there are significant challenges in synthesizing 3D textures modeled after sampled

materials [13, 6], and current methods for creating custom-fitted 3D textures whose features follow a

surface’s shape [14] are severely limited in scope and applicability.

Methods for applying 2D image-based texture to arbitrary polygonal models for the most part must

balance the inherent trade-off between seams and distortion (one cannot in general apply a 2D image to a non-

developable surface without incurring one or the other), employing piecewise flattening in the case of

arbitrary parametric [2] or polygonally-defined [17] models, or using careful surface parameterization [15], or

pre-distortion of the texture [1,28] to achieve desired results in other particular cases.  Conformal mapping

[11] offers a global solution that preserves angles, but not lengths or areas.

Closer to our objectives, Neyret and Cani [19] proposed an excellent technique for achieving seamless

and virtually distortion-free mapping of 2D isotropic texture patterns on arbitrary objects via custom-defined

triangular texture tiles that are continuous with one another across various of their boundaries.  Unfortunately

an extension of this method to anisotropic texture patterns is not obvious.  Last year, Praun et al. [24]

proposed “lapped textures”, which provides capabilities that are the most similar to those towards which our

method aspires, although the approach that we take is very different.  The lapped texture method repeatedly

pastes copies of a sample texture swatch onto overlapping patches across a surface after some subtle warping

and reorientation to align the pattern with a user-defined vector field.  This method produces very good results

when used with texture patterns that contain enough high frequency detail and natural irregularity in feature

element sizes and relative positions.  This is needed to perceptually mask artifacts due to the partial overlap or

misalignment of feature elements across patch boundaries.  As currently formulated, the lapped texture

approach is not particularly well-suited for rigidly structured patterns, such as a checkerboard, or textures

such as netting, which are characterized by the global continuity of specific elongated elements.  It is also less
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well-suited for use with vector fields that contain significant high frequency variation.  In addition, the lapped

texturing process as described in [24] involves considerable amounts of user interaction.

The method that we describe in this paper provides capabilities beyond those offered by previous

methods.1.  It achieves nearly seamless and distortion-free texturing of arbitrary polygonally-defined models

with a texture pattern derived from a provided sample.  Most importantly, the method is suitable for use with

anisotropic patterns.  It generally preserves larger scale texture pattern continuity across patch boundaries,

does not require manual user intervention, and allows the orientation of the applied pattern to locally follow a

specified vector field on a per-pixel basis.

Our method falls into the category of methods that achieve texture pattern continuity without distortion by

in effect synthesizing the texture “in place” over the surface of the object.  Previous methods in this category

include direct painting [12], and reaction-diffusion texture synthesis [26], which yield excellent results for

hand-crafted textures and textures modeled after organic processes.  We want to achieve similarly good

results with automatically synthesized textures that are perceptually equivalent to a given sample swatch.

Our work is perhaps most fundamentally motivated by the impressive advances in texture synthesis

methods [13,5,23,30,7,27] which make it possible to create, for an increasingly wide range of patterns,

unlimited quantities of a texture that is perceptually equivalent to a small provided sample.

Leveraging research in human texture perception, Heeger and Bergen [13] developed a highly successful

method for synthesizing textures that capture the essential perceptual properties of a variety of homogeneous

stochastic sample patterns.  Their method works by modifying a random noise image so that its intensity

histogram matches the histogram of the sample texture across each of the subbands in a steerable pyramid

representation of each image.  De Bonet [5] developed a related method based on interchanging elements in

the Laplacian pyramid representation of a self-tiling pattern where possible, while preserving the joint-

occurrence relationships of features across multiple resolutions.  This method yields impressive results for an

even wider variety of patterns, though some difficulties remain in preserving larger scale globally significant

structure.  Several other highly sophisticated statistically based approaches have been subsequently proposed

for texture synthesis [23, 30], however none of these methods, while quite inspiring, is exactly well-suited for

our needs.

Rather we follow the statistical texture synthesis approach recently proposed by Efros and Leung [7].  In

this method, a new texture pattern is grown, pixel-by-pixel, by sampling into a provided template pattern and

choosing randomly from among the pixels whose neighborhoods are close matches to the yet partially-defined

neighborhood of the pixel to be filled in, in the pattern being synthesized.  A serious concern with this method

however is speed, as addressed last year by Wei and Levoy [27] who proposed a more efficient approach to

the problem of finding the set of good matches from among all of the possible neighborhoods based on tree-

                                                                        
1 Note to the reviewers:  After completing the work described in this paper[TR], we were made aware of the fact that efforts similar to

ours had been undertaken at the same time by other groups.  At the present moment we have no specific information about any of
this parallel work, neither its exact scope or nature nor the identity of any but one of the groups undertaking it.  However we will
look forward to including discussion of these other efforts in this paper as soon as such information is made publicly available.
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structured vector quantization.  Wei and Levoy suggest as a direction for future work the possibility of

extending their TSVQ method to synthesize texture over surface meshes.  However because the speed

advantage of their method is obtained via the imposition of constraints on the configuration of the causal

neighborhood (a priori knowledge of the number and locations of the pixels at which the texture has already

been synthesized) there are significant complications for such an extension.  This constraint also limits the

class of textures that can be accurately synthesized.

In the remainder of this paper we describe the method that we have developed and the details of its

implementation, talk about some of the issues that arise in automatically determining a good way to orient a

texture pattern over a surface, show representative results, and conclude with a discussion of the current

limitations of our implementation and directions for future work.

3. Proposed Method

Our proposed method is basically a two step process.  First the surface is partitioned into small, almost flat

patches.  Then, the texture is grown over the planar projection of each individual patch taking into

consideration the proper boundary conditions to maintain the continuity of the texture pattern across seams at

the patch boundaries.  During the synthesis of an anisotropic pattern, the texture is locally constrained into

alignment with a specified vector field over the surface.  For simplicity, we store the resulting synthesized

texture as a collection of separate small images for each patch, although other approaches are certainly

possible.

3.1 Partitioning

The goal of the first stage is to partition the mesh into a minimum number of approximately planar patches

(collections of triangles).  Obviously these are conflicting goals for any closed surface and a suitable tradeoff

must be found.  In order to keep our implementation as simple as possible, we restrict patches to be of

approximately the same size.  Maintaining relatively consistent patch sizes simplifies texture memory

management by allowing us to allocate and synthesize texture maps of a consistent fixed resolution for each

patch.

Two input parameters define the maximum patch size (which influences the scale at which the texture

appears over the surface) and the maximum projective distortion that the user is willing to tolerate.  The initial

partitioning is done with a greedy algorithm, after which an optimization step is performed to reduce the

average projection error.

The process for the initial partitioning can be summarized by the following pseudo code:

while (unassigned_triangles > 0) {
pick an arbitrary unassigned triangle T;
assign T to a new group G;
add to group G all connected triangles C that satisfy:

- Normal(C) • Normal(T) > min_cosine_displacement;
- distance from the center of C to the farthest vertex of T is less than max_dist;

}
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The image on the left side of figure 2 shows a representative result after the first stage in the splitting.  The

green triangles are the reference triangles that define the plane onto which the patch will ultimately be

flattened.  It is easy to notice that some of the patches obtained at this point are very small and/or contain

triangles that are relatively far from being aligned with the reference plane.  A refinement pass is used to

reduce both the number of patches and the number of triangles that are oriented at a sharp angle to the plane

into which they will ultimately be projected.  Two simple experimental rules are iteratively applied until no

significant improvement is observed:

- remove a patch if it is very small, and its triangles can be added to a neighboring patch

without violating the distance constraint;

- reassign a triangle T from patch P1 to a neighboring patch P2 if T borders P2 and is

more closely aligned with the reference plane of that patch than with its own.

The image on the right side of figure 2 shows the results after iterative refinement.  Although the simple

refinement procedure that we use is not guaranteed to converge to the theoretically optimal result, we have

found that the results are consistently good and quite sufficient for our purposes.  Most importantly from a

practical standpoint, this method is very easy to code and extremely fast.  The greedy splitting step takes

between 1/2 to 2 seconds, depending upon the size of the model, and the refinement no more than 2-10

seconds in the worst cases.  In the rare event that acceptable results are not achieved, the splitting process can

be repeated using a tighter limit on the acceptable normal error (which will result in more, smaller patches), or

by specifying a smaller maximum patch size directly.  We have found that increasing the number of patches

causes only a marginal increase in the computational expense in the subsequent texture synthesis step.  More

significant is the issue that with very small patches comes an increased risk that the texture synthesis process

will run into difficulties and “grow garbage”, either due to the paucity of available contextual information

along the shortened boundary, or to the near proximity of mutually incompatible pre-defined boundary

conditions.

3.2 Parameterization

After the model has been partitioned into contiguous patches, the triangles comprising each patch are

projected onto their common reference plane, and the texture coordinates are defined at each vertex according

the coordinates of the projected vertices in the reference plane coordinate system.  Adjacent triangles from the

neighboring patches, which provide the boundary conditions for maintaining the continuity of the texture

pattern during synthesis, are then rotated about their shared edges into the reference plane.  We use rotation

for these triangles rather than projection in order to minimize the projective distortion of the texture that we

will need to refer to for reference purposes.  However, it is necessary to check for the very infrequently

encountered cases where it is not possible to rotate each of the adjacent triangles of a particular patch into the

projection plane without causing some of these triangles to overlap.
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3.3 Synthesis

At this point, we have created a 2D image for each patch containing:

-  an area, defined by the projection of the triangles of the patch onto the reference plane, which

contains the pixels to be filled by the synthesized texture; and

- an area, defined by the rotation into the reference plane of the neighboring triangles from the adjacent

patches, that will hold any previously synthesized texture and provide the boundary conditions

necessary to avoid seams due to discontinuities between texture element features in adjacent patches.

It is important to note that the partitioning process described in the immediately previous sections is

completely independent from the synthesis algorithm.  Any constrained synthesis method that can fill

arbitrary regions with arbitrary boundary conditions could potentially be used, although none of the existing

algorithms we reviewed appeared to provide both the flexibility and the speed required for this project.  The

work of Efros and Leung [7] came closest to meeting our needs and thus we elected to follow their general

approach, which has been shown to produce good results for a wide range of texture patterns that can be

modeled by Markov random fields (i.e. textures whose characteristics are fairly consistent under translation

over the image and in which the value at any given point can be fully characterized by the values at its closely

neighboring points over a limited range).

In order make tractable the problem of efficiently synthesizing enough texture to cover a standard model

of arbitrary topology at a reasonable resolution, the first objective of our proposed method is to achieve

results that are of the same caliber as those demonstrated by Efros and Leung but that require significantly

less time, while also preserving the flexible applicability of their approach.  To do this, we use a new two-pass

search strategy.  The first pass, which is exhaustive, is done using a very small unweighted neighborhood

(usually 5x5 for sample textures of sizes between 64x64 to 128x128).  The n best matches, where n is a user-

definable parameter, are saved in a list to be processed by the second pass.  This two pass approach presumes

strong locality in the input textures (which holds true for many natural texture patterns) and has the effect of

rapidly eliminating most of the uninteresting part of the search space.  The size of this preselect list ultimately

determines the overall speed of the synthesis algorithm.  We found that some textures produced excellent

results with preselect lists of as few elements as the number contained in one scanline of the original image;

these  we considered easy to synthesize.  Others required 4 or even 8 times more elements in the preselect list,

and these we considered hard to synthesize.  In the second pass, each of the pixels in the saved list is tested

against the full size weighted neighborhood (this size is also user selectable) and the error metrics are

updated.  Among the best 10 or 10% of matches (whichever is greater) a random pixel is chosen and used in

the synthesized image.  Figure 3 shows a sample result of this synthesis algorithm in the 2D case.  The speed

of this method does not match the speed of Wei and Levoy’s tree-structured vector quantization [27] for the

synthesis of rectangular swatches of texture, but unlike their method it can be directly used to fill in regions

with arbitrarily configured boundaries, and the results it produces are of consistently high quality.  The
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proposed method is still fast enough to make feasible our goal of growing of a fitted surface texture via the

MRF sampling approach.

Figure 3:  An example of the results of our two-pass texture synthesis method using pattern D06 from the

Brodatz album [4].  The speed of the synthesis approach varies from pattern to pattern depending on the

sizes of the match-defining neighborhoods and the length of the preselect list.  In this case we used a first

pass neighborhood of 5x5, a maximum preselect list length of 64, and a second pass neighborhood of 12x12

to synthesize the 256x256 patch on the right from the 64x64 pixel sample on the left in about 73s.

3.3.1 Isotropic Textures

As basically formulated, the approach we have just described can be used to cover the surface of a model with

an isotropic texture pattern in an orientation-insensitive way.  In other words, if we assume that our sample

texture pattern is perfectly rotationally symmetric, we can directly use this approach, in its  most basic form,

to seamlessly synthesize the texture pattern across all of the patches in the model without any special

considerations apart from the boundary conditions.  However, as we quickly found, there are very few

acquired textures that can be used with good results without regard to orientation.  Even patterns which

initially appeared to be isotropic in the original 2D sample revealed unexpected orientation dependencies.

This is due to such things as the subtle structuring that stems from nearly imperceptible correlations due to

shading when applied without regard to orientation, as is evident in figure 4.

3.3.2 Directional Textures

In the vast majority of cases, it is necessary to control the orientation of the texture over the surface.  For

greatest flexibility, we allow a directional texture to follow any specified direction field.  In the next section

some examples will be discussed.  We note that in the lapped textures method, Praun et al. [24] also align

textures on a per patch basis, slightly distorting the parameterization to achieve good local continuity within

the patch with the underlying directional specification.  In the case of sparse triangulation, they reduce

undersampling of the vector field by locally subdividing the mesh.
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Figure 4:  A texture (‘wool.bw’, from SGI) that originally appeared to be isotropic, reveals its anisotropic nature

(due to the effects of shading) when synthesized over the Stanford bunny dataset via an approach in which

the texture orientation is allowed to vary arbitrarily between each patch.

In our presented method the synthesis algorithm has been enhanced to allow per-pixel texture re-orientation.

We pre-rotate the original texture into a quantified number of orientations, and during synthesis perform the

search for best-matching neighborhoods in the pre-rotated image that is most closely aligned to the direction

locally specified by the vector field.  Figure 5 shows a sample of one quadrant of pre-rotated brick texture.  If

the number of pre-rotated images is sufficiently high, the synthesized texture will follow the vector field

smoothly.  For the examples in this paper, we used between 64 to 128 different rotations of the input texture.

Although it is of course possible to specify the use of any arbitrary number of pre-rotated images, we did not

notice an appreciable increase in the quality of the results when finer quantizations were used.

For efficiency and ease of implementation, we use the PC’s graphics hardware to perform the

rotations and resampling.  Searching for matches in pre-rotated texture images allows considerably faster

synthesis than would be possible if we had to perform the rotation on-the-fly for each pixel of the texture
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during synthesis.  While it is relatively fast to compute any arbitrary rotation of the original image, there is a

non-trivial cost associated with having to read the results from the frame buffer.

Figure 5:  A quadrant of pre-rotated brick texture samples.

3.3.2.1 Constant Direction Fields

We originally began this work with the intent to explore the possibility of applying textures along the

principal directions of curvature.  Despite the latent potential in that approach, it is not without its difficulties,

which we will discuss in greater detail in the following section.  We quickly discovered that aesthetic results

could be achieved for a wide range of models using other, much simpler, vector field definitions.  Notably,

the field of “up” directions, locally projected onto the tangent plane at each point, appears to yield particularly

nice results for many textures and datasets, as shown in figures 6 and 7.  It is worth mentioning in the context

of these two images that we worked hard to challenge our texture synthesis method, testing its performance

on difficult texture patterns such as the crocodile skin, which contains potentially problematic sets of features

spanning a wide range of spatial frequencies (from 3–21 pixels in diameter), and the square glass blocks

pattern, which is a highly structured checkerboard-style design in which irregularities in the size, shape and/or

positioning of any of the elements have the potential to stand out especially prominently.

3.3.2.2 Principal Direction Fields

The constant direction field produces good results in many but not all cases.  Specifically, it tends to fail for

models that do not have a single well-defined intrinsic orientation, or across which we are interested in

emphasizing local shape features.  Of greatest intrinsic interest to our ongoing research is the possibility of

applying an oriented texture pattern to the surface of an object such that it will be everywhere aligned with the

principal directions of curvature.
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Figure 6:  The crocodile skin texture (D10) synthesized over the triceratops model following the direction field

(0,1,0) locally projected onto the tangent plane.

Recent results in biological vision research support the idea that the principal directions play an important role

in surface shape understanding, and we are interested in probing these ideas further through controlled studies

of the effects of texture pattern orientation on observers’ perception of the 3D shapes of complicated

underlying models.  Mammassian and Landy [18] have shown that observers’ interpretations of line drawings

of simple patches are consistent with an inherent bias, among other things, towards perceiving lines on objects

as being oriented in the principal directions, supporting an observation made by Stevens [25] nearly 20 years

ago.  Li and Zaidi [16] examined observers’ ability to estimate the relative curvatures of developable surfaces

textured with various implicitly or explicitly plaid-like patterns, and concluded that shape perception depends

critically upon the observation of changes in oriented energy along lines corresponding to the principal

directions.  However these ideas remain to be examined in the context of more complicated, arbitrary

surfaces, where the first and second principal directions can switch places numerous times.  A significant

challenge in this effort is to obtain accurate computations of the principal direction vector fields.
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Figure 7:  Glass block texture applied to a simple model with a constant directional field.  Note the general

preservation of continuity in the texture pattern and the relative consistency of the bricks’ shapes and sizes,

despite scattered artifacts.  The direction field is locally given by the projection of the central axis of the object

onto the tangent plane of each patch.  Some of the patches in this model were resynthesized in a

postprocess.
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We are currently working with Dr. Jack Goldfeather to develop robust methods for computing smooth,

accurate principal direction vector fields across arbitrary polygonally-defined objects [9].  A complementary

approach being developed by Bertalmio et al. [3] has the potential to facilitate the anisotropic smoothing of

these fields.  Our present results in applying an anisotropic texture over the surface of an object such that its

dominant orientation is everywhere aligned with the first and second principal directions are shown in figure

8, and contrasted there with the results obtained using a constant “up” direction.  Despite the preliminary state

of work in shape representation via texture, we believe that there is significant inherent potential for a method

capable of synthesizing a variety of principal direction textures over arbitrary curving forms.

4. Implementation

Our system is fully automatic, and does not require user interaction during either the splitting or texture

synthesis process.  The system has several parameters which can be adjusted by the user in order to increase

the likelihood of obtaining optimal results with different kinds of textures or models.  Within the splitting

stage, these parameters include: an upper bound on the size of any single patch during splitting and an upper

bound on the angle that the normal of any member triangle can make with the reference direction for a patch.

Within the texture synthesis stage, the user may first choose among several possible texture orientation

options: to have the texture follow the direction of greatest or least signed or unsigned normal curvature, to

follow the projection onto the local tangent plane of a constant specified direction, or to follow no specific

direction (in which case the pattern is assumed to be invariant under rotation).  With regard to texture

synthesis, the user may also control: the sizes of the neighborhoods used in the each pass of the texture

synthesis (larger neighborhoods generally increase the computational expense of the synthesis but are

sometimes necessary in order to preserve features across a range of different scales); the number of first-

round preselected locations to be tested for a match on the second pass; and the weighting scheme used over

the neighborhood during the matching process.

In most cases, it is sufficient to define the direction of texture synthesis across a patch according to the

distribution pattern of previously textured pixels in the boundary region, under the assumption that starting

from the side containing the greatest number of previously filled pixels will provide the most stable seed for

the synthesis.  Unfortunately, this is not always true (see the section on errors below).  Certain strongly

directional patterns seem to yield better results when the synthesis is performed in a particular set of

directions (left/right or top/down).  For quickly varying direction fields, starting from areas in which the

direction field is most calm seems to improve the quality of the synthesized patch.

We use one of two different methods to determine the direction in which the synthesis proceeds from

patch to patch.  The simple method that works well on many vector fields is to begin with a randomly chosen

patch and proceed to any blank connected patch, filling in any holes at the end.  For principal direction vector

fields we get somewhat better results choosing the blank connected patch in which the difference between the



16

two principal curvatures is greatest.  This favors working first in areas over which the principal directions are

clearly defined, providing a stable seed for the synthesis of the other patches.

The most computationally expensive part of the algorithm is the texture synthesis, which accounts for 95

to 99% of the running time.  Partitioning and optimizing the patches takes only about 1-3 seconds for simple

meshes such as the Venus and triceratops, 10-12 seconds for larger meshes such as the 70,000 triangle bunny.

The synthesis time depends on the required number of pixels, which determines the final resolution of the

texture on the object, and the size of the pre-select list needed to correctly synthesize the texture.  Growing the

weave texture on the Venus model in figure 1 took slightly less than 12 min.  The goblet/glass block

combination required about 20 minutes.  These timings refer to a C++ implementation compiled with gcc2

running on a standard linux (2.2.16) 933MHz Pentium III PC with a 32Mb GeForce 2 GTS.

4.1.1 Limitations

In its current form, our implementation is limited to the synthesis of grayscale and pseudo-color mapped

images; this is common for many of the algorithms discussed in section 2.  While this may not be an optimal

final choice, beginning our algorithmic development in the greyscale domain allowed us to sidestep initially

the problems of choosing an appropriate color space and finding a good weighting function for the three

channels, and to focus immediately on the central critical issues in the synthesis of artifact-free fitted textures.

We achieved the colorized textures shown in this paper by the following method.  An optimal color map is

extracted from a true color image using a paint program such as “The GIMP”.  The (YIQ) colormap is then

sorted by Y and the color indices in the picture used directly as a greyscale image. When the synthesis is

finished, the sorted colormap is applied to the greyscale synthesized texture using the gray value again

directly as an index into the colormap.  This index-based method is not formally correct, as very different

hues could end up to be nearly adjacent in the colormap because only the color order is defined by the Y

values.  However, we did not observe appreciable differences in the results obtained using this approach

compared with using a correct greyscale image formed from the Y values only.  The disadvantage in using the

exact Y values directly, as opposed to relying on the ordered color indices, is that it would force the use of

floats very early in the program, making things more complicated.

A second limitation that bears mentioning is that we found that the large amounts of texture generated by

the synthesis caused problems for certain architectures, specifically those that had hard built-in limitations on

the amount of texture memory that could be used.  When a high level of detail is desired, without any

possibility for pattern repetition, the total amount of texture required to cover the mesh can easily exceed the

total size of the texture memory.  All of the machines that did not allow storage of textures in main memory

failed to display the more complex models (e.g. the crocodile skinned triceratops).  Using a texture atlas

similar to the one described in [24] might help reduce the texture memory usage, at the cost of incorrect

                                                                        
2 optimization flags -O2 -funroll-loops -fstrict-aliasing -march=i686
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mipmapping.  In our current implementation each patch is stored as a single texture, producing a texture

memory waste of up to 25% to 50% depending on the model.  Thanks to OpenGL texture compression

extensions, all of the models presented in this paper can maintain interactive frame rates on our standard PC

however, even in cases where the amount of uncompressed texture exceeds 100Mb.

The method that we have proposed is currently designed to be applied to static models, and we have not

thought about how to extend it to the case of deforming animated objects.  Modifications to make the texture

synthesis process deterministic are an obvious first step toward satisfying this requirement, but it is not

immediately clear how one could guarantee that independently synthesized patterns will not differ profoundly

from frame to frame as the mesh defining the object is globally deformed.

To achieve good results with the shape-following textures, the direction field must be band-limited: for

any given texture there is a maximum spatial frequency that can be followed in the synthesis process and still

produce correct results.  Nevertheless we found that the method did a good job at singular points on the brick-

textured lava lamp object, as can be seen in figure 8.

Sometimes, as described in [7], the synthesis algorithm fails and produces undesirable results across all or

part of a patch.  Depending on the texture, we find that 0-5% of the patches typically contain some synthesis

errors.  Unfortunately, areas as small as 5x5 pixels (in a 128x128 pixel patch) are easily noticed.  The

difficulties in automatically detecting such small areas prevented the implementation of a mechanism for

automatic correction.  However, the current implementation allows the user to interactively select and re-

synthesize the unaesthetic patches after the main synthesis process has finished.  Figs 7-11 in this paper show

models in which parts of the texture were resynthesized across one or more patches.  Figs 1, 4 and 6 show

results that were obtained without any such postprocessing.

5. Applications And Future Work

There are many promising applications for this system and many directions for future work.  One of the most

interesting of these is multi-texturing.  On a per-pixel basis it is possible to change not only the direction of

the synthesized texture but even the texture itself according to any arbitrary function.  Figures 10 and 11 are

made using the illumination equation and two and four different textures respectively, each one with 63

rotations.  These  models, like all of the others in this paper, can be displayed at interactive frames rates on

our standard PC.

The multi-texturing methods described in this paper have the potential to be useful for important

applications in scientific visualization, for example in encoding a scalar distribution using texture type

variations across an arbitrary domain in 2D or 3D.  Other direction fields, such as gradient descent, hold

promise for different applications, such as non-photorealistic rendering of terrain models (esp. in the case

when it is desired to see through the surface).  The methods that we have proposed can also be used for the

visualization of scientifically computed vector fields over surfaces.  An intriguing possible use for an

extension of this work is in defining texture mixtures.
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Figure 10:  A demonstration of multi-texturing, in which the search for matches is performed within an array of

different texture types.  The texture type index can be defined by any function.  In this example, we used the

illumination function.  In a real application one would want to use something more meaningful, such as soil

type.
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Figure 11:  Multiple textures containing lines of different widths applied to an automatically-defined smooth

vector field approximating the first principal direction over the Stanford bunny.  Indexing along the dimension

of varying width was done as a function of the illumination.
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6. Conclusions

In this paper we describe a fully automatic method for synthesizing, from a small provided sample, patches of

a perceptually equivalent texture pattern that can be fit over contiguous sets of polygons in an object.  This is

done without appreciable seams or projective distortion, and the texture pattern can be locally oriented to

follow any computed vector field over the surface.  Our method is straightforward and computationally

efficient, and demonstrates good results with a variety of different texture types and models.
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Abstract

Many scientific and medical visualization techniques
produce irregular surfaces whose shape and structure need
to be understood.  Examples include tissue and tumor
boundaries in medical imaging, molecular surfaces and
force thresholds in chemical and pharmaceutical
applications, and isosurfaces in a wide range of 3D
domains.  The 3D shape of such surfaces can be particularly
difficult to interpret because of the unfamiliar, irregular
shapes, the potential concavities and bulges, and the lack of
parallel lines and right angles to provide perspective depth
cues.  Attempts to display multiple irregular surfaces by
making some or all of them transparent further complicates
the problem.  Texture can provide valuable cues to aid in
the interpretation of irregular surfaces.  Opacity-modulating
textures offer a mechanism for the display of multiple
surfaces without the extreme loss of clarity of multiple
transparent surfaces.  This paper presents a method for
creating simple repeating textures and mapping them onto
irregular surfaces.

1.  Introduction

Many applications of visualization require the display of
irregularly shaped surfaces.  Understanding terrain
undulations, cloud shapes, molecular surfaces, or tissue
masses requires the interpretation of surfaces with irregular,
and often unfamiliar, shapes.  Display of the 3D statistical
surface defined by scalar values in a 2D domain, commonly
called a mountain plot, can involve similar irregular
surfaces.  Additionally, visualization operations often create
additional irregular surfaces for interpretation.  Isosurface
generation is the most common of these, defining the
boundaries of 3D regions in a wide variety of applications.
Isosurfaces are used to delineate 3D regions where certain
conditions hold, such as places where air pollutant levels
exceed legislated limits, tissue density deviates from normal
values, toxin levels in river sediment are unacceptably high,
or air flow creates high pressure values.  In such situations,
observers use these isosurfaces to judge whether additional
pollution restrictions should be imposed, a biopsy should be
performed to investigate a suspected tumor, the river
bottom should be dredged to remove contaminated
sediment, or the building should be redesigned to improve
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air flow.  Such critical decision-making depends on
accurate interpretation of isosurface shapes.

Arbitrary surfaces are particularly hard to understand
because they can lack many of the visual cues observers
generally use to interpret three-dimensional shape.  The
lack of parallel lines and right angles reduce the power of
perspective depth cues.  Unfamiliar shapes limit
interpretation based on past experiences with similar
shapes.  Irregular surfaces can self-shadow and self-obscure
themselves in complex ways, reducing the effectiveness of
lighting and obscuration cues.  When surfaces are made
transparent, in order to show what lies behind or within
them, their shape becomes even more difficult to perceive
accurately.

The application of texture to irregular surfaces can make
them easier to interpret by providing additional shape cues.
Texture can help disambiguate obscuration cues by
clarifying how different parts of the surface meet and hide
one another.  The effects of perspective, and from them
additional depth cues, are visible in the texture gradient.
Specifically, the apparent scale of the projected texture
decreases as the surface recedes from the observer.  The
texture in distant patches appears to be compressed, a
denser pattern with smaller features.  These perspective
effects are likely to be more obvious on the texture than on
the object itself.  This is because texture shape in one area
can be compared to texture shape in another, with
differences indicating depth differences.  Similar
comparisons among geometric features of the object would
not be as enlightening because object shape in different
areas cannot necessarily be expected to be similar.  The
texture gradient also provides information about the
orientation of surface segments, as textures undergo
convergence on surfaces that drop away from the observer.
More information about surface perception from texture can
be found in the perception literature [for instance,
Gibson50, Cutting84, Todd87, Cumming93].

Adding texture to transparent surfaces results in even
greater perceptual benefits, since perception of shape from
completely transparent surfaces is so difficult to begin with.
For maximum benefit, the texture should combine
transparent parts which show what lies behind with opaque
parts which improve shape perception.  I call such textures
opacity-modulating, since they specify variations in the
opacity of the surface as well as, or instead of, the color.
The visual features of such textures can be either direct
changes in color and intensity or indirect changes that occur
when the identity of the visible surface changes as a result
of changes in opacity.



2.  Related Work

Schweitzer first proposed that artificial textures, those not
necessarily mimicking any realistic texture, could be used
to improve the perception of surface shape from rendered
images [Schweitzer83].  He generated screen space texture
elements with feature density and shape determined by the
surface depth and orientation.

Previous uses of transparent textures to improve shape
perception have included screen-space textures for
automatic illustration [Dooley90], solid grid textures in
medical imaging [Levoy90], and solid equation textures for
mathematical visualization [Wejchert92].  Interrante
[Interrante95] addressed the problem of accurately
communicating the shape of transparent skin surfaces by
adding opaque ridge and valley lines reminiscent of artists’
renderings.  This technique works very well on familiar
shapes with relatively sparse ridge and valley features, such
as the medical applications for which it was developed.
The unfamiliar shapes and multiple self-obscurations of
arbitrary surfaces limit the usefulness of ridge and valley
lines.

Reaction diffusion textures, such as those developed by
Turk [Turk91], can be generated directly on a surface,
guaranteeing that the texture will follow surface contours.
Unfortunately, systems of reaction-diffusion equations are
generally tricky to define and slow to compute.  Although
texture values can be stored directly as vertex colors once
they have been computed, making texture mapping solely a
preprocessing step which does not impact view-time
rendering speed, this forces texture repeats to be several
times the size of typical polygons if texture details are to be
visible.

In molecular visualization, texture mapping has
increasingly been used to accelerate the mapping from
molecular properties to surface characteristics
[Teschner94].  In this property-based texture mapping,
molecular properties at vertices are used to generate texture
coordinates, so surface texture follows the distribution of
property values across the surface.  Duncan and Olson
[Duncan95] describe location-based texture mapping for
parametric molecular surfaces, characterized by a one-to-
one correspondence between surface points and texture
elements.  In both sorts of molecular texture mapping, the
objective is the display of additional information, rather
than the improvement of surface shape perception.  The
textures used are generally opaque.

3.  Requirements

What characteristics should a texture have in order to give
strong shape cues on irregular surfaces?  Appropriate
textures are fine-grain repeating patterns which follow the
surface of the object.  Small, regular textures provide visual

features without drawing undue attention to themselves.
They must be able to be tiled without visible seams, since
such seams are artifacts of the polygonal decomposition or
specific texture mapping and might draw the observer’s
attention without conveying any useful information about
surface shape.  These stringent pattern requirements
practically preclude that suitable textures can simply be
scanned in; they need to be generated algorithmically.

Additionally, textures should be easy to generate and quick
to render.  Generally, this means that textures should be
image-based, a precomputed image stored in texture
memory, rather than procedural, defined by a procedure
evaluated during the shading calculations made at each
pixel.  This allows applications to exploit the texture-
mapping hardware available on common graphics
workstations.  Rendering speed is particularly important,
since interactive viewing of complex three-dimensional
shapes is a source of strong shape cues.  Kinetic depth effect
occurs when an object is rotated or translated to reveal
previously obscured portions.  The manner in which the
surface appears from, and disappears to, behind the surface
reveals much about the 3D structure underlying the 2D
projection.  Conversely, head-motion parallax results when
the observer’s virtual position in the environment changes,
revealing different parts of the object.  This position can be
controlled in a variety of ways, but the strongest effects
occur when head position is tracked to automatically control
view position [vanDamme94].

Mapping a two-dimensional surface texture onto an
arbitrary surface in 3D poses a problem.  Arbitrary surfaces
are not developable; that is, they cannot be laid out flat
without distortion.  By way of example, a cylinder is
developable; a sphere is not.  The difficulty lies in assigning
texture coordinates to vertices in a way that accurately
represents the surface geometry.  A common method of
mapping a texture onto a surface is to project the texture
orthogonally or cylindrically onto the surface.  The more
the object is like a plane, or a cylinder, the better this works.
Unfortunately, in these sorts of projections depth
information (or the distance from the surface to the texture
plane) is ignored.  This distorts the texture in areas where
the surface is not orthogonal to the direction of projection.
Since we wish to use the apparent texture gradient
distortions from the viewing and perspective
transformations to convey shape information, texture
distortions from the mapping process are clearly
undesirable.

Alternatively, solid texture could be used to circumvent the
problems of 2D-to-3D texture mapping.  The appropriate
texture value at each location on the object surface would
simply be the value at the corresponding location in the 3D
texture map.  The result can be thought of as an object of
the specified shape carved out of a block of the material
described by the 3D texture.  Unfortunately, solid textures
do not provide the desired shape cues since the texture does
not follow the surface contours.  While texture gradient



changes due to perspective will still be apparent, those due
to orientation will not.  In order to provide the appropriate
shape cues, we require a texture that is generated directly on
the surface; that is, one which is based on the shape of the
surface itself, not on the underlying coordinate system.

4. Triangular Texture Space

A certain class of textures generated in a triangular texture
space can greatly simplify the problem of mapping a 2D
texture onto an arbitrary polygonal surface.  Assume the
surface is composed entirely of triangles.  If not, an
arbitrary polygon mesh can easily be transformed into a
triangle mesh.  For simplicity, use extreme points of (0,0),
(1,0) and (0.5, 3

2 ) to create an equilateral triangular
texture element.  Now the problem has become that of
mapping one triangle onto another.  The assignment of
texture coordinates to triangle vertices has been simplified
to the assignment of the coordinates of one of the texture
element extreme points to each triangle vertex.

Next, if the sequence of texture values along each side is
identical, and consequently the values at the texture element
extreme points are the same, the problem is further
simplified.  Now, any side of the texture element will match
seamlessly with any other side, so the texture element may
be placed on the triangle in any orientation. Simply assign
coordinates to one vertex randomly and then assign the
other coordinates in turn, walking in the same direction
around the texture element and triangle.

Clearly this simplification of the texture mapping process is
not suitable for the creation of realistic textures on familiar
objects, but it suffices for the creation of small scale,
regular texture patterns on unfamiliar surfaces for the
purpose of enhancing shape perception.

Triangular textures were created using Pdbq, a special-
purpose language for molecular visualization developed by

Palmer [Palmer92].  Pdbq is a C-like interpreted language
which provides basic and geometric data types, control
structures, overloaded operators, streams to support both
simple and geometric file I/O, and built-in functions to
perform standard, molecular, and geometric tasks.  Simple,
symmetric triangular textures [Figure 1] can be generated
by such methods as:

{spots at texel center -- Fig 1a}
for all points (x,y)

opacity(x,y) = 1 - dist((x,y),
centroid)

or:
{spots at vertices (v1,v2,v3) -- Fig 1b}
for all points (x,y)

opacity(x,y) =
1 - min(dist((x,y),v1),

dist((x,y),v2), dist((x,y),v3)
or:

{ring texture: RAD sets radius -- Fig 1c
}
for all points (x,y)

opacity(x,y) =
1-MAX(ABS(RAD-min(dist((x,y),v1),
dist((x,y),v2),dist((x,y),v3)

Designing textures which modulate opacity offer specific
challenges.  An effectiveß texture will have both enough
transparent parts for the objects behind to be seen clearly
and enough opaque parts for the surface on which it lies to
be clearly perceived.  Unfortunately, these requirements are
directly at odds with one another.  The right balance must
be struck on a case-by-case basis, depending on clarity of
the inside objects, the irregularity of the outside surface,
and the relative importance of the various objects.

5.  Tessellation

Obviously, the most regular texture patterns will be formed
over surfaces with uniformly sized triangles.  On such
surfaces, texture elements are replicated at a constant size
across the surface.  Additionally, since the texture element

    

Figure 1.  Three simple triangular textures with opaque area a) at element centroid, b) at vertices, and c) in rings around
vertices.  Dark areas represent high opacity.



is defined on an equilateral triangle, the textured surface
will appear most regular when triangles of the surface are
also equilateral.  Clearly, an arbitrary surface will not
necessarily be comprised of uniformly sized equilateral
triangles.  On irregular surfaces, triangles which are
unusually large, small, or skinny result in disruptions of the
texture pattern.  Figure 2a shows the initial tessellation
resulting from the computation of the solvent-accessible
surface of a molecule.  Figure 2b shows the result of
texturing this surface with a triangular texture.  Disruptions
of the texture regularity are especially visible in the lower
left part of the molecule.  The textures used in Figure 2 are
completely opaque to show the effects of the tessellation
more clearly.

Texture pattern regularity can be improved by a
preprocessing step which regularizes the polygonal
tessellation, producing triangles which are more uniformly
sized and closer to equilateral.  This re-tiling was performed
using an automatic method developed by Greg Turk
[Turk92].  First, a new set of points is chosen at random
locations on the surface.  These points will later become the
vertices of the regularized tessellation.  Then, a relaxation
procedure is applied to move points away from neighboring
points by way of a simulated repulsion force.  The result of
this process is a set of candidate points uniformly
distributed across the polygonal surface.  Next, each
polygon of the original triangulation is replaced by a set of
triangles which uses the original polygon vertices and the

a)  b) 
Figure 2.  a) Initial tessellation of solvent-accessible surface and b) result of applying triangular texture to that surface.

a)  b) 
Figure 3.  a)  Regularized tessellation of solvent-accessible surface and b) result of applying triangular texture to the new
surface.



candidate vertices which lie in the polygon to exactly tile
the polygon.  This mutual tessellation preserves the
connectedness of the original surface.  Finally, the original
vertices are removed from the mutual tessellation, resulting
in a polygonal surface containing only the new vertices.
Figure 3 shows the result of regularizing the molecular
surface shown in Figure 2.  Notice that triangles are
distributed more evenly, resulting in a more regular texture
pattern.

In fact, even just the hidden surface view of the new
tessellation (Figure 3a) shows the molecule shape clearly,
since the polygon boundaries form a relatively small scale,
regular pattern.  This image was rendered by the same
method as the textured surfaces, in this case a triangular
texture with high value near the boundaries of the texture
element was used.  This pattern, however, would not work
well for an opacity-modulating texture, since the opaque
and transparent areas are not properly balanced.

Although these same methods can be used to create
polygonal models at various levels of detail, the molecular
surfaces used in the figures were re-tiled with
approximately the same number of polygons as the original
tessellation, creating a more regular tessellation at the same
level of detail.

6.  Results

Details of the shape of the molecular surface are visible in
the textured image.  For instance, the vertically compressed
texture pattern near the center of the image in Figure 3b
indicates a “shelf” in the molecular surface.  A similar
feature is visible near the indentation on the right side of the
molecule.  In an untextured surface, the visibility of these
features would be dependent on the position of lights in the
scene.  For many lighting configurations, these features
would be extremely difficult to see.

Figure 4 shows the solvent-accessible surface of the same
molecule represented with a transparent surface (Figure 4a)
and an opacity-modulating textured surface (Figure 4b).  In
both cases the ball-and-stick representation of the
molecule’s atoms and bonds can clearly be seen within the
surface.  The textured image gives better clues to the shape
of the surface, particularly in places where the surface is
nearly orthogonal to the view direction.  Both images
require close examination to understand the shape of such a
complex, unfamiliar object, but at some places on the
surface of the transparent object no amount of examination
seems to reveal structural details.  In both images color has
been used to represent the values of another variable at
points on the surface.  While the overall distribution of
color values is more striking in the transparent surface, in
areas where elements of the ball-and-stick representation
underlie the surface, the color is very difficult to discern.  In
the textured surface, color values are apparent at opaque
parts of the surface.  However, if the opaque bands are
narrow, judging color values may require careful
examination.  While color appearance of transparent
surfaces is always changed by the color of underlying
surfaces, the color appearance of opaque parts of an
opacity-modulating surface is only influenced by
simultaneous contrast effects with nearby areas, including
those visible through holes in the surface.

Statistical surfaces textured with opacity-modulating
patterns are also more comprehensible than those rendered
as transparent surfaces.  Figure 5 shows a statistical surface
of ozone concentration represented using both methods.  In
both images, ozone level is mapped redundantly to height
and color.  The surface in Figure 5b is textured with a
rectangular opacity-modulating texture, but the same
general principles as for triangular textures apply.  Both
techniques show the map outline lying below the surface,
but texturing conveys more information about surface
shape.  In the textured image, the slight valley between the
two ridges in the foreground is more visible.  In the

a)      b) 
Figure 4.  Comparison of a) transparent surface to b) opacity-modulating surface for molecular application.  Color represents
an additional variable (in this case, simply position in x) evaluated at the solvent-accessible surface.  See color plates.



transparent image, the ridges themselves are visible
primarily from color changes and not from shape cues.
Similarly, subtle undulations of the far left part of the
surface are clearly visible in the textured image but appear
to be a formless jumble in the transparent image.

The shape of multiple irregular molecular surfaces is
virtually incomprehensible when displayed using
transparent surfaces [Figure 6a].  In these images, the
solvent-accessible surfaces for solvent atoms of two
different radii are displayed along with the ball-and-stick
representation.  Surface structure where the screen
projections of the different surfaces overlap is particularly
difficult to discern.  Display of the same surfaces using
opacity-modulating textures is somewhat clearer [Figure
6b], especially in places where surface orientation causes

substantial distortions of the texture gradient.  Still, a clear
understanding of the details of surface shape is difficult to
glean from either image.  When the image is animated,
however, the improvement in clarity resulting from the
textured surface is striking.  The more abundant surface
features provided by the repeating texture facilitate
perception of the surface shape.  Relative movement of
these small features creates a strong sensation of depth
relationships, improving surface perception.

7.  Extensions

Stereo pairs of textured irregular surfaces should offer
many of the benefits of rotation of the surfaces at a much
lower computational cost.  Just as moving textured surfaces
offer compelling shape cues not present in either static

a)    b) 
Figure 5.  Comparison of a) transparent and b) textured statistical surface.  Ozone concentrations over the Eastern seaboard of
the US are redundantly mapped to height and color in both images.  See color plates.

a)   b) 
Figure 6.  Comparison of a) multiple transparent surfaces to b) multiple opacity-modulating surfaces.  See color plates.



views or moving transparent surfaces, so should stereo
views of textured surfaces.  The richness of textural detail
provides abundant features for matching locations between
the two views.  Since it is the positional disparity of
features between the two views which creates the sensation
of depth, the presence of adequate textural features ensures
a strong perception of depth from positional disparity, just
as it ensures a strong perception of depth from relative
motion.  This expectation is supported by the fact that the
mechanisms of stereo perception are similar to those of
motion perception, and by and large the two are performed
by the same channels in the human visual system.

Another interesting question which remains is whether the
texture pattern can be used to carry information of its own
without disrupting its role in perception improvement.  For
instance, type of texture element could encode some
classifier on the surface, such as tissue type or land use.  As
long as texture elements joined seamlessly at polygon
boundaries, either because classification of adjoining
polygons was guaranteed to match or because all texture
elements had identical values along their boundaries, no
complications would be introduced to the texture mapping
process.  Alternatively, texture density or opacity drop-off
rate could represent confidence in the data.  Such a
technique would require that the texture be procedurally
generated, unless the number of distinct values represented
by texture characteristics was fairly small.  Otherwise, a
potentially prohibitive number of different texture elements
would need to be generated and stored in order to represent
the range of values (or combinations of values).
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Figure 4.  Comparison of a) transparent surface to b) opacity-modulating surface for molecular application.   Color represents an additional
variable (in this case, simply position in x) evaluated at the solvent-accessible surface.

Figure 5.  Comparison of a) transparent and b) textured statistical surface.  Ozone concentrations over the Eastern seaboard of the US are
mapped to height and color in both images.

 
Figure 6.  Comparison of a) multiple transparent surfaces to b) multiple opacity-modulating surfaces.
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Abstract 

Accurately and automatically conveying the structure of a volume
model is a problem not fully solved by existing volume rendering
approaches.  Physics-based volume rendering approaches create
images which may match the appearance of translucent materials
in nature, but may not embody important structural details.
Transfer function approaches allow flexible design of the volume
appearance, but generally require substantial hand tuning for each
new data set in order to be effective.  We introduce the volume
illustration approach, combining the familiarity of a physics-
based illumination model with the ability to enhance important
features using non-photorealistic rendering techniques.  Since
features to be enhanced are defined on the basis of local volume
characteristics rather than volume sample value, the application
of volume illustration techniques requires less manual tuning than
the design of a good transfer function.  Volume illustration
provides a flexible unified framework for enhancing structural
perception of volume models through the amplification of
features and the addition of illumination effects.

CR Categories:  I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – color, shading, and texture; I.3.8
[Computer Graphics]: Applications.
Keywords: Volume rendering, non-photorealistic rendering,
illustration, lighting models, shading, visualization.

1 Introduction
For volume models, the key advantage of direct volume rendering
over surface rendering approaches is the potential to show the
structure of the value distribution throughout the volume, rather
than just at selected boundary surfaces of variable value (by
isosurface) or coordinate value (by cutting plane).  The
contribution of each volume sample to the final image is
explicitly computed and included.  The key challenge of direct
volume rendering is to convey that value distribution clearly and
accurately.  In particular, showing each volume sample with full
opacity and clarity is impossible if volume samples in the rear of
the volume are not to be completely obscured.

Traditionally, volume rendering has employed one of two
approaches.  The first attempts a physically accurate simulation
of a process such as the illumination and attenuation of light in a
gaseous volume or the attenuation of X-rays through tissue
[Kajiya84, Drebin88].  This approach produces the most realistic

                                                          
 

and familiar views of a volume data set, at least for data that has
an appropriate physical meaning.  The second approach is only
loosely based on the physical behavior of light through a volume,
using instead an arbitrary transfer function specifying the
appearance of a volume sample based on its value and an
accumulation process that is not necessarily based on any actual
accumulation mechanism [Levoy90].  This approach allows the
designer to create a wider range of appearances for the volume in
the visualization, but sacrifices the familiarity and ease of
interpretation of the more physics-based approach.

We propose a new approach to volume rendering: the
augmentation of a physics-based rendering process with non-
photorealistic rendering (NPR) techniques [Winkenbach94,
Salisbury94] to enhance the expressiveness of the visualization.
NPR draws inspiration from such fields as art and technical
illustration to develop automatic methods to synthesize images
with an illustrated look from geometric surface models.  Non-
photorealistic rendering research has effectively addressed both
the illustration of surface shape and the visualization of 2D data,
but has virtually ignored the rendering of volume models.  We
describe a set of NPR techniques specifically for the visualization
of volume data, including both the adaptation of existing NPR
techniques to volume rendering and the development of new
techniques specifically suited for volume models.  We call this
approach volume illustration.

The volume illustration approach combines the benefits of
the two traditional volume rendering approaches in a flexible and
parameterized manner.  It provides the ease of interpretation
resulting from familiar physics-based illumination and
accumulation processes with the flexibility of the transfer
function approach.  In addition, volume illustration provides
flexibility beyond that of the traditional transfer function,
including the capabilities of local and global distribution analysis,
and light and view direction specific effects.  Therefore, volume
illustration techniques can be used to create visualizations of
volume data that are more effective at conveying the structure
within the volume than either of the traditional approaches.  As
the name suggests, volume illustration is intended primarily for
illustration or presentation situations, such as figures in
textbooks, scientific articles, and educational video.

2 Related Work
Traditional volume rendering spans a spectrum from the accurate
to the ad hoc.  Kajiya's original work on volume ray tracing for
generating images of clouds [Kajiya84] incorporated a physics-
based illumination and atmospheric attenuation model.  This
work in realistic volume rendering techniques has been extended
by numerous researchers [Nishita87, Ebert90, Krueger91,
Williams92, Max95, Nishita98].  In contrast, traditional volume
rendering has relied on the use of transfer functions to produce
artificial views of the data to highlight regions of interest
[Drebin88].  These transfer functions, however, require in-depth
knowledge of the data and need to be adjusted for each data set.
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The design of effective transfer functions is still an active
research area [Fang98, Kindlmann98, Fujishiro99].  While
transfer functions can be effective at bringing out the structure in
the value distribution of a volume, they are limited by their
dependence on voxel value as the sole transfer function domain.

In contrast, there has been extensive research for illustrating
surface shape using non-photorealistic rendering techniques.
Adopting a technique found in painting, Gooch et al. developed a
tone-based illumination model that determined hue, as well as
intensity, from the orientation of a surface element to a light
source [Gooch98].  The extraction and rendering of silhouettes
and other expressive lines has been addressed by several
researchers [Saito90, Salisbury94, Gooch99, Interrante95].
Expressive textures have been applied to surfaces to convey
surface shape [Rheingans96, Salisbury97, Interrante97].

A few researchers have applied NPR techniques to the
display of data.  Laidlaw used concepts from painting to create
visualizations of 2D data, using brushstroke-like elements to
convey information [Laidlaw98] and a painterly process to
compose complex visualizations [Kirby99].  Treavett has
developed techniques for pen-and-ink illustrations of surfaces
within volumes [Treavett00]. Interrante applied principles from
technical illustration to convey depth relationships with halos
around foreground features in flow data [Interrante98].  Saito
converted 3D scalar fields into a sampled point representation and
visualized selected points with a simple primitive, creating an
NPR look [Saito94].  With the exceptions of the work of Saito
and Interrante, the use of NPR techniques has been confined to
surface rendering.

3 Approach
We have developed a collection of volume illustration techniques
that adapt and extend NPR techniques to volume objects. Most
traditional volume enhancement has relied on functions of the
volume sample values (e.g., opacity transfer functions), although
some techniques have also used the volume gradient (e.g.,
[Levoy90]). In contrast, our volume illustration techniques are
fully incorporated into the volume rendering process, utilizing
viewing information, lighting information, and additional
volumetric properties to provide a powerful, easily extensible
framework for volumetric enhancement. Comparing Diagram 1,
the traditional volume rendering system, and Diagram 2, our
volume illustration rendering system, demonstrates the difference
in our approach to volume enhancement. By incorporating the
enhancement of the volume sample’s color, illumination, and
opacity into the rendering system, we can implement a wide
range of enhancement techniques.  The properties that can be
incorporated into the volume illustration procedures include the
following:

• Volume sample location and value

• Local volumetric properties, such as gradient and minimal
change direction

• View direction

• Light information

The view direction and light information allows global
orientation information to be used in enhancing local volumetric
features. Combining this rendering information with user selected
parameters provides a powerful framework for volumetric
enhancement and modification for artistic effects.

Volumetric illustration differs from surface-based NPR in
several important ways. In NPR, the surfaces (features) are well
defined, whereas with volumes, feature areas within the volume
must be determined through analysis of local volumetric
properties. The volumetric features vary continuously throughout
three-dimensional space and are not as well defined as surface
features. Once these volumetric feature volumes are identified,
user selected parametric properties can be used to enhance and
illustrate them.

We begin with a volume renderer that implements physics-
based illumination of gaseous phenomena.  The opacity transfer
function that we are using is the following simple power function:

where vi is the volume sample value and kos is the scalar
controlling maximum opacity.  Exponent koe values less than 1
soften volume differences and values greater than 1 increase the
contrast within the volume.

Figure 1 shows gaseous illumination of an abdominal CT
volume of 256×256×128 voxels.  In this image, as in others of
this dataset, the scene is illuminated by a single light above the
volume and slightly toward the viewer.  The structure of tissues
and organs is difficult to understand.  In Figure 2, a transfer
function has been used to assign voxel colors which mimic those
found in actual tissue.  The volume is illuminated as before.
Organization of tissues into organs is clear, but the interiors of
structures are still unclear. We chose to base our examples on an
atmospheric illumination model, but the same approach can be
easily applied to a base renderer using Phong illumination and
linear accumulation.

In the following two sections, we describe our current
collection of volume illustration techniques.  These techniques
can be applied in almost arbitrary amounts and combinations,
becoming a flexible toolkit for the production of expressive
images of volume models.  The volume illustration techniques we

Traditional Volume Rendering Pipeline

voxel colors  cλ(xi)

shading classification

shaded, segmented volume  [cλ(xi), α(xi)]

image pixels  Cλ(ui)

Volume values  f1(xi)

voxel opacities  α(xi)

resampling and compositing
(raycasting, splatting, etc.)

Diagram 1.  Traditional Volume Rendering Pipeline.

Volume 
Rendering

Volume Illustration Volume Illustration
 color modification     opacity modification

Volume Illustration Rendering Pipeline

Final  volume sample [cλ(xi), α(xi)]

image pixels  Cλ(ui)

volume values  f1(xi)

Transfer function

Diagram 2.  Volume Illustration Rendering Pipeline.
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propose are of two basic types: feature enhancement, and depth
and orientation cues.

4 Feature Enhancement
In a surface model, the essential feature is the surface itself.  The
surface is explicitly and discretely defined by a surface model,
making “surfaceness” a boolean quality.  Many other features,
such as silhouettes or regions of high curvature, are simply
interesting parts of the surface.  Such features can be identified
by analysis of regions of the surface.

In a volume model, there are no such discretely defined
features.  Volume characteristics and the features that they
indicate exist continuously throughout the volume.  However, the
boundaries between regions are still one feature of interest.  The
local gradient magnitude at a volume sample can be used to
indicate the degree to which the sample is a boundary between
disparate regions. The direction of the gradient is analogous to
the surface normal.  Regions of high gradient are similar to
surfaces, but now “surfaceness” is a continuous, volumetric
quality, rather than a boolean quality. We have developed several
volume illustration techniques for the enhancement of volume
features based on volume gradient information.

4.1 Boundary Enhancement
Levoy [Levoy90] introduced gradient-based shading and opacity
enhancement to volume rendering.  In his approach, the opacity
of each voxel was scaled by the voxel's gradient magnitude to
emphasize the boundaries between data (e.g., tissue) of different
densities and make areas of constant density transparent (e.g.,
organ interiors).  We have adapted this idea to allow the user to
selectively enhance the density of each volume sample by a
function of the gradient.  Assume a volume data set containing a
precomputed set of sample points.  The value at a location Pi is a
scalar given by:

We can also calculate the value gradient ∇f (Pi) at that location.
In many operations we will want that gradient to be normalized.
We use ∇fn  to indicate the normalized value gradient.

Before enhancement, voxel values are optionally mapped
through a standard transfer function which yields color value cv

and opacity ov for the voxel.  If no transfer function is used, these
values can be set to constants for the whole volume.  The
inclusion of a transfer function allows artistic enhancements to
supplement, rather than replace, existing volume rendering
mechanisms.

We can define a boundary-enhanced opacity for a voxel by
combining a fraction of the voxel’s original opacity with an
enhancement based on the local boundary strength, as indicated
by the voxel gradient magnitude.  The gradient-based opacity of
the volume sample becomes:

where ov is original opacity and ∇f is the value gradient of the
volume at the sample under consideration.  This equation allows
the user to select a range of effects from no gradient enhancement
(kgc=1, kgs=0) to full gradient enhancement (kgs >=1) to only
showing areas with large gradients (kgc=0), as in traditional
volume rendering.  The use of the power function with exponent
kge allows the user to adjust the slope of the opacity curve to best
highlight the dataset.

Figure 3 shows the effect of boundary enhancement in the
medical volume.  The edges of the lungs and pulmonary
vasculature can be seen much more clearly than before, as well as
some of the internal structure of the kidney.  Parameter values
used in Figure 3 are kgc = 0.7, kgs = 10, kge = 2.0.

4.2 Oriented Feature Enhancement:
Silhouettes, Fading, and Sketch Lines

Surface orientation is an important visual cue that has been
successfully conveyed by artists for centuries through numerous
techniques, including silhouette lines and orientation-determined
saturation effects. Silhouette lines are particularly important in
the perception of surface shape, and have been utilized in surface
illustration and surface visualization rendering [Salisbury94,
Interrante95].  Similarly, silhouette volumes increase the
perception of volumetric features.

In order to strengthen the cues provided by silhouette
volumes, we increase the opacity of volume samples where the
gradient nears perpendicular to the view direction, indicated by a
dot product between gradient and view direction which nears
zero.  The silhouette enhancement is described by:

where ksc controls the scaling of non-silhouette regions, kss

controls the amount of silhouette enhancement, and kse controls
the sharpness of the silhouette curve.

Figure 4 shows the result of both boundary and silhouette
enhancement in the medical volume.  The fine honeycomb
structure of the liver interior is clearly apparent, as well as
additional internal structure of the kidneys.  Parameter values
used in Figure 4 are kgc = 0.8, kgs = 5.0, kge = 1.0; ksc = 0.9, kss =
50, kse = 0.25.

Decreasing the opacity of volume features oriented toward
the viewer emphasizes feature orientation, and in the extreme
cases, can create sketches of the volume, as illustrated in Figure
5.  Figure 5 shows a black and white sketch of the medical dataset
by using a white sketch color and making non volumetric
silhouettes transparent.  To get appropriate shadowing of the
sketch lines, the shadows are calculated based on the original
volume opacity.  Using a black silhouette color can also be
effective for outlining volume data.

Orientation information can also be used effectively to
change feature color.  For instance, in medical illustration the
portions of anatomical structures oriented toward the viewer are
desaturated and structures oriented away from the view are
darkened and saturated [Clark99].  We simulate these effects by
allowing the volumetric gradient orientation to the viewer to
modify the color, saturation, value, and transparency of the given
volume sample.  The use of the HSV color space allows the
system to easily utilize the intuitive color modification techniques
of painters and illustrators. Figure 10 shows oriented changes in
the saturation and value of the medical volume. In this figure, the
color value (V) is decreased as the angle between the gradient and
the viewer increases, simulating more traditional illustration
techniques of oriented fading.

5 Depth and Orientation Cues
Few of the usual depth cues are present in traditional rendering of
translucent volumes.  Obscuration cues are largely missing since
there are no opaque objects to show a clear depth ordering.
Perspective cues from converging lines and texture compression
are also lacking, since few volume models contain straight lines
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or uniform textures.  The dearth of clear depth cues makes
understanding spatial relationships of features in the volume
difficult.  One common approach to this difficulty is the use of
hard transfer functions, those with rapidly increasing opacity at
particular value ranges of interest.  While this may increase depth
cues by creating the appearance of surfaces within the volume, it
does so by hiding all information in some regions of the volume,
sacrificing a key advantage of volume rendering.

Similarly, information about the orientation of features
within the volume is also largely missing. Many volume
rendering systems use very simple illumination models and often
do not include the effect of shadows, particularly volume self-
shadowing to improve performance, even though many volume
shadowing algorithms have been developed [Ebert90, Kajiya84].
Accurate volumetric shadowing often produces subtle effects
which do not provide strong three-dimensional depth cues. As a
result, the shape of individual structures within even illuminated
volumes is difficult to perceive.

We have developed several techniques for the enhancement
of depth and orientation cues in volume models, inspired by
shading concepts in art and technical illustration.

5.1 Distance color blending
Intensity depth-cuing is a well known technique for enhancing the
perception of depth in a scene [Foley96].  This technique dims
the color of objects far from the viewer, creating an effect similar
to viewing the scene through haze.  We have adapted this
technique for volume rendering, dimming volume sample colors
as they recede from the viewer.  In addition, we have augmented
the standard intensity depth-cuing with a subtle color modulation.
This color modulation increases the amount of blue in the colors
of more distant volume samples, simulating techniques used for
centuries by painters, such as aerial perspective [daVinci1506,
Beirstadt1881].  This technique exploits the tendency of cool
colors (such as blue) to recede visually while warm colors (such
as red) advance.

Depth-cued colors start as the voxel color at the front of the
volume, decreasing in intensity and moving toward the
background color as depth into the volume increases.  The
progression of depth-cuing need not be linear; we use an
exponential function to control the application of depth-cuing.
The distance color blending process can be described by:

where kds controls the size of the color blending effect, kde

controls the rate of application of color blending, dv is the fraction
of distance through the volume, and cb is a defined background
color.  When cb is a shade of grey (cb = (a, a, a) for some value of
a), only standard intensity depth-cuing is performed.  Using a
background color that is a shade of blue (cb = (a, b, c) for c > a,
b), introduces a cool shift in distant regions.  Other color
modulation effects are clearly possible, but make less sense
perceptually.

Figure 6 shows the effect of distance color blending.  The
ribs behind the lungs fade into the distance and the region around
the kidneys seems to recede slightly.  Color blending parameters
used in Figure 6 are cb = (0, 0, 0.15), kds = 1.0, kse = 0.5.

5.2 Feature halos
Illustrators sometimes use null halos around foreground features
to reinforce the perception of depth relationships within a scene.
The effect is to leave the areas just outside surfaces empty, even
if an accurate depiction would show a background object in that

place.  Interrante [Interrante98] used a similar idea to show depth
relationships in 3D flow data using Line Integral Convolution
(LIC).  She created a second LIC volume with a larger element
size, using this second volume to impede the view.  Special care
was required to keep objects from being obscured by their own
halos.  The resulting halos achieved the desired effect, but the
method depended on having flow data suitable for processing
with LIC.

We introduce a more general method for creating halo
effects during the illumination process using the local spatial
properties of the volume.  Halos are created primarily in planes
orthogonal to the view vector by making regions just outside
features darker and more opaque, obscuring background elements
which would otherwise be visible.  The strongest halos are
created in empty regions just outside (in the plane perpendicular
to the view direction) of a strong feature.

The halo effect at a voxel is computed from the distance
weighted sum of haloing influences in a specified neighborhood.
In order to restrict halos to less interesting regions, summed
influences are weighted by the complement of the voxel’s
gradient.  The size of the halo effect is given by:

where h
n
 is the maximum potential halo contribution of a

neighbor.  The haloing influence of a neighbor is inversely related
to its distance and the tendency of a location to be a halo is
inversely related to its gradient magnitude.

The maximum potential halo contribution of each neighbor
is proportional to the product of the alignment of the neighbor’s
gradient with the direction to the voxel under consideration
(calculated from the dot product between them) and the degree to
which the neighbor’s gradient is aligned perpendicular to the
view direction (also calculated as a dot product).  The halo
potential (h

n
) is given by:

where k
hpe

 controls how directly the neighbor’s gradient must be
oriented toward the current location, and k

hse
 controls how tightly

halos are kept in the plane orthogonal to the view direction.  The
most strong halo effects will come from neighbors that are
displaced from the volume sample of interest in a direction
orthogonal to the view direction and that have a large gradient in
the direction of this sample.

Once the size of the halo effect has been determined,
parameters control the visual appearance of halo regions. The
most common adjustment to the halo region is to decrease the
brightness by a scalar times the halo effect and increase the
opacity by another scalar times the halo effect.  This method
produces effects similar to those of Interrante, but can be applied
to any type of data or model during the illumination process.
Since the halos generated are inherently view dependent, no
special processing must be done to keep features from casting a
halo on themselves.

Figure 6 shows the effectiveness of adding halos to the
medical volume. Structures in the foreground, such as the liver
and kidneys, stand out more clearly.  Halo parameters used in
Figure 6 are k

hpe
 = 1.0  and k

hse
 = 2.0.

5.3 Tone shading

( ) b
k

vdsv
k

vdsd cdkcdkc dede +−= 1

( )( )if

neighbors

n ni

n
i P

PP

h
h ∇−











−
= ∑ 12

( ) ( ) ( )( ) hse

hpe

k
nfn

k

ni

ni
nfnn VP

PP

PP
Ph ⋅∇−
















−
−

⋅∇= 1



Appears in Proceedings of IEEE Visualization ’00 (October 2000, Salt Lake City, UT), IEEE Computer Society Press, pp.
195-202.

Another illustrative technique used by painters is to modify the
tone of an object based on the orientation of that object relative to
the light.  This technique can be used to give surfaces facing the
light a warm cast while surfaces not facing the light get a cool
cast, giving effects suggestive of illumination by a warm light
source, such as sunlight.  Gooch et al. proposed an illumination
model based on this technique [Gooch98], defining a
parameterized model for effects from pure tone shading to pure
illuminated object color.  The parameters define a warm color by
combining yellow and the scaled fully illuminated object color.
Similarly, a cool color combines blue and the scaled ambient
illuminated object color.  The final surface color is formed by
interpolation between the warm and cool color based on the
signed dot product between the surface normal and light vector.
The model assumes a single light source, generally located above
the scene.

We implemented an illumination model similar to Gooch
tone shading for use with volume models.  As with Gooch tone
shading, the tone contribution is formed by interpolation between
the warm and cool colors based on the signed dot product
between the volume sample gradient and the light vector.  Unlike
Gooch tone shading, the illuminated object contribution is
calculated using only the positive dot product, becoming zero at
orientations orthogonal to the light vector.  This more closely
matches familiar diffuse illumination models.

The color at a voxel is a weighted sum of the illuminated
gaseous color (including any traditional transfer function
calculations) and the total tone and directed shading from all
directed light sources.  The new tone illumination model is given
by:

where kta controls the amount of gaseous illumination (IG)
included, NL is the number of lights, ktd controls the amount of
directed illumination included, It is the tone contribution to
volume sample color, and Io is the illuminated object color
contribution.  Although this model allows for multiple light
sources, more than a few is likely to result in confusing images,
since we are not used to interpreting complex illumination
coming from many lights.

The tone contribution from a single light source is
interpolated from the warm and cool colors, depending on the
angle between the light vector and the sample gradient.  It is
given by:

where L is the unit vector in the direction of the light and
cw= (kty, kty, 0), cc = (0, 0, ktb)

describe the warm and cool tone colors.  Samples oriented toward
the light become more like the warm color while samples
oriented away from the light become more like the cool color.

The directed illumination component is related to the angle
between the voxel gradient and the light direction, for angles up
to 90 degrees.  It is given by:

where ktd controls how much directed illumination is added.
Figure 7 shows modified tone shading applied to the

uncolored medical volume.  The small structure of the liver
shows clearly, as does the larger structures of the kidney.  The
bulges of intestine at the lower right are much more clearly

rounded 3D shapes than with just boundary and silhouette
enhancement (Figure 4).  Figure 8 shows tone shading applied
together with colors from a transfer function.  The tone effects are
subtler, but still improve shape perception.  The basic tissue
colors are preserved, but the banded structure of the aorta is more
apparent than in a simple illuminated and color-mapped image
(Figure 2).  Tone shading parameters used in Figures 7 and 8 are
kty = 0.3, ktb = 0.3, kta = 1.0, ktd = 0.6.

6 Application Examples
We have also applied the techniques in the previous sections

to several other scientific data sets.  Figures 10 and 11 are volume
rendered images from a 256x256x64 MRI dataset of a tomato
from Lawrence Berkeley National Laboratories.  Figure 10 is a
normal gas-based volume rendering of the tomato where a few of
the internal structures are visible. Figure 11 has our volume
illustration gradient and silhouette enhancements applied,
resulting in a much more revealing image showing the internal
structures within the tomato.  Parameters used in Figure 11 are
kgc= 0.5, kgs= 2.5, kge= 3.0; ksc= 0.4, kss= 500, kse= 0.3.

Figure 12 shows a 512x512x128 element flow data set from
the time series simulation of unsteady flow emanating from a 2D
rectangular slot jet. The 2D jet source is located at the left of the
image and the flow is to the right.  Flow researchers notice that
both Figures 12 and 13 resemble Schlieren photographs that are
traditionally used to analyze flow. Figure 13 shows the
effectiveness of boundary enhancement, silhouette enhancement,
and tone shading on this data set. The overall flow structure,
vortex shedding, and helical structure are much easier to perceive
in Figure 13 than in Figure 12.

Figures 14 and 15 are volume renderings of a 64x64x64
high-potential iron protein data set. Figure 14 is a traditional gas-
based rendering of the data. Figure 15 has our tone shading
volume illustration techniques applied, with parameters kty =
0.15, ktb = 0.15, kta = 1.0, ktd = 0.6.  The relationship of
structure features and the three-dimensional location of the
features is much clearer with the tone-based shading
enhancements applied.

7 Conclusions
We have introduced the concept of volume illustration,
combining the strengths of direct volume rendering with the
expressive power of non-photorealistic rendering techniques.
Volume illustration provides a powerful unified framework for
producing a wide range of illustration styles using local and
global properties of the volume model to control opacity
accumulation and illumination.  Volume illustration techniques
enhance the perception of structure, shape, orientation, and depth
relationships in a volume model.  Comparing standard volume
rendering (Figures 2, 10, 12, 14) with volume illustration images
(Figures 3, 4, 5, 6, 7, 8, 9, 11, 13, 15) clearly shows the power of
employing volumetric illustration techniques to enhance 3D depth
perception and volumetric feature understanding.

8 Future Directions
We plan on extending our collection of NPR techniques and
exploring suitability of these volume illustration techniques for
data exploration and diagnosis.
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Figure 1.  Gaseous illumination of medical
CT volume.  Voxels are a constant color.

Figure 5.  Volumetric sketch lines on CT
volume.  Lines are all white.

Figure 12.  Atmospheric volume rendering
of square jet.  No illustration enhancements.
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Figure 3.  Color-mapped gaseous
illumination with boundary enhancement. Figure 4. Silhouette and boundary

enhancement of CT volume.

Figure 6.  Distance color blending and
halos around features of CT volume.

Figure 7.  Tone shading in CT volume.
Surfaces toward light receive warm color.

Figure 8.  Tone shading in colored volume.
Surfaces toward light receive warm color.

Figure 9.  Orientation fading.  Surfaces
toward viewer are desaturated.

Figure 13.  Square jet with boundary and
silhouette enhancement, and tone shading.

Figure 10.  Standard atmospheric
volume rendering of tomato.

Figure 11.  Boundary and silhouette
enhanced tomato.

Figure 15.  Tone shaded iron protein.Figure 14.  Atmospheric rendering of
iron protein.

Figure 2.  Gaseous illumination of color-
mapped CT volume.
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Abstract

This paper describes a new method forvisualiz-
ing complex information spaces as painted images.
Scientific visualization converts data into pictures
that allow viewers to “see” trends, relationships,
and patterns. We introduce a formal definition of
the correspondence between traditional visualiza-
tion techniques and painterly styles from the Im-
pressionist art movement. This correspondence al-
lows us to apply perceptual guidelines from visu-
alization to control the presentation of information
in a computer-generated painting. The result is an
image that is visually engaging, but that also allows
viewers to rapidly and accurately explore and ana-
lyze the underlying data values. We conclude by
applying our technique to a collection of environ-
mental and weather readings, to demonstrate its vi-
ability in a practical, real-world visualization envi-
ronment.

1 Introduction
This paper describes a formal method for constructing visual
representations of complex information spaces that support
rapid and accurate exploration and analysis. Our technique
falls within the domain ofscientific visualization,the con-
version of collections of strings and numbers (or datasets, as
they are often called) into images that allow viewers toex-
plore, analyze, validate,anddiscoverwithin their data. We
focused on two important issues[Smith and Van Rosendale,
1998] during our investigations:

1. Multidimensional displays:Our technique must support
the visualization of multiple overlapping data fields to-
gether in the same display. This is much more difficult
than representing a single data field in isolation. Design-
ing techniques to effectively represent multidimensional
datasets is an open area of research in visualization.

2. Aesthetic displays:We also seek to create images that
are visually engaging. We believe this will motivate
viewers to study a visualization in more detail. It will
draw viewers into an image, and can be used to empha-
size areas of importance in a dataset.

We address these goals by: (1) applying results from human
perception to create images that harness the strengths of our
low-level visual system, and (2) using artistic techniques from
the Impressionist movement to producepainterly renditions
that are both beautiful and engaging. From an AI perspec-
tive, the contribution of this work is the identification of a
close relationship between specific painterly techniques and
the performance properties of human perception; our formal-
ization lays the groundwork for the generation of scientific
visualizations that are effective and aesthetically pleasing.

Our technique converts a collection of data values into a
painterly image as follows. First, one or more computer gen-
erated “brush strokes” are attached to each data element in
the collection. A brush stroke has style properties (e.g.,color,
length, or direction) that we can vary to modify its visual ap-
pearance. Data values in the data element are used to se-
lect specific states for the different properties. The result is
a stroke that represents its corresponding data element. Ren-
dering all of the strokes for every data element produces a
painterly image whose stroke properties visualize the under-
lying dataset.

The remainder of this paper describes in detail how each
step in this process is managed and controlled. We begin
by defining formalisms for: (1) a multidimensional dataset
and its visualization, and (2) the brush strokes that make up a
painterly image. We next present a set of perceptual rules on
the use of color and texture in visualization that we extend via
our formalisms to the painterly domain. These rules ensure
the images we produce represent a dataset in a perceptually
salient manner. Finally, we discuss how our techniques were
used to visualize a real-world collection of environmental and
weather readings for the continental United States. We con-
clude with a summary and a short description of future work.

2 Formalisms
We began our investigation by identifying methods for build-
ing painterly images that we can use to represent multidimen-
sional datasets. A key insight is that many painterly styles
correspond closely to perceptual features that are detected by
the human visual system. In some sense this is not surprising.
Artistic masters understood intuitively which properties of a
painting would capture a viewer’s gaze, and their styles nat-
urally focused on harnessing these features. Moreover, cer-
tain movements used scientific studies of the visual system



Proceedings IJCAI 2001 HEALEY

to help them understand how viewers would perceive their
work. The overlap of artistic styles and perception offers a
important starting point: the body of knowledge on the use
of perception during visualization will help us to predict how
corresponding painterly styles might perform in the same en-
vironment.

In order to make use of this advantage, we define a relation-
ship between traditional visualization techniques and painted
images. This is done by constructing a correspondence be-
tween formal specifications of the two environments. The
correspondence can then be used to extend our perceptual
guidelines to a painterly domain.

2.1 Multidimensional Visualization

A simple formalization of a multidimensional visualization
consists of two parts: a description of the dataset, and a def-
inition of the mapping function used to convert it into an im-
age. A multidimensional datasetD = fe1; : : : ; eng con-
tains n samples points or data elementsei. D represents
two or more data attributesA = fA1; : : : ; Amg, m > 1;
data elements encode values for each attribute, that is,ei =
fai;1; : : : ; ai;mg; ai;j 2 Aj .

Visualization begins with the construction of a data-feature
mappingM(V; �) that converts the raw data into images that
are presented to the viewer.V = fV1; : : : ; Vmg identifies
a visual featureVj to use to display data attributeAj . �j :
Aj ! Vj maps the domain ofAj to the range of displayable
values inVj . Based on these definitions, visualization is the
selection ofM and a viewer’s interpretation of the images
produced byM . An effective visualization choosesM to
support the exploration and analysis tasks the viewer wants
to perform.

3 Painterly Styles
Our investigation of painterly styles is directed by two sepa-
rate criteria. First, we restrict our search to a particular move-
ment in art known as Impressionism. Second, we attempt to
pair each style with a corresponding visual feature that has
proven to be effective in a perceptual visualization environ-
ment. There are no technical reasons for why Impressionism
was chosen over any other movement. In fact, we expect the
basic theories behind our technique will extend to other types
of artistic presentation. For our initial work, however, we felt
it was important to narrow our focus to a set of fundamental
goals in the context of a single type of painting style.

The term “Impressionism” was attached to a small group
of French artists (initially including Monet, Degas, Manet,
Renoir, and Pissarro, and later C´ezanne, Sisley, and Van
Gogh, among others) who broke from the traditional schools
of the time to approach painting from a new perspective. The
Impressionist technique was based on a number of underlying
principles (see also[Schapiro, 1997]):

1. Object and environment interpenetrate.Outlines of
objects are softened or obscured (e.g., Monet’s water
lilies); objects are bathed and interact with light; shad-
ows are colored and movement is represented as unfin-
ished outlines.

2. Color acquires independence.There is no constant hue
for an object, atmospheric conditions and light moder-
ate color across its surface; objects may be reduced to
swatches of color.

3. Show a small section of nature.The artist is not placed
in a privileged position relative to nature; the world is
shown as a series of close-up details.

4. Minimize perspective.Perspective is shortened and dis-
tance reduced to turn 3D space into a 2D image.

5. Solicit a viewer’s optics.Study the retinal system; divide
tones as separate brush strokes to vitalize color rather
than graying with overlapping strokes; harness simul-
taneous contrast; use models from color scientists like
Chevreul[Chevreul, 1967] or Rood[Rood, 1879].

Although these general characteristics are perhaps less pre-
cise than we might prefer, we can still draw a number of im-
portant conclusions. Properties of hue, luminance, and light-
ing were explicitly controlled and even studied in a scientific
fashion by some of the Impressionists. Rather than using an
“object-based” representation, the artists appear to be more
concerned with subdividing a painting based on the interac-
tions of light with color and other surface properties. Addi-
tional painterly styles can be identified by studying the paint-
ings themselves. These styles often varied dramatically be-
tween individual artists, acting to define their unique painting
techniques. Examples include:

� path: the path or direction a brush stroke follows; Van
Gogh made extensive use of curved paths to define
boundaries and shape in his paintings; other artists fa-
vored simpler, straighter strokes,

� length: the length of individual strokes on the canvas,
often used to differentiate between contextually different
parts of a painting,

� density:the number of strokes laid down in a fixed area
of canvas,

� coarseness:the coarseness of the brush used to apply
a stroke; a coarser brush causes visible bristle lines and
surface roughness, and

� weight: the amount of paint applied during each stroke;
heavy strokes highlight brush coarseness and produce
ridges of paint that cause underhanging shadows when
lit from the proper direction.

In this context, a paintingP can be seen as a collection ofn
brush strokesP = fb1; : : : ; bng, with each stroke made up of
p style propertiesSj , that is,bi = fsi;1; : : : ; si;jg, si;j 2 Sj .

Although it would be tedious (and perhaps uninformative)
to characterize a real painting in this manner, these definitions
provide an effective way to relate the visualization process to
a painted image. First, we can match many of the painterly
styles to visual features used during visualization. For exam-
ple, color and lighting in Impressionism has a direct corre-
spondence to the use of hue and luminance in perceptual vi-
sualization. Other styles (e.g.,path, density, and length) have
similar partners in perception (e.g.,orientation, contrast, and
size). Second, data elementsei in a dataset are analogous to

2
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brush strokesbi in a painting. Attribute valuesai;j in element
ei could therefore be used to select specificsi;j for each style
in bi.

Consider a data-feature mappingM(V; �) in this context.
The visual featuresVj 2 V can be converted to their corre-
sponding painterly stylesSj . M now describes how to con-
vert a data elementei into painted brush strokebi whose vi-
sual appearance represents the attribute valuesai;j embedded
in ei. The close correspondenceVj $ Sj between perceptual
features and many of the painterly styles we hope to apply is
particularly advantageous. Since numerous controlled exper-
iments on the use of perceptual features have already been
conducted, we have a large body of evidence to use to predict
how we expect painterly styles to react in a multidimensional
visualization environment.

4 Perceptual Characteristics
Past research has studied methods for applying rules of per-
ception during visualization[Bergmanet al., 1995; Healey
and Enns, 1999; Rheingans and Tebbs, 1990]. The cog-
nitive abilities of the low-level human visual system have
been studied extensively in the area of human psychophysics.
One interesting result is the identification of a limited set
of visual features that are detected rapidly, accurately, and
relatively effortlessly by a human viewer[Triesman, 1985;
Wolfe, 1994]. These features are similar to the ones we dis-
play during multidimensional visualization (e.g.,hue, lumi-
nance, orientation, size, and motion). When combined prop-
erly, they can be used to perform exploratory analysis tasks
like searching for data elements with a particular attribute
value, identifying boundaries between groups of elements
with similar values, tracking elements as they move in time
and space, and estimating the number of elements with com-
mon values. The ability to harness the low-level visual sys-
tem during visualization through the use of these features is
especially attractive, since:

� analysis is rapid and accurate, often requiring no more
than 200 milliseconds,

� task completion time is constant and independent of the
number of elements in a display, and

� different visual features can interact with one another to
mask information; psychophysical experiments allow us
to identify and avoid these interference patterns.

A data-feature mapping that builds on a perceptual founda-
tion can support high-level exploration and analysis of large
amounts of data in a relatively short period of time. Our re-
cent work focuses on the combined use of fundamental prop-
erties of color and texture to encode multiple attributes in a
single display. We draw on three specific areas of research in
perception and visualization to guide the construction of our
brush strokes: color selection, texture selection, and feature
hierarchies that can cause visual interference and masking.

4.1 Color Selection
Color is a common feature used in many visualization de-
signs. Some techniques attempt to measure and control the

color difference viewers perceive between pairs of colors.
This allows:

� perceptual balance:a unit step anywhere along the
color scale produces a perceptually uniform difference
in color,

� distinguishability:within a discrete collection of colors,
every color is equally distinguishable from all the others
(i.e.,no color is “easier” or “harder” to identify), and

� flexibility: colors can be selected from any part of color
space.

Standard color models like CIE LUV or CIE Lab use Eu-
clidean distance to approximate perceived color difference.
More complex techniques extend this basic idea. For ex-
ample, Rheingans and Tebbs[Rheingans and Tebbs, 1990]
plotted a path through a color model, a allowed a viewer to
vary how colors are selected along the path. Ware constructed
color scales that spiral up around the luminance axis[Ware,
1988]; such a scale maintains a uniform simultaneous con-
trast error along its length. Healey and Enns[Healey and
Enns, 1999] showed that color distance, linear separation, and
color category must all be controlled to select discrete collec-
tions of equally distinguishable colors.

Our color selection technique combines different aspects of
each of these methods. A single loop spiraling up around the
luminance axis is plotted in the region of CIE LUV space that
contains our monitor’s color gamut. The path is subdivided
into r named color regions (e.g.,a blue region, a green region,
and so on).n colors are then selected by choosingn

r
colors

uniformly spaced along each of ther color regions. The result
is a set of colors selected from a perceptually balanced color
model, each with a roughly constant simultaneous contrast er-
ror, and chosen such that color distance and linear separation
are constant within each named color region.

4.2 Texture Selection
Although texture is often viewed as a single visual feature, it
can be decomposed into fundamental perceptual dimensions.
Research in computer vision has used properties like regular-
ity, directionality, and contrast to perform automatic texture
segmentation and classification. Results from psychophysics
have shown that many of these properties can also be detected
by the low-level visual system.

One promising approach in visualization has been to use
the perceptual dimensions of a texture pattern to represent
multiple data attributes. Individual values in a data element
control a corresponding texture dimension, producing a tex-
ture pattern that changes its visual appearance based on the
underlying dataset. Grinstein et al.[Grinsteinet al., 1989]
built “stick-man” icons to represent high dimensional data el-
ements; the orientation of each limb encodes a value for one
particular attribute. Ware and and Knight[Ware and Knight,
1995] displayed Gabor filters that modified their orientation,
size, and contrast based on the values of three independent
data attributes. Healey and Enns[Healey and Enns, 1999]
constructed perceptual texture elements (or pexels) that var-
ied in height, density, and regularity; their results showed that
both height and density were perceptually salient, but regu-
larity was not. More recent work[Weigleet al., 2000] found

3
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that an orientation difference of15Æ is sufficient to rapidly
distinguish visual elements.

4.3 Feature Hierarchy
A third factor that must be considered is visual interference,
that is, a situation where one visual feature masks another.
Although the need to rank each brush stroke style’s percep-
tual strength is not necessary in a painting, this information is
critical for effective visualization design. The most important
data attributes (as defined by the viewer) should be displayed
using the most salient features. Secondary data should never
be visualized in a way that masks the information a viewer is
most interested in seeing.

Perceptual features are ordered in a hierarchy by the low-
level visual system. Results reported in both the psychophys-
ical and visualization literature have confirmed a luminance–
hue–texture interference pattern. Variations in luminance
can slow a viewer’s ability to identify the presence of in-
dividual hues or the spatial patterns they form[Callaghan,
1990]. The interference is asymmetric: random variations
in hue have no effect on a viewer’s ability to see lumi-
nance patterns. A similar asymmetric hue on texture inter-
ference has also been shown to exist[Healey and Enns, 1999;
Triesman, 1985]; random variations in hue interfere with the
identification of texture patterns, but not vice-versa. These
results suggest that luminance, then hue, then various texture
properties should be used to display attributes in order of im-
portance.

5 Painterly Visualization
Based on the perception guidelines discussed above, and on
our formal correspondence between visualization techniques
and painterly images, we decided to build a system that var-
ied brush stroke color, size, spatial density, and orientation
to encode up to four independent data attributes (in addition
to the two spatial values used to position each stroke). The
presence of feature hierarchies suggest color should be used
to represent the most important attribute, followed by the tex-
ture properties. The results of[Healey and Enns, 1999] fur-
ther refine this to applying color, size, density, and orientation
in order of attribute importance.

The brush strokes in our current prototype are constructed
using a simple texture mapping scheme. A real painted stroke
was digitized and converted into a texture map. This tex-
ture map is attached to a polygon to produce a reasonable
approximation of a generic brush stroke. The stroke’s posi-
tion, color, size, and orientation are controlled by modifying
the texture map and transforming the polygon. Density is var-
ied by changing the number of strokes rendered in a unit area
of screen space. Fig. 1 shows an example of brush strokes
with four different greyscales, sizes, densities, and orienta-
tions (greyscale is used only for the printed figures; on-screen
images are displayed in full color).

5.1 Practical Applications
One of the application testbeds for our visualization tech-
niques is a dataset of monthly environmental and weather
conditions collected and recorded by the Intergovernmen-
tal Panel on Climate Change. This dataset contains mean

Figure 1: Examples of texture mapped brush strokes with
different orientations (top row), densities (second row), sizes
(third row), and greyscales (fourth row)

monthly surface climate readings in1
2

Æ

latitude and longitude
steps for the years 1961 to 1990 (e.g.,readings for January av-
eraged over the years 1961-1990, readings for February aver-
aged over the years 1961-1990, and so on). We chose to vi-
sualize temperature, precipitation, pressure, and windspeed.
Based on this order of importance, we built a data-feature
mappingM that assigns brush stroke greyscale (or color for
on-screen images), size (or coverage), density, and orienta-
tion, respectively, to our four attributes. Temperature is rep-
resented by greyscales selected uniformly from a perceptually
balanced luminance path. This path runs from dark (for cold
temperatures) to bright (for hot temperatures). Precipitation
is represented size (i.e.,the amount of an element’s spatial re-
gion its brush stroke covers). Sizes range exponentially from
very small coverage (for little or no precipitation) to full cov-
erage (for heavy precipitation). Windspeed is represented by
orientations ranging from 0Æ or upright (for weak winds) to
90Æ or flat (for strong winds). Finally, pressure is represented
by four increasingly dense arrays of brush strokes: a single
stroke, a2� 2 array of strokes, a3� 3 array, and a4� 4 ar-
ray; continuous pressure values are discritized into four uni-
form ranges, then mapped to the appropriate density (sparse
for low pressure, dense for high pressure).

Fig. 2 shows a visualization of data for February in the east-
ern half of the continental United States. Although unlikely to
be mistaken for a real Impressionist painting, we feel the im-
age contains important aesthetic qualities that make it stand
out from a traditional visualization. The top four images (the
top row of Fig. 2) use a perceptual greyscale ramp to show
the individual variation in temperature, precipitation, pres-
sure, and windspeed.M was used to construct the painterly
visualization of all four attributes shown in the bottom image
of Fig. 2. Various luminance and texture patterns representing
different weather phenomena are noted in this image.

We have applied our painterly visualizations to a number of
additional real-world environments including scientific simu-
lations, e-commerce activity logs, and medical scans. Anec-
dotal feedback from domain experts collaborating on our ef-

4
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temperature precipitation pressure windspeed

hot (light)

cold (dark)

weak winds
(low coverage)

strong winds
(high coverage)

pressure gradients
(density gradients)

light rain
(upright strokes)

heavy rain
(tilted strokes)

Figure 2: A painterly visualization of environment conditions for February over the eastern United States: (top row) greyscale
ramps (dark for small values to light for large values) of temperature in isolation, precipitation in isolation, pressure in isolation,
and windspeed in isolation; (bottom image) a painterly visualization of all four attributes represented with the brush stroke
properties greyscale, size (or coverage), density, and orientation

5
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forts suggests that our technique achieves its goal of produc-
ing images that: (1) represent multidimensional datasets in a
clear and effective manner, and (2) contain many of the aes-
thetic and visually engaging properties of a real painting.

6 Conclusions and Future Work
This paper describes a new method of visualization that uses
painted brush strokes to represent multidimensional data ele-
ments. Our strokes support the variation of visual properties
based in large part on styles from the Impressionist school of
painting. Each attribute in a dataset is mapped to a specific
painterly style; a data element’s attribute values can then be
used to vary the visual appearance of its brush stroke. The
styles we chose are closely related to perceptual features de-
tected by the low-level human visual system. Research study-
ing the use of these features during visualization allows us to
optimize the selection and application of the corresponding
painterly styles. The result is a “painted image” whose color
and texture patterns are used to explore, analyze, verify, and
discover information stored in a multidimensional dataset.

One important area of future work is the construction of
new brush stroke models. Texture maps are common in most
graphics APIs, and are often rendered using hardware accel-
eration. Unfortunately, certain styles (e.g.,stroke coarseness
or weight) are not easy to manipulate using texture maps. It
may also be difficult to animate textured brush strokes during
real-time visualization. We are currently investigating three
potential solutions to this problem: (1) building a library of
texture maps that explicitly differ across certain styles; (2) us-
ing mathematical spline surfaces to model more sophisticated
brush stroke properties, and (3) using a physical simulation
system to construct realistic strokes. Early results suggest a
combination of models (e.g.,a texture map library whose en-
tries are precomputed or dynamically updated) may be most
appropriate.

We are also working to identify new painterly styles, and
to integrate them into our stroke models. Two promising can-
didates we have already discussed are coarseness and weight.
We are reviewing literature on technical and artistic properties
in Impressionism, while at the same time searching for per-
ceptual features that may correspond to new painterly styles.
Increasing the number of styles we can encode in each brush
stroke will allow us to represent larger datasets with higher
dimensionality.

We note one final advantage we can derive from the corre-
spondence between perceptual features and painterly styles.
We measure the perceptual salience of a visual feature us-
ing controlled psychophysical experiments. Exactly the same
technique can be used to investigate the strengths and limi-
tations of new painterly styles. Just as research in perception
helps us to identify and control brush stroke properties during
painterly visualization, work on new styles may offer insight
into how the low-level visual system “sees” certain combina-
tions of visual properties.
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Large Datasets at a Glance: Combining Textures

and Colors in Scienti�c Visualization
Christopher G. Healey and James T. Enns

Abstract| This paper presents a new method for using
texture and color to visualize multivariate data elements
arranged on an underlying height �eld. We combine sim-
ple texture patterns with perceptually uniform colors to
increase the number of attribute values we can display si-
multaneously. Our technique builds multicolored perceptual
texture elements (or pexels) to represent each data element.
Attribute values encoded in an element are used to vary the
appearance of its pexel. Texture and color patterns that
form when the pexels are displayed can be used to rapidly
and accurately explore the dataset. Our pexels are built by
varying three separate texture dimensions: height, density,
and regularity. Results from computer graphics, computer
vision, and human visual psychophysics have identi�ed these
dimensions as important for the formation of perceptual tex-
ture patterns. The pexels are colored using a selection tech-
nique that controls color distance, linear separation, and
color category. Proper use of these criteria guarantees col-
ors that are equally distinguishable from one another. We
describe a set of controlled experiments that demonstrate
the e�ectiveness of our texture dimensions and color selec-
tion criteria. We then discuss new work that studies how
texture and color can be used simultaneously in a single dis-
play. Our results show that variations of height and density
have no e�ect on color segmentation, but that random color
patterns can interfere with texture segmentation. As the
diÆculty of the visual detection task increases, so too does
the amount of color on texture interference increase. We
conclude by demonstrating the applicability of our approach
to a real-world problem, the tracking of typhoon conditions
in Southeast Asia.

Keywords|Color, color category, experimental design, hu-
man vision, linear separation, multivariate dataset, percep-
tion, pexel, preattentive processing, psychophysics, scien-
ti�c visualization, texture, typhoon

I. Introduction

T
HIS paper investigates the problem of visualizing mul-
tivariate data elements arrayed across an underlying

height �eld. We seek a exible method of displaying ef-
fectively large and complex datasets that encode multiple
data values at a single spatial location. Examples include
visualizing geographic and environmental conditions on to-
pographical maps, representing surface locations, orienta-
tions, and material properties in medical volumes, or dis-
playing rigid and rotational velocities on the surface of a
three-dimensional object. Currently, features like hue, in-
tensity, orientation, motion, and isocontours are used to
represent these types of datasets. We are investigating the
simultaneous use of perceptual textures and colors for mul-
tivariate visualization. We believe an e�ective combination
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healey@csc.ncsu.edu.

J. T. Enns is with the Department of Psychology, University of
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of these features will increase the number of data values
that can be shown at one time in a single display. To do
this, we must �rst design methods for building texture and
color patterns that support the rapid, accurate, and e�ec-
tive visualization of multivariate data elements.
We use multicolored perceptual texture elements (or pex-

els) to represent values in our dataset. Our texture ele-
ments are built by varying three separate texture dimen-
sions: height, density, and regularity. Density and regular-
ity have been identi�ed in the computer vision literature as
being important for performing texture classi�cation [39],
[40], [50]. Moreover, results from psychophysics have shown
that all three dimensions are encoded in the low-level hu-
man visual system [1], [28], [51], [58]. Our pexels are col-
ored using a technique that supports rapid, accurate, and
consistent color identi�cation. Three selection criteria are
used to choose appropriate colors: color distance, linear
separation, and named color category. All three criteria
have been identi�ed as important for measuring perceived
color di�erence [3], [4], [14], [31], [60].
One of our real-world testbeds is the visualization of sim-

ulation results from studies being conducted in the De-
partment of Zoology. Researchers are designing models of
how they believe salmon feed and move in the open ocean.
These simulated salmon are placed in a set of known envi-
ronmental conditions, then tracked to see if their behavior
mirrors that of the real �sh. A method is needed for vi-
sualizing the simulation system. This method will be used
to display both static (e.g., environmental conditions for
a particular month and year) and dynamic results (e.g.,
a real-time display of environmental conditions as they
change over time, possibly with the overlay of salmon loca-
tions and movement). We have approached the problems
of dataset size and dimensionality by trying to exploit the
power of the low-level human visual system. Research in
computer vision and human visual psychophysics provides
insight on how the visual system analyzes images. One of
our goals is to select texture and color properties that will
allow rapid visual exploration, while at the same time min-
imizing any loss of information due to interactions between
the visual features being used.
Fig. 1 shows an example of our technique applied to the

oceanographic dataset: environmental conditions in the
northern Paci�c Ocean are visualized using multicolored
pexels. In this display, color represents open-ocean plank-
ton density, height represents ocean current strength (taller
for stronger), and density represents sea surface tempera-
ture (denser for warmer). Fig. 1 is only one frame from a
much larger time-series of historical ocean conditions. Our
choice of visual features was guided by experimental re-
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temperature gradients (density)

dense plankton blooms (colour)current strength gradient (height)

Fig. 1. Color, height, and density used to visualize open-ocean plankton density, ocean current strength, and sea surface temperature,
respectively; low to high plankton densities represented with blue, green, brown, red, and purple, stronger currents represented with
taller pexels, and warmer temperatures represented with denser pexels

sults that show how di�erent color and texture properties
can be used in combination to represent multivariate data
elements.

Work described in this paper is an extension of earlier
texture and color studies reported in [22], [23], [25]. We
began our investigation by conducting a set of controlled
experiments to measure user performance and identify vi-
sual interference that may occur during visualization. Indi-
vidual texture and color experiments were run in isolation.
The texture experiments studied the perceptual salience
of and interference between the perceptual texture dimen-
sions height, density, and regularity. The color experiments
measured the e�ects of color distance, linear separation,
and named color category on perceived color di�erence.
Positive results from both studies led us to conduct an
additional set of experiments that tested the combination
of texture and color in a single display. Results in the
literature vary in their description of this task: some re-
searchers have reported that random color variation can
interfere signi�cantly with a user's ability to see an under-
lying texture region [8], [9], [49], while others have found
no impact on performance [53], [58]. Our investigation ex-
tends this earlier work on two-dimensional texture patterns
into an environment that displays height �elds using per-
spective projections. To our knowledge, no one has studied
the issue of color on texture or texture on color interference
during visualization. Results from our experiments showed
that we could design an environment in which color vari-
ations caused a small but statistically reliable interference
e�ect during texture segmentation. The strength of this
e�ect depends on the diÆculty of the analysis task: tasks
that are more diÆcult are more susceptible to color inter-
ference. Texture variation, on the other hand, caused no
interference during color segmentation. We are using these
results to build a collection of pexels that allow a viewer to

visually explore a multivariate dataset in a rapid, accurate,
and relatively e�ortless fashion.
We begin with a description of results from computer

vision, computer graphics, and psychophysics that dis-
cuss methods for identifying and controlling the perceptual
properties of texture and color. Next, we describe an area
of human psychophysics concerned with modeling control
of visual attention in the low-level human visual system.
We discuss how the use of visual stimuli that control atten-
tion can lead to signi�cant advantages during visualization.
Section 4 gives an overview of the experiments we used to
build and test our perceptual texture elements. In Section
5, we discuss how we chose to select and test our percep-
tual colors. Following this, we describe new experiments
designed to study the combined use of texture and color.
Finally, we report on practical applications of our research
in Section 7, then discuss avenues for future research in
Section 8.

II. Related Work

Researchers from many di�erent areas have studied tex-
ture and color in the context of their work. Before we
discuss our own investigations, we provide an overview of
results in the literature that are most directly related to
our interests.

A. Texture

The study of texture crosses many disciplines, including
computer vision, human visual psychophysics, and com-
puter graphics. Although each group focuses on separate
problems (texture segmentation and classi�cation in com-
puter vision, modeling the low-level human visual system
in psychophysics, and information display in graphics) they
each need ways to describe accurately the texture patterns
being classi�ed, modeled, or displayed. [41] describes two
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general classes of texture representation: statistical models
that use convolution �lters and other techniques to measure
variance, inertia, entropy, or energy, and perceptual mod-
els that identify underlying perceptual texture dimensions
like contrast, size, regularity, and directionality. Our cur-
rent texture studies focus on the perceptual features that
make up a texture pattern. In our work we demonstrate
that we can use texture attributes to assist in visualization,
producing displays that allow users to rapidly and accu-
rately explore their data by analyzing the resulting texture
patterns.

Di�erent methods have been used to identify and investi-
gate the perceptual features inherent in a texture pattern.
Bela Jul�esz [27], [28] has conducted numerous psychophys-
ical experiments to study how a texture's �rst, second, and
third-order statistics a�ect discrimination in the low-level
visual system. This led to the texton theory [29], which
proposes that early vision detects three types of features
(or textons, as Jul�esz called them): elongated blobs with
speci�c visual properties (e.g., hue, orientation, or length),
ends of line segments, and crossing of line segments. Other
psychophysical researchers have studied how visual features
like color, orientation, and form can be used to rapidly and
accurately segment collections of elements into spatially
coherent regions [7], [8], [52], [58], [59].

Work in psychophysics has also been conducted to study
how texture gradients are used to judge an object's shape.
Cutting and Millard discuss how di�erent types of gradi-
ents a�ect a viewer's perception of the atness or curvature
of an underlying 3D surface [13]. Three texture gradients
were tested: perspective, which refers to smooth changes
in the horizontal width of each texture element, compres-
sion, which refers to changes in the height to width ratio
of a texture element, and density, which refers to changes
in the number of texture elements per unit of solid visual
angle. For most surfaces the perspective and compression
gradients decrease with distance, while the density gradient
increases. Cutting and Millard found that viewers use per-
spective and density gradients almost exclusively to iden-
tify the relative slant of a at surface. In contrast, the
compression gradient was most important for judging the
curvature of undulating surfaces. Later work by Aks and
Enns on overcoming perspective foreshortening in early vi-
sion also discussed the e�ects of texture gradients on the
perceived shape of an underlying surface [1].

Work in computer vision is also interested in how viewers
segment images, in part to try to develop automated tex-
ture classi�cation and segmentation algorithms. Tamura
et al. and Rao and Lohse identi�ed texture dimensions by
conducting experiments that asked observers to divide pic-
tures depicting di�erent types of textures (Brodatz images)
into groups [39], [40], [50]. Tamura et al. used their results
to propose methods for measuring coarseness, contrast, di-
rectionality, line-likeness, regularity, and roughness. Rao
and Lohse used multidimensional scaling to identify the pri-
mary texture dimensions used by their observers to group
images: regularity, directionality, and complexity. Haral-
ick built grayscale spatial dependency matrices to identify

features like homogeneity, contrast, and linear dependency
[21]. These features were used to classify satellite images
into categories like forest, woodlands, grasslands, and wa-
ter. Liu and Picard used Wold features to synthesize tex-
ture patterns [35]. A Wold decomposition divides a 2D
homogeneous pattern (e.g., a texture pattern) into three
mutually orthogonal components with perceptual proper-
ties that roughly correspond to periodicity, directionality,
and randomness. Malik and Perona designed computer
algorithms that use orientation �ltering, nonlinear inhibi-
tion, and computation of the resulting texture gradient to
mimic the discrimination ability of the low-level human vi-
sual system [37].

Researchers in computer graphics are studying methods
for using texture to perform tasks such as representing sur-
face shape and extent, displaying ow patterns, identifying
spatially coherent regions in high-dimensional data, and
multivariate visualization. Schweitzer used rotated discs to
highlight the shape and orientation of a three-dimensional
surface [47]. Grinstein et al. created a system called EXVIS
that uses \stick-men" icons to produce texture patterns
that show spatial coherence in a multivariate dataset [19].
Ware and Knight used Gabor �lters to construct texture
patterns; attributes in an underlying dataset are used to
modify the orientation, size, and contrast of the Gabor ele-
ments during visualization [57]. Turk and Banks described
an iterated method for placing streamlines to visualize two-
dimensional vector �elds [54]. Interrante displayed texture
strokes to help show three-dimensional shape and depth on
layered transparent surfaces; principal directions and cur-
vatures are used to orient and advect the strokes across the
surface [26]. Salisbury et al. used texturing techniques to
build computer-generated pen-and-ink drawings that con-
vey a realistic sense of shape, depth, and orientation [46].
Finally, Laidlaw described two methods for displaying a 2D
di�use tensor image with seven values at each spatial loca-
tion [32]. The �rst method used the shape of normalized
ellipsoids to represent individual tensor values. The second
used techniques from oil painting [38] to represent all seven
values simultaneously via multiple layers of varying brush
strokes.

Visualization techniques like EXVIS [19] are sometimes
referred to as \glyph-based" methods. Glyphs are graphi-
cal icons with visual features like shape, orientation, color,
and size that are controlled by attributes in an underlying
dataset. Glyph-based techniques range from representation
via individual icons to the formation of texture and color
patterns through the overlay of many thousands of glyphs.
Initial work by Cherno� suggested the use of facial charac-
teristics to represent information in a multivariate dataset
[6], [10]. A face is used to summarize a data element; indi-
vidual data values control features in the face like the nose,
eyes, eyebrows, mouth, and jowls. Foley and Ribarsky have
created a visualization tool called Glyphmaker that can be
used to build visual representations of multivariate datasets
in an e�ective, interactive fashion [16]. Glyphmaker uses
a glyph editor and glyph binder to create glyphs, to ar-
range them spatially, and to bind attributes to their visual
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properties. Levkowitz described a prototype system for
combining colored squares to produce patterns to represent
an underlying multivariate dataset [33]. Other techniques
such as the normalized ellipsoids of Laidlaw [32], the Gabor
elements of Ware [57], or even the pexels described in this
paper might also be classi�ed as glyphs, although we prefer
to think of them as texture-based visualization methods.

B. Color

As with texture, color has a rich history in the areas
of computer graphics and psychophysics. In graphics, re-
searchers have studied issues related to color speci�cation,
color perception, and the selection of colors for information
representation during visualization. Work in psychophysics
describes how the human visual system mediates color per-
ception.

A number of di�erent color models have been built in
computer graphics to try to support the unambiguous spec-
i�cation of color [60]. These models are almost always
three-dimensional, and are often divided into a device-
dependent class, where a model represents the displayable
colors of a given output device, and a device-independent
class, where a model provides coordinates for colors from
the visible color spectrum. Common examples of device-
dependent models include monitor RGB and CMYK. Com-
mon examples of device-independent models include CIE
XYZ, CIE LUV, and CIE Lab. Certain models were de-
signed to provide additional functionality that can be used
during visualization. For example, both CIE LUV and CIE
Lab provide rough perceptual uniformity; that is, the Eu-
clidean distance between a pair of colors speci�ed in these
models roughly corresponds to perceived color di�erence.
These models also provide a measure of isoluminance, since
their L-axis is meant to correspond to perceived brightness.

Previous work has also addressed the issue of construct-
ing color scales for certain types of data visualization.
For example, Ware and Beatty describe a simple color vi-
sualization technique for displaying correlation in a �ve-
dimensional dataset [56]. Ware has also designed a method
for building continuous color scales that control color sur-
round e�ects [55]. The color scales use a combination of
luminance and hue variation that allows viewers to deter-
mine the value associated with a speci�c color, and to iden-
tify the spatial locations of peaks and valleys (i.e., to see
the shape) in a 2D distribution of an attribute's values.
Controlling color surround ensures a small, near-constant
perceptual error e�ect from neighboring colors across the
entire range of the color scale. Robertson described user
interface techniques for visualizing the range of colors a
display device can support using perceptual color mod-
els [44]. Rheingans and Tebbs have built a system that
allows users to interactively construct a continuous color
scale by tracing a path through a 3D color model [43].
This technique allows users to vary how di�erent values
of an attribute map onto the color path. Multiple col-
ors can be used to highlight areas of interest within an
attribute, even when those areas constitute only a small
fraction of the attribute's full range of allowable values.

Levkowitz and Herman designed a locally optimal color
scale that maximizes the just-noticeable color di�erence
between neighboring pairs of colors [34]. The result is a
signi�cantly larger number of just-noticeably di�erent col-
ors in their color scales, compared to standard scales like
red-blue, rainbow, or luminance.

Recent work at the IBM Thomas J. Watson Research
Center has focused on a rule-based visualization tool [45].
Initial research addressed the need for rules that take into
account how a user perceives visual features like hue, lumi-
nance, height, and so on. These rules are used to guide or
restrict a user's choices during data-feature mapping. The
rules use various metadata, for example, the visualization
task being performed, the visual features being used, and
the spatial frequency of the data being visualized. A spe-
ci�c example of one part of this system is the colormap
selection tool from the IBM Visualization Data Explorer
[5]. The selection tool uses perceptual rules and metadata
to limit the choice of colormaps available to the user.

Finally, psychophysicists have been working to identify
properties that a�ect perceived color di�erence. Two im-
portant discoveries include the linear separation [3], [4],
[14] and color category [31] e�ects. The linear separation
theory states that if a target color can be separated from
all the other background colors being displayed with a sin-
gle straight line in color space, it will be easier to detect
(i.e., its perceived di�erence from all the other colors will
increase) compared to a case where it can be formed by
a linear combination of the background colors. D'Zmura's
initial work on this phenomena [14] showed that a target
color could be rapidly identi�ed in a sea of background ele-
ments uniformly colored one of two colors (e.g., an orange
target could be rapidly identi�ed in a sea of red elements,
or in a sea of yellow elements). The same target, however,
was much more diÆcult to �nd when the background el-
ements used both colors simultaneously (e.g., an orange
target could not be rapidly identi�ed in a sea of red and
yellow elements). This second case is an example of a tar-
get color (orange) that is a linear combination of its back-
ground colors (red and yellow). The color category e�ect
suggests that the perceived di�erence between a pair of col-
ors increases when the two colors occupy di�erent named
color regions (i.e., one lies in the \blue" region and one
lies in the \purple" region, as opposed to both in blue or
both in purple). We believe both results may need to be
considered to guarantee perceptual uniformity during color
selection.

C. Combined Texture and Color

Although texture and color have been studied exten-
sively in isolation, much less work has focused on their
combined use for information representation. An e�ective
method of displaying color and texture patterns simulta-
neously would increase the number of attributes we can
represent at one time. The �rst step towards supporting
this goal is the determination of the amount of visual in-
terference that occurs between these features during visu-
alization.
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Experiments in psychophysics have produced interest-
ing but contradictory answers to this question. Callaghan
reported asymmetric interference of color on form during
texture segmentation: a random color pattern interfered
with the identi�cation of a boundary between two groups
of di�erent forms, but a random form pattern had no e�ect
on identifying color boundaries [8], [9]. Triesman, however,
showed that random variation of color had no e�ect on de-
tecting the presence or absence of a target element de�ned
by a di�erence in orientation (recall that directionality has
been identi�ed as a fundamental perceptual texture dimen-
sion) [53]. Recent work by Snowden [49] recreated the dif-
fering results of both Callaghan and Triesman. Snowden
ran a number of additional experiments to test the e�ects
of random color and stereo depth variation on the detec-
tion of a target line element with a unique orientation. As
with Callaghan and Triesman, results di�ered depending
on the target type. Search for a single line element was
rapid and accurate, even with random color or depth vari-
ation. Search for a spatial collection of targets was easy
only when color and depth were �xed to a constant value.
Random variation of color or depth produced a signi�cant
reduction in detection accuracy. Snowden suggests that the
visual system wants to try to group spatially neighboring
elements with common visual features, even if this grouping
is not helpful for the task being performed. Any random
variation of color or depth interferes with this grouping
process, thereby forcing a reduction in performance.

These results leave unanswered the question of whether
color variation will interfere with texture identi�cation dur-
ing visualization. Moreover, work in psychophysics studied
two-dimensional texture segmentation. Our pexels are ar-
rayed over an underlying height �eld, then displayed in 3D
using a perspective projection. Most of the research to date
has focused on color on texture interference. Less work has
been conducted to study how changes in texture dimensions
like height, density, or regularity will a�ect the identi�ca-
tion of data elements with a particular target color. The
question of interference in this kind of height-�eld envi-
ronment needs to be addressed before we can recommend
methods for the combined use of color and texture.

III. Perceptual Visualization

An important requirement for any visualization tech-
nique is a method for rapid, accurate, and e�ortless vi-
sual exploration. We address this goal by using what is
known about the control of human visual attention as a
foundation for our visualization tools. The individual fac-
tors that govern what is attended in a visual display can
be organized along two major dimensions: bottom-up (or
stimulus driven) versus top-down (or goal directed).

Bottom-up factors in the control of attention include the
limited set of features that psychophysicists have identi�ed
as being detected very quickly by the human visual sys-
tem, without the need for search. These features are often
called preattentive, because their detection occurs rapidly
and accurately, usually in an amount of time independent
of the total number of elements being displayed. When

applied properly, preattentive features can be used to per-
form di�erent types of exploratory analysis. Examples in-
clude searching for data elements with a unique visual fea-
ture, identifying the boundaries between groups of elements
with common features, tracking groups of elements as they
move in time and space, and estimating the number of el-
ements with a speci�c feature. Preattentive tasks can be
performed in a single glance, which corresponds to 200 mil-
liseconds (ms) or less. As noted above, the time required
to complete the task is independent of the number of data
elements being displayed. Since the visual system cannot
choose to refocus attention within this timeframe, users
must complete their task using only a \single glance" at
the image.

Fig. 2 shows examples of both types of target search. In
Fig. 2a-2d the target, a red circle, is easy to �nd. Here,
the target contains a preattentive feature unique from the
background distracters: color (red versus blue) or shape
(circle versus square). This unique feature is used by the
low-level visual system to rapidly identify the presence or
absence of the target. Unfortunately, an intuitive combina-
tion of these results can lead to visual interference. Fig. 2e
and 2f simulate a two-dimensional dataset where one at-
tribute is encoded with color (red or blue), and the other
is encoded with shape (circle or square). Although these
features worked well in isolation, searching for a red circle
target in a sea of blue circles and red squares is signi�-
cantly more diÆcult. In fact, experiments have shown that
search time is directly proportional to the number of ele-
ments in the display, suggesting that viewers are searching
small subgroups of elements (or even individual elements
themselves) to identify the target. In this example the
low-level visual system has no unique feature to search for,
since circular elements (blue circles) and red elements (red
squares) are also present in the display. The visual system
cannot integrate preattentively the presence of multiple vi-
sual features (circular and red) at the same spatial location.
This is a very simple example of a situation where knowl-
edge of preattentive vision would have allowed us to avoid
displays that actively interfere with our analysis task.

In spite of the perceptual salience of the target in Fig. 2a-
2d, bottom-up inuences cannot be assumed to operate
independently of the current goals and attentional state
of the observer. Recent studies have demonstrated that
many of the bottom-up factors only inuence perception
when the observer is engaged in a task in which they are
expected or task-relevant (see the review by [15]). For ex-
ample, a target de�ned as a color singleton will \pop out"
of a display only when the observer is looking for targets
de�ned by color. The same color singleton will not inu-
ence perception when observers are searching exclusively
for luminance de�ned targets. Sometimes observers will fail
completely to see otherwise salient targets in their visual
�eld, either because they are absorbed in the performance
of a cognitively-demanding task [36], there are a multitude
of other simultaneous salient visual events [42], or because
the salient event occurs during an eye movement or other
change in viewpoint [48]. Therefore, the control of atten-
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Examples of target search: (a, b) identifying a red target in a sea of blue distracters is rapid and accurate, target absent in (a),
present in (b); (c, d) identifying a red circular target in a sea of red square distracters is rapid and accurate, target present in (c), absent
in (d); (e, f) identifying the same red circle target in a combined sea of blue circular distracters and red square distracters is signi�cantly
more diÆcult, target absent in (e), present in (f)
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Fig. 3. A background array of short, sparse, regular pexels; the lower and upper groups on the left contain irregular and random pexels,
respectively; the lower and upper groups in the center contain dense and very dense pexels; the lower and upper groups to the right
contain medium and tall pexels

tion must always be understood as an interaction between
bottom-up and top-down mechanisms.

Our research is focused on identifying relevant results
in the vision and psychophysical literature, then extend-
ing these results and integrating them into a visualization
environment. Tools that make use of preattentive vision of-
fer a number of important advantages during multivariate
visualization:

1. Visual analysis is rapid, accurate, and relatively e�ort-
less since preattentive tasks can be completed in 200 ms
or less. We have shown that tasks performed on static dis-
plays extend to a dynamic environment where data frames
are shown one after another in a movie-like fashion [24]
(i.e., tasks that can be performed on an individual display
in 200 ms can also be performed on a sequence of displays
shown at �ve frames a second).
2. The time required for task completion is independent of
display size (to the resolution limits of the display). This
means we can increase the number of data elements in a
display with little or no increase in the time required to
analyze the display.
3. Certain combinations of visual features cause interfer-
ence patterns that mask information in the low-level visual
system. Our experiments are designed to identify these sit-
uations. This means our visualization tools can be built to
avoid data-feature mappings that might interfere with the
analysis task.

Since preattentive tasks are rapid and insensitive to dis-
play size, we believe visualization techniques that make
use of these properties will support high-speed exploratory
analysis of large, multivariate datasets. Care must be
taken, however, to ensure that we choose data-feature map-
pings that maximize the perceptual salience of all the data
attributes being displayed.

We are currently investigating the combined use of two
important and commonly used visual features: texture

and color. Previous work in our laboratory has identi�ed
methods for choosing perceptual textures and colors for
multivariate visualization. Results from vision and psy-
chophysics on the simultaneous use of both features are
mixed: some researchers have reported that background
color patterns mask texture information, and vice-versa,
while others claim that no interference occurs. Experi-
ments reported in this paper are designed to test for color-
texture interactions during visualization. A lack of interfer-
ence would suggest that we could combine both features to
simultaneously encode multiple attributes. The presence
of interference, on the other hand, would place important
limitations on the way in which visual attributes should
be mapped onto data attributes. Visualization tools based
on these �ndings would then be able to display textures
with the appropriate mapping of data dimensions to visual
attributes.

IV. Pexels

One of the main goals of multivariate visualization is
to display multiple attribute values at a single spatial loca-
tion without overwhelming the user's ability to comprehend
the resulting image. Researchers in vision, psychophysics,
and graphics have been studying how the visual system
analyzes texture patterns. We wanted to know whether
perceptual texture dimensions could be used to represent
multivariate data elements during visualization. To this
end, we designed a set of perceptual texture elements, or
pexels, that support the variation of three separate tex-
ture dimensions: density, regularity, and height. Density
and regularity have been identi�ed in the literature as pri-
mary texture dimensions [39], [40], [50]. Although height
might not be considered an \intrinsic textural cue", we note
that height is one aspect of element size, and that size is
an important property of a texture pattern. Results from
psychophysical experiments have shown that di�erences in



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 2, APRIL-JUNE 1999

(a) (b) (c)

Fig. 4. Three displays of pexels with di�erent regularity and a 5� 3 patch from the center of the corresponding autocorrelation graphs: (a)
a completely regular display, resulting in sharp peaks of height 1.0 at regular intervals in the autocorrelation graph; (b) a display with
irregularly-spaced pexels, peaks in the graph are reduced to a maximum height between 0.3 and 0.4; (c) a display with randomly-spaced
pexels, resulting in a completely at graph except at (0,0) and where underlying grid lines overlap

height are detected preattentively [51], moreover, viewers
properly correct for perspective foreshortening when they
perceive that elements are being displayed in 3D [1]. We
wanted to build three-dimensional pexels that \sit up" on
the underlying surface. This allows for the possibility of
applying various orientations (another important texture
dimension) to a pexel.
Our pexels look like a collection of one or more upright

paper strips. Each element in the dataset is represented by
a single pexel. The user maps attributes in their dataset
to density (which controls the number of strips in a pexel),
height, and regularity. The attribute values for a particular
element can then control the appearance of its pexel. When
all the pexels for a particular data frame are displayed,
they form texture patterns that represent the underlying
structure of the dataset.
Fig. 3 shows an example of regularity, density, and height

varied across three discrete values. Each pexel in the origi-
nal array (shown in gray) is short, sparse, and regular. The
lower and upper patches on the left of the array (shown in
black) contain irregular and random pexels, respectively.
The lower and upper patches in the middle of the array
contain dense and very dense pexels. The lower and upper
patches on the right contain medium and tall pexels.

A. Ordering Texture Dimensions

In order to use height, density, and regularity during
visualization, we needed an ordinal ranking for each di-
mension. Height and density both have a natural order-
ing: shorter comes before taller, and sparser comes before
denser.
Although viewers can often order regularity intuitively,

we required a more formal method for measurement. We
chose to use autocorrelation to rank regularity. This tech-
nique measures the second-order statistic of a texture pat-

tern. Psychophysicists have reported that a change in reg-
ularity produces a corresponding change in a texture's sec-
ond order statistic [27], [28], [30]. Intuitively, autocorrelat-
ing an image shifts two copies of the image on top of one
another, to see how closely they can be matched. If the
texture is made up of a regular, repeating pattern it can
be shifted in various ways to exactly overlap with itself. As
more and more irregularity is introduced into the texture,
the amount of overlap decreases, regardless of where we
shift the copies. Consider two copies of an image A and
B, each with a width of N and a height of M pixels. The
amount of autocorrelation that occurs when A is overlaid
onto B at o�set (t; u) is:

C(t; u) =
1

K

NX
x=1

MX
y=1

(A[x; y]�A)(B[x+ t; y+ u]�B) (1)

K = NM
p
�2(A)

p
�2(B) (2)

A =
1

NM

NX
x=1

MX
y=1

A[x; y] (3)

�2(A) =
1

NM

NX
x=1

MX
y=1

(A[x; y] �A)2 (4)

with B and �2(B) computed in a similar fashion. Elements
in A that do not overlap with B are wrapped to the opposite
side of B (i.e., elements in A lying above the top of B wrap
back to the bottom, elements lying below the bottom of B
wrap back to the top, similarly for elements to the left or
right of B).
As a practical example, consider Fig. 4a (pexels on a reg-

ular underlying grid), Fig. 4b (pexels on an irregular grid),
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and Fig. 4c (pexels on a random grid). Irregular and ran-
dom pexels are created by allowing each strip in the pexel
to walk a random distance (up to �xed maximum) in a
random direction from its original anchor point. Autocor-
relation was computed on the orthogonal projection of each
image. A 5� 3 patch from the center of the corresponding
autocorrelation graph is shown beneath each of the three
grids. Results in the graphs mirror what we see in each
display, that is, as randomness increases, peaks in the au-
tocorrelation graph decrease in height. In Fig. 4a peaks of
height 1.0 appear at regular intervals in the graph. Each
peak represents a shift that places pexels so they exactly
overlap with one another. The rate of increase towards
each peak di�ers in the vertical and horizontal directions
because the elements in the graph are rectangles (i.e., taller
than they are wide), rather than squares. In Fig. 4b, the
graph has the expected sharp peak at (0,0). It also has
gentle peaks at shift positions that realign the grid with
itself. The peaks are not as high as for the regular grid,
because the pexels no longer align perfectly with one an-
other. The sharp vertical and horizontal ridges in the graph
represent positions where the underlying grid lines exactly
overlap with one another (the grid lines showing the orig-
inal position of each pexel are still regular in this image).
The height of each gentle peak ranges between 0.3 and
0.4. Increasing randomness reduces again the height of the
peaks in the correlation graph. In Fig. 4c, no peaks are
present, apart from (0,0) and the sharp ridges that occur
when the underlying grid lines overlap with one another.
The resulting correlation values suggests that this image is
\more random" than either of its predecessors. Informal
tests with a variety of regularity patterns showed a near-
perfect match between user-chosen rankings and rankings
based on our autocorrelation technique. Autocorrelation
on the perspective projections of each grid could also be
computed. The tall peaks and attened results would be
similar to those in Fig. 4, although the density of their
spacing would change near the top of the image due to
perspective compression and foreshortening.

B. Pexel Salience and Interference

We conducted experiments to test the ability of each tex-
ture dimension to display e�ectively an underlying data
attribute during multivariate visualization. To summa-
rize, our experiments were designed to answer the following
three questions:

1. Can the perceptual dimensions of density, regularity,
and height be used to show structure in a dataset through
the variation of a corresponding texture pattern?
2. How can we use the dataset's attributes to control the
values of each perceptual dimension?
3. How much visual interference occurs between each of
the perceptual dimensions when they are displayed simul-
taneously?

C. Experiments

We designed texture displays to test the detectability of
six di�erent target types: taller, shorter, denser, sparser,

more regular, and more irregular. For each target type, a
number of parameters were varied, including exposure du-
ration, texture dimension salience, and visual interference.
For example, during the \taller" experiment, each display
showed a 20� 15 array of pexels rotated 45Æ about the X-
axis. Observers were asked to determine whether the array
contained a group of pexels that were taller than all the
rest. The following conditions varied:

� target-background pairing: some displays showed a
medium target in a sea of short pexels, while others showed
a tall target in a sea of medium pexels; this allowed us to
test whether some target de�ning attributes were generally
more salient than others,
� secondary texture dimension: displays contained either
no background variation (every pexel was sparse and reg-
ular), a random variation of density across the array, or
a random variation of regularity across the array; this al-
lowed us to test for background interference during target
search,
� exposure duration: displays were shown for 50, 150, or
450 ms; this allowed us to test for a reduction in perfor-
mance when exposure duration was decreased, and
� target patch size: target groups were either 2� 2 pexels
or 4�4 pexels in size; this allowed us to test for a reduction
in performance for smaller target patches.

The heights, densities, and regularities we used were cho-
sen through a set of pilot studies. Two patches were placed
side-by-side, each displaying a pair of heights, densities, or
regularities. Viewers were asked to answer whether the
patches were di�erent from one another. Response times
for correct answers were used as a measure of performance.
We tested a range of values for each dimension, although
the spatial area available for an individual pexel during our
experiments limited the maximum amount of density and
irregularity we were able to display. The �nal values we
chose could be rapidly and accurately di�erentiated in this
limited setting.

The experiments that tested the other �ve target types
(shorter, denser, sparser, regular, and irregular) were de-
signed in a similar fashion, with one exception. Exper-
iments testing regularity had only one target-background
pairing: a target of regular pexels in a sea of random pexels
(for the regular experiment), or a target of random pexels
in a sea of regular pexels (for the irregular experiment).
The pilot studies used to select values for each dimension
showed that users had great diÆculty discriminating an ir-
regular patch from a random patch. This was due in part
to the small spatial area available to each pexel.

Our pilot studies produced experiments that tested three
separate heights (short, medium, and tall), three separate
densities (sparse, dense, and very dense) and two separate
regularities (regular and random). Examples of two dis-
play types (taller and regular) are shown in Fig. 5. Both
displays include target pexels. Fig. 5a contains a 2� 2 tar-
get group of medium pexels in a sea of short pexels. The
density of each pexel varies across the array, producing an
underlying density pattern that is clearly visible. This dis-
play type simulates two dimensional data elements being
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(a)

(b)

Fig. 5. Two display types from the taller and regular pexel experi-
ments: (a) a target of medium pexels in a sea of short pexels with
a background density pattern (2 � 2 target group located left of
center); (b) a target of regular pexels in a sea of irregular pexels
with no background texture pattern (2 � 2 target group located
3 grid steps right and 7 grid steps up from the lower-left corner
of the array)

visualized with height as the primary texture dimension
and density as the secondary texture dimension. Recall
that the number of paper strips in a pexel depends on its
density. Since three of the target pexels in Fig. 5a are
dense, they each display two strips. The remaining pexel
is sparse, and therefore displays a only single strip. Fig. 5b
contains a 2 � 2 target group of regular pexels in a sea
of random pexels, with a no background texture pattern.
The taller target in Fig. 5a is very easy to �nd, while the
regular target in Fig. 5b is almost invisible.

D. Results

Detection accuracy data were analyzed using a multi-
factor analysis of variance (ANOVA). A complete descrip-
tion of our analysis and statistical �ndings is available in
[22], [23], [25]. In summary, we found:

1. Taller target regions were identi�ed rapidly (i.e., 150
ms or less) with very high accuracy (approximately 93%);
background density and regularity patterns produced no
signi�cant interference.
2. Shorter, denser, and sparser targets were more diÆcult
to identify than taller targets, although good results were
obtained at both 150 and 450 ms (82.3%, 94.0%, and 94.7%
for shorter, denser, and sparser targets with no background
variation at 150 ms). This was not surprising, since similar

results have been documented by [51] and [1] using displays
of texture on a two-dimensional plane.
3. Background variation in non-target attributes produced
small, but statistically signi�cant, interference e�ects.
These e�ects tended to be largest when target detectability
was lowest. For example, density and regularity interfered
with searching for shorter targets; height and regularity in-
terfered with searching for sparser targets; but only height
interfered with the (easier to �nd) denser targets.
4. Irregular target regions were diÆcult to identify at 150
and 450 ms, even with no secondary texture pattern (ap-
proximately 76%). Whether this accuracy level is suÆ-
ciently high will depend on the application. In contrast,
regular regions were invisible under these conditions; the
percentage of correct responses approached chance (i.e.,
50%) in every condition.

(a)

(b)

Fig. 6. Two displays with a regular target, both displays should be
compared with the target shown in Fig. 5b: (a) larger target,
an 8 � 8 target in a sea of sparse, random pexels; (b) denser
background, a 2�2 target in a sea of dense, random pexels (target
group located right of center)

Our poor detection results for regularity were unex-
pected, particularly since vision algorithms that perform
texture classi�cation use regularity as one of their primary
decision criteria [35], [39], [40], [50]. We con�rmed that
our results were not due to a di�erence in our de�nition of
regularity; the way we produced irregular patches matches
the methods described by [20], [28], [30], [39], [40], [50]. It
may be that regularity is important for classifying di�er-
ent textures, but not for the type of texture segmentation
that we are performing. Informal post-experiment investi-
gations showed that we could improve the salience of a reg-
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93.1% 83.7% 93.8% 93.4% 49.3% 76.8%

88.3% 66.5% 80.4% 68.8%

87.4% 75.9% 55.9% 68.6%

64.1% 77.2% 53.7% 58.5%

Taller Shorter Denser Sparser Regular Random

Height

Density

Regularity

None

Background:

Target:

Fig. 7. A table showing the percentage of correct responses for each target-background pairing; target type along the horizontal axis,
background type along the vertical axis; darker squares represent pairings with a high percentage of correct responses; blank entries with
diagonal slashes indicate target-background pairings that do not exist

ular (or irregular) patch by increasing its size (Fig. 6a), or
by increasing the minimum pexel density to be very dense
(Fig. 6b). However, neither of these solutions is necessarily
useful. There is no way to guarantee that data values will
cluster together to form the large spatial regions needed
for regularity detection. If we constrain density to be very
dense across the array, we lose the ability to vary density
over an easily identi�able range. This reduces the dimen-
sionality of our pexels to two (height and regularity), pro-
ducing a situation that is no better than when regularity
is diÆcult to identify. Because of this, we normally choose
to display an attribute with low importance using regu-
larity. While di�erences in regularity cannot be detected
consistently by the low-level visual system, in many cases
users may be able to see the changes when areas of interest
in the dataset are identi�ed and analyzed in a focused or
attentive fashion.
Fig. 7 shows average subject performance as a table rep-

resenting each target-background pair. Target type varies
along the horizontal axis, while background type varies
along the vertical axis. Darker squares represent target-
background pairings with highly accurate subject perfor-
mance. The number in the center of each square reports
the percentage of correct responses averaged across all sub-
jects.

V. Perceptual Colors

In addition to our study of pexels, we have examined
methods for choosing multiple individual colors. These ex-
periments were designed to select a set of n colors such
that:

1. Any color can be detected preattentively, even in the
presence of all the others.
2. The colors are equally distinguishable from one another;
that is, every color is equally easy to identify.

We also tested for the maximum number of colors that
can be displayed simultaneously, while still satisfying the
above requirements. Background research suggested that
we needed to consider three separate selection criteria:
color distance, linear separation, and color category.

A. Color Distance

Perceptually balanced color models are often used to
measure perceived color di�erence between pairs of colors.
Examples include CIE LUV, CIE Lab, Munsell, and the
Optical Society of America Uniform Color Space. We used
CIE LUV to measure color distance. Colors are speci�ed
in this model using three axes: L�, u�, and v�. L� encodes
luminance, while u� and v� encode chromaticity (u� and
v� correspond roughly to the red-green and blue-yellow op-
ponent color channels). CIE LUV provides two important
properties. First, colors with the same L� are isoluminant,
that is, they have roughly the same perceived brightness.
Second, the Euclidean distance between a pair of colors cor-
responds roughly to their perceived color di�erence. Given
two colors x and y in CIE LUV space, the perceived di�er-
ence measured in �E� units is:

�E�

xy
=
q
(�L�

xy
)2 + (�u�

xy
)2 + (�v�

xy
)2 (5)

Our techniques do not depend on CIE LUV; we could
have chosen to use any perceptually balanced color model.
We picked CIE LUV in part because it is reasonably well
known, and in part because it is recommended by the Com-
mission Internationale de L'�Eclairage (CIE) as the appro-
priate model to use for CRT displays [11].

B. Linear Separation

Results from vision and psychophysics suggest that col-
ors that are linearly separable are signi�cantly easier to
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T-BC
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C
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blue-purple
color category boundary

blue
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Fig. 8. A small, isoluminant patch within the CIE LUV color model, showing a target color T and three background distracter colors A, B,
and C; note that T is collinear with A and B, but can be separated by a straight line from B and C; note also that T, A, and C occupy
the \blue" color region, while B occupies the \purple" color region

distinguish from one another. Initial work on this prob-
lem was reported in [14]. These results were subsequently
con�rmed and strengthened by [3], [4] who showed that
a perceptually balanced color model could not be used to
overcome the linear separation e�ect.
As an example, consider a target color T and three back-

ground distracter colors A, B, and C shown in CIE LUV
space in Fig. 8. Since the Euclidean distances TA, TB, and
TC are equal, the perceived color di�erence between T and
A, B, and C should also be roughly equal. However, search-
ing for a target element colored T in a sea of background
elements coloredA and B is signi�cantly more diÆcult than
searching for T in a sea of elements colored B and C. Ex-
perimental results suggest that this occurs because T is
collinear with A and B, whereas T can be separated by a
straight line in color space from B and C. Linear separation
increases perceived color di�erence, even when a perceptual
color model is used to try to control that di�erence.

C. Color Category

Recent work reported by Kawai et al. showed that, dur-
ing their experiments, the named categories in which peo-
ple place individual colors can a�ect perceived color di�er-
ence [31]. Colors from di�erent named categories have a
larger perceived color di�erence, even when Euclidean dis-
tance in a perceptually balanced color model is held con-
stant.
Consider again the target color T and two background

distracter colors A and B shown in CIE LUV space in
Fig. 8. Notice also that this region of color space has been
divided into two named color categories. As before, the
Euclidean distances TA and TB are equal, yet �nding an

element colored T in a sea of background elements colored
A is signi�cantly more diÆcult than �nding T in a sea of
elements colored B. Kawai et al. suggest this is because
both T and A lie within a color category named \blue",
while B lies within a di�erent category named \purple".
Colors from di�erent named categories have a higher per-
ceived color di�erence, even when a perceptual color model
is used to try to control that di�erence.

D. Color Selection Experiments

Our �rst experiment selected colors by controlling color
distance and linear separation, but not color category. The
reasons for this were twofold. First, traditional methods for
subdividing a color space into named color regions are te-
dious and time-consuming to run. Second, we were not
convinced that results from [31] were important for our
color selection goals. If problems occurred during our ini-
tial experiment, and if those problems could be addressed
by controlling color category during color selection, this
would both strengthen the results of [31] and highlight their
applicability to the general color selection task.
We selected colors from the boundary of a maximum-

radius circle embedded in our monitor's gamut. The cir-
cle was located on an isoluminant slice through the CIE
LUV color model. Previous work reported in [7], [9] showed
that a random variation of luminance can interfere with the
identi�cation of a boundary between two groups of di�er-
ently colored elements. Holding the perceived luminance of
each color constant guaranteed variations in performance
would not be the result of a random luminance e�ect. Fig. 9
shows an example of selecting �ve colors about the circum-
ference of the maximum-radius circle inscribed within our
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monitor's gamut at L� = 61:7. Since colors are located
equidistant around the circle, every color has a constant
distance d to its two nearest neighbors, and a constant
distance l to the line that separates it from all the other
colors.

YR

Y

GY

G

BG

B

PB
P

RP

R

Gamut Boundary

d

d

l

Fig. 9. Choosing colors from the monitor's gamut, the boundary
of the gamut at L� = 61:7 represented as a quadrilateral, along
with the maximum inscribed circle centered at (L�, u�, v�) =
(67:1; 13:1;�0:98), radius 70:5�E�; �ve colors chosen around the
circle's circumference; each element has a constant color distance
d with its two neighbors, and a constant linear separation l from
the remaining (non-target) elements; the circle's circumference
has been subdivided into ten named categories, corresponding to
the ten hue names from the Munsell color model

We split the experiment into four studies that displayed
three, �ve, seven, and nine colors simultaneously. This
allowed us to test for the maximum number of colors we
could show while still supporting preattentive identi�ca-
tion. Displays in each study were further divided along the
following conditions:
� target color: each color being displayed was tested as a
target, for example, during the three-color study some ob-
servers searched for a red target in a sea of green and blue
distracters, others search for a blue target in a sea of red
and green distracters, and the remainder searched for a
green target in a sea of red and blue distracters; asymmet-
ric performance (that is, good performance for some colors
and poor performance for others) would indicate that con-
stant distance and separation are not suÆcient to guarantee
equal perceived color di�erence, and
� display size: experiment displays contained either 17, 33,
or 49 elements; any decrease in performance when display
size increased would indicate that the search task is not
preattentive.

At the beginning of an experiment session observers were
asked to search a set of displays for an element with a par-
ticular target color. Observers were told that half the dis-
plays would contain an element with the target color, and
half would not. They were then shown a sequence of ex-
periment displays that contained multiple colored squares
randomly located on an underlying 9 � 9 grid. Each dis-
play remained onscreen until the observer indicated via a
keypress whether a square with the given target color was
present or absent. Observers were told to answer as quickly
as possible without making mistakes.

E. Results

Observers were able to detect all the color targets rapidly
and accurately during both the three-color and �ve-color
studies; the average error rate was 2.5%, while the average
response times ranged from 459 to 661 ms (response times
exceeded the normal preattentive limit of 200 ms because
they include the time required for observers to enter their
responses on the keyboard). Increasing the display size had
no signi�cant e�ect on response time.

Observers had much more diÆculty identifying certain
colors during the seven-color (Fig. 10a) and nine-color stud-
ies. Response times increased and accuracy decreased dur-
ing both studies. More importantly, the time required to
detect certain colors (e.g., light green and dark green in
the seven-color study) was directly proportional to display
size. This indicates observers are searching serially through
the display to �nd the target element. Other colors exhib-
ited relatively at response time curves. These asymmetric
results suggest that controlling color distance and linear
separation alone is not enough to guarantee a collection of
equally distinguishable colors.

F. Color Category Experiments

We decided to try to determine whether named color
categories could be used to explain the inconsistent results
from our initial experiment. To do this, we needed to sub-
divide a color space (in our case, the circumference of our
maximum radius circle) into named color regions. Tra-
ditional color naming experiments divide the color space
into a �ne-grained collection of color samples. Observers
are then asked to name each of the samples. We chose
to use a simpler, faster method designed to measure the
amount of overlap between a set of named color regions.
Our technique runs in three steps:

1. The color space is automatically divided into ten named
color regions using the Munsell color model. The hue
axis of the Munsell model is speci�ed using the ten color
names red, yellow-red, yellow, green-yellow, green, blue-
green, blue, purple-blue, purple, and red-purple (or R, YR,
Y, GY, G, BG, B, PB, P, and RP). Colors are converted to
Munsell space, then assigned their hue name within that
space (Fig. 9).
2. Representative colors from each of the ten named re-
gions are selected. We chose the color at the center of each
region to act as the representative color for that region.
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Fig. 10. Graphs showing averaged subject response times for three of the six studies: (a) response time as a function of display size (i.e.,
total number of elements shown in each display) for each target from the seven-color study; (b) response times for each target from the
color category study; (c) response times for each target from the combined distance-separation-category study

3. Observers are asked to name each of the representative
colors. The amount of overlap between the names cho-
sen for the representative colors for each region de�nes the
amount of \category overlap" that exists between the re-
gions.

Consider Table I, which lists the percentage of observers
who selected a particular name for six of the representa-
tive colors. For example, the table shows that representa-
tive colors from P and R overlap only at the \pink" name.
Their overlap is not that strong, since neither P nor R

are strongly classi�ed as pink. The amount of overlap is
computed by multiplying the percentages for the common
name, giving a P-R overlap of 5.2% � 26.3% = 0.014. A
closer correspondence of user-chosen names for a pair of
regions results in a stronger category similarity. For exam-
ple, nearly all observers named the representative colors
from the G and GY regions as \green". This resulted in an
overlap of 0.973. Representative colors that overlap over
multiple names are combined using addition, for example,
YR and Y overlapped in both the \orange" and \brown"
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TABLE I

A list of six representative colors for the color regions purple, red, yellow-red, yellow, green-yellow, and green, and the

percentage of observers who chose a particular name for each representative color

purple magenta pink red orange brown yellow green

P 86.9% 2.6% 5.2%
R 26.3% 71.0%
YR 5.3% 86.8% 7.9%
Y 2.6% 44.7% 47.4%
GY 97.3%
G 100.0%

names, resulting in a YR-Y overlap of (86.8% � 2.6%) +
(7.9% � 44.7%) = 0.058.

G. Color Category Results

When we compared the category overlap values against
results from our seven and nine-color studies, we found
that the amount of overlap between the target color and
its background distracters provided a strong indication of
performance. Colors that worked well as targets had low
category overlap with all of their distracter colors. Colors
that worked poorly had higher overlap with one or more
of their distracter colors. A measure of rank performance
to total category overlap produced correlation values of
0.821 and 0.762 for the seven and nine-color studies, respec-
tively. This suggests that our measure of category overlap
is a direct predictor of subject performance. Low category
overlap between the target color and all of its background
distracters produces relatively rapid subject performance.
High category overlap between the target color and one
or more background distracters results in relatively slow
subject performance.

These results might suggest that color category alone
can be used to choose a set of equally distinguishable col-
ors. To test this, we selected seven new colors that all had
low category overlap with one another, then reran the ex-
periments. Results from this new set of colors were as poor
as the original seven-color study (Fig. 10b). The seven new
colors were located at the centers of their named categories,
so their distances and linear separations varied. The colors
with the longest response times had the smallest distances
and separations. This suggests that we need to maintain
at least a minimum amount of distance and separation to
guarantee acceptable identi�cation performance.

In our last experiment, we chose a �nal set of seven colors
that tried to satisfy all three selection criteria. The cate-
gories in which the colors were located all had low overlap
with one another. Colors were shifted within their cate-
gories to provide as large a distance and linear separation
as possible. We also tried to maintain constant distances
and linear separations for all the colors. Results from this
�nal experiment were encouraging (Fig. 10c). Response
times for each of the colors acting as a target were sim-
ilar, with little or no e�ect from increased display size.
The mean response error was also signi�cantly lower than
during the previous two seven-color experiments. We con-

cluded that up to seven isoluminant colors can be displayed
simultaneously while still allowing for rapid and accurate
identi�cation, but only if the colors satisfy proper color
distance, linear separation, and color category guidelines.

VI. Combining Texture and Color

Previous work in our laboratory focused on selecting per-
ceptual textures and colors in isolation. Clearly, we would
like to use multicolored pexels during visualization. The
ability to combine both features e�ectively would increase
the number of attributes we can visualize simultaneously.
Results in the literature are mixed on how this might be
achieved. Some researchers have reported that task irrele-
vant variation in color has no e�ect on texture discrimina-
tion [51], [58], while others have found exactly this kind of
interference [8], [9], [49]. Moreover, we are not aware of any
studies that address whether there is interference from ran-
dom variation in texture properties when discrimination is
based on color. Experiments are therefore needed that ex-
amine possible interference e�ects in both directions, that
is, e�ects of color variation on texture discrimination and
e�ects of texture variation on color discrimination.

A. Experiments

In order to investigate these issues, we designed a new set
of psychophysical experiments. Our two speci�c questions
were:

1. Does random variation in pexel color inuence the de-
tection of a region of target pexels de�ned by height or
density?
2. Does random variation in pexel height or density inu-
ence the detection of a region of target pexels de�ned by
color?

We chose to ignore regularity, since it performed poorly
as a target de�ning property during all phases of our origi-
nal texture experiments [23], [25]. We chose three di�erent
colors using our perceptual color selection technique [22],
[23]. Colors were initially selected in the CIE LUV color
space, then converted to our monitor's RGB gamut. The
three colors corresponded approximately to red (monitor
RGB = 246, 73, 50), green (monitor RGB = 49, 144, 21)
and blue (monitor RGB = 82, 109, 168). Our new experi-
ments were constructed around a set of conditions similar
to those used during the original texture experiments.
For color targets, we varied:
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Fig. 11. Four displays from the combined color-texture experiments, printed colors may not match exactly on-screen colors used during our
experiments: (a) a green target in a sea of blue pexels with background density variation; (b) a red target in a sea of green pexels with
background height variation; (c) a tall target with background blue-green color variation; (d) a dense target with background green-red
color variation

� target-background pairing: some displays contained a
green target region in a sea of blue pexels, while others con-
tained a red target region in a sea of green pexels (Fig. 11a
and 11b); two di�erent pairings were used to increase the
generality of the results,
� secondary dimension: displays contained either no back-
ground variation (e.g., every pexel was sparse and short),
a random variation of density across the array, or a ran-
dom variation of height across the array; this allowed us to
test for interference from two di�erent texture dimensions
during target detection based on color,
� exposure duration: displays were shown for either 50, 150,
or 450 ms; this allowed us to see how detection accuracy
was inuenced by the exposure duration of the display, and
� target patch size: target regions were either 2�2 pexels or
4�4 pexels in size. This allowed us to examine the inuence
of all the foregoing factors at both relatively diÆcult (2�2)
and easy (4� 4) levels of target detectability.

Two texture dimensions (height and density) were stud-
ied, and each involved two di�erent target types: taller
and shorter (for height) and denser and sparser (for den-
sity). For each type of target, we designed an experiment
that tested a similar set of conditions. For example, in the
taller experiment we varied:

� target-background pairing: half the displays contained a
target region of medium pexels in a sea of short pexels,
while the other half contained a target region of tall pexels
in a sea of medium pexels; two di�erent pairings were used
to increase the generality of the results,

� secondary dimension: the displays contained pexels that
were either a constant gray or that varied randomly be-
tween two colors; when color was varied, half the displays
contained blue and green pexels, while the other half of the
displays contained green and red pexels (Fig. 11c),
� exposure duration: displays were shown for 50, 150, or
450 ms, and
� target patch size: target groups were either 2� 2 pexels
or 4� 4 pexels in size.

Fig. 11 shows examples of four experiment displays.
Fig. 11a and 11b contain a green target in a sea of blue
pexels, and a red target in a sea of green pexels, respec-
tively. Density varies in the background in Fig. 11a, while
height varies in Fig. 11b. Fig. 11c contains a tall target with
a blue-green background color pattern. Fig. 11d contains
a dense target with a green-red background color pattern.
Any background variation that is present can pass through
a target. This occurs in Fig. 11d, where part of the target
is red and part is green. Note also that, as described for
Fig. 5, the number of paper strips in an individual pexel
depends on its density.

The colors we used during our experiments were chosen
in CIE LUV color space. A simple set of formulas can be
used to convert from CIE LUV to CIE XYZ (a standard
device-independent color model), and from there to our
monitor's color gamut. To move from LUV to XYZ:
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Fig. 12. A table showing the percentage of correct responses for each target-background pairing; target type along the horizontal axis,
background type along the vertical axis; darker squares represent pairings with a high percentage of correct responses; results for taller,
shorter, denser, and sparser with no background variation are from the original texture experiments; blank entries with diagonal slashes
indicate target-background pairings that did not exist during the combined color-texture experiments
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where L�, u0, and v0 are used to specify a color in CIE LUV
(u0 and v0 are simple respeci�cations of u� and v�), and Yw
represents the luminance of a reference white point. We
then built a conversion matrix to map colors from CIE XYZ
into our monitor's color gamut. This was done by obtaining
the chromaticities of our monitor's red, green, and blue tri-
ads, then measuring the luminance of the monitor's maxi-
mum intensity red, green, and blue with a spot photometer.
These values are needed to convert colors from a device-
independent space (i.e., CIE XYZ) into device-dependent
coordinates (i.e., our monitors RGB color space). All of
our experiments were displayed on a Sony Trinitron moni-
tor with CIE XYZ chromaticities (xr ; yr) = (0:625; 0:340),
(xg ; yg) = (0:280; 0:595), and (xb; yb) = (0:155; 0:070). The
luminances of maximum intensity red, green, and blue were
Yr = 5:5, Yg = 16:6, Yb = 2:8. This produced an XYZ to
monitor RGB conversion matrix of:
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For a complete description of how the conversion formulas
are built, we refer the reader to any of [17], [18], [60].
Ten users participated as observers in each of the two

color and four texture experiments. Each observer had
normal or corrected acuity. Observers who completed the

color experiments were also tested for color blindness [12].
Observers were provided with an opportunity to practice
before each experiment. This helped them become familiar
with the task and the duration of the displays. Before
each testing session began, observers were told that half
the displays would contain a target, and half would not.
We used a Macintosh computer with an 8-bit color lookup
table to run our experiments. Responses (either \target
present" or \target absent") for each display an observer
was shown were recorded for later analysis.

B. Results

Mean percentage target detection accuracy was the mea-
sure of performance. Observer responses were collected, av-
eraged, and analyzed using multi-factor ANOVA. In sum-
mary, we found:

1. Color targets were detected rapidly (i.e., at 150 ms)
with very high accuracy (96%). Background variation in
height and density produced no interference e�ects in this
detection task.
2. Detection accuracy for targets de�ned by density or
height were very similar to results from our original texture
experiments [23], [25]. When there was no background vari-
ation in color, excellent detection accuracy was obtained
for density de�ned targets (i.e., denser and sparser tar-
gets) at 150 ms (94%). Height de�ned targets (i.e., taller
and shorter) were detected somewhat less accurately at 150
ms (88%) but were highly detectable at 450 ms (93%). As
we had also found previously, taller targets were generally
easier to detect than shorter targets, and denser targets
were easier than sparser targets.
3. In all four texture experiments, background variation in
color produced a small but signi�cant interference e�ect,
averaging 6% in overall accuracy reduction.
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Fig. 13. Graphs showing averaged subject results for color, height, and density trials: (a) results for color trials, horizontal axis plots exposure
duration, vertical axis plots percentage of correct responses, each line corresponds to one of the three di�erent background conditions
(no variation, height variation, or density variation); (b) results for height trials; (c) results for density trials

4. The absolute reduction in accuracy due to color inter-
ference depended on the diÆculty of the detection task.
Speci�cally, color interfered more with the less visible tar-
get values (shorter and sparser targets yielded a mean ac-
curacy reduction of 8%) than with the more visible targets
(taller and denser targets yield a mean accuracy reduction
of 4%).

Fig. 12 shows average subject performance as a table rep-
resenting each target-background pair. Target type varies
along the horizontal axis, while background type varies

along the vertical axis. Darker squares represent target-
background pairings with highly accurate subject perfor-
mance. The number in the center of each square reports
the percentage of correct responses averaged across all sub-
jects.

Target regions de�ned by a particular pexel color were
identi�ed rapidly and accurately in all cases. At a 150 ms
exposure duration mean accuracy was approximately 96%.
The small increase in accuracy from shorter to longer expo-
sure durations was signi�cant, F (2; 36) = 41:03; p < :001.
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However, variation in the background height or density
of pexels caused no signi�cant reduction in performance
(mean accuracy of 95.3% for constant background, 96.6%
for varying height, and 96.9% for varying density; see also
the graph in Fig. 13a). In fact, the graphs in Figure 13a
report that absolute performance was slightly better for
conditions with background variations of height or density.
We suspect that geometric regularity in the texture pat-
tern may produce a gestalt or con�gurational e�ect that
interferes with target detection based on color. If so, this
would be similar to previous reports in the psychophysical
literature [2] showing inhibitory e�ects of gestalt grouping
on target detection.

Detection accuracy for targets de�ned by texture prop-
erties were very similar to results from our previous texture
experiments [22], [23]. Both kinds of targets bene�ted from
longer exposure durations (density, F (2; 58) = 9:24; p <

:001; height, F (2; 58) = 10:66; p < :001), with small but
signi�cant increases in accuracy with each increase in du-
ration. With regard to the four kinds of targets, denser
and taller target regions were easiest to identify, followed by
sparser and shorter target regions (Fig. 13b and 13c). How-
ever, only the di�erence between taller versus shorter tar-
gets was statistically signi�cant, F (1; 29) = 67:14; p < :001.
These e�ects were not unexpected, since they have been re-
ported in other psychophysical studies [1], [51]. In the tar-
get present displays, accuracy for shorter targets seemed to
be compromised even more than usual because of occlusion:
a group of shorter pexels was often partially occluded by
a group of taller pexels placed in front of them. A group
of taller pexels, on the other hand, tended to stand out
among the shorter pexels that surrounded them. Sparser
targets su�er from a di�erent problem: the need for a
minimum amount of physical space to become perceptu-
ally salient. Since dense targets \add information to" their
target region, rather than \take information away", they
were less susceptible to this problem. This asymmetry con-
tributed to a signi�cant target type by region size interac-
tion, F (1; 29) = 11:14; p < :01. This was reected in a dra-
matic reduction in the performance gap between dense and
sparse targets when 2�2 and 4�4 target patches are com-
pared. In displays with 2�2 target regions and background
color variation, dense targets outperform sparse targets by
approximately 7%. For 4�4 target regions, however, dense
and sparse displays were nearly equal in accuracy (less than
1% di�erence).

For targets de�ned by texture, random color variation
tended to interfere with detection, causing accuracy to be
lower for both denser and sparser targets in the density
displays (F (1; 29) = 9:12; p < :01) and by interacting with
target type in the case of height (F (1; 29) = 10:61; p <

:01, see also Fig. 13b and 13c). This interaction resulted
from color variation having a greater inuence on accuracy
for short targets (F (1; 15) = 6:73; p < :03), which were
generally more diÆcult to see, than for tall targets, which
were detected with uniformly high accuracy (greater than
90%). These results suggest that color interference can be
limited when color and texture are combined, but only in

cases where the detection task is relatively e�ortless prior
to the addition of color variation. As can be seen in Fig. 13b
and 13c, the interference e�ect of color variation tends to
be greatest when the target detection task is most diÆcult.

Several other miscellaneous e�ects were worthy of note.
Detection accuracy was generally higher on displays with
a target present than when no target was present (color,
F (1; 18) = 37:32; p < :001; density, F (1; 29) = 5:09; p <
:04; height, F (1; 29) = 6:64; p < :02). This was a small dif-
ference overall (an average of 4%) but it reected a slight
bias on the part of users to guess \target present" when
they were uncertain what they had seen. Large target re-
gions (4 � 4) were generally easier to identify than small
regions (2 � 2) (color, F (1; 18) = 15:38; p < :001; density,
F (1; 29) = 94:24; p < :001; height, F (1; 29) = 24:78; p <
:001), due to the greater visibility associated with a larger
target region.

Taken together, these results are consistent with stud-
ies based on textures arrayed in a two-dimensional plane
and reported in the psychophysical literature. As described
by [49], we found that color produces a small but statis-
tically reliable interference e�ect during texture segmenta-
tion. Moreover, we found color and texture form a \feature
hierarchy" that produces asymmetric interference: color
variation interferes with an observer's ability to see tex-
ture regions based on height or density, but variation in
texture has no e�ect on region detection based on color.
This is similar to reports by [8], [9], who reported asym-
metric color on shape interference in a boundary detection
task involving two-dimensional textures.

VII. Practical Applications

Although our theoretical results provide a solid design
foundation, it is equally important to ensure that these re-
sults can be applied to real-world data. Our initial goal was
a technique for visualizing multivariate data on an under-
lying height �eld. We decided to test our perceptual visu-
alization technique by analyzing environmental conditions
on a topographic map. Speci�cally, we visualized typhoons
in the Northwest Paci�c Ocean during the summer and fall
of 1997.

A. Visualizing Typhoons

The names \typhoon" and \hurricane" are region-
speci�c, and refer to the same type of weather phenomena:
an atmospheric disturbance characterized by low pressure,
thunderstorm activity, and a cyclic wind pattern. Storms
of this type with windspeeds below 17m/s are called \trop-
ical depressions". When windspeeds exceed 17m/s, they
become \tropical storms". This is also when storms are
assigned a speci�c name. When windspeeds reach 33m/s,
a storm becomes a typhoon (in the Northwest Paci�c) or a
hurricane (in the Northeast Paci�c and North Atlantic).

We combined information from a number of di�erent
sources to collect the data that we needed. A U.S. Navy
elevation dataset1 was used to obtain land elevations at

1http://grid2.cr.usgs.gov/dem/
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ten minute latitude and longitude intervals. Land-based
weather station readings collected from around the world
and archived by the National Climatic Data Center2 pro-
vided daily measurements for eighteen separate environ-
mental conditions. Finally, satellite archives made avail-
able by the Global Hydrology and Climate Center3 con-
tained daily open-ocean windspeed measurements at thirty
minute latitude and longitude intervals. The National Cli-
matic Data Center de�ned the 1997 typhoon season to run
from August 1 to October 31. Each of our datasets con-
tained measurements for this time period.
We chose to visualize three environmental conditions re-

lated to typhoons: windspeed, pressure, and precipitation.
All three values were measured on a daily basis at each
land-based weather station, but only daily windspeeds were
available for open-ocean positions. In spite of the miss-
ing open-ocean pressure and precipitation, we were able
to track storms as they moved across the Northwest Pa-
ci�c Ocean. When the storms made landfall the associated
windspeed, sea-level pressure, and precipitation were pro-
vided by weather stations along their path.
Based on our experimental results, we chose to represent

windspeed, pressure, and precipitation with height, den-
sity, and color, respectively. Localized areas of high wind-
speed are obvious indicators of storm activity. We chose to
map increasing windspeed to an increased pexel height. Al-
though our experimental results showed statistically signif-
icant interference from background color variation, the ab-
solute e�ect was very small. Taller and denser pexels were
easily identi�ed in all other cases, suggesting there should
be no changes in color interference due to an increase in
task diÆculty. Windspeed has two important boundaries:
17m/s (where tropical depressions become tropical storms)
and 33m/s (where storms become typhoons). We mirrored
these boundaries with height discontinuities. Pexel height
increases linearly from 0-17m/s. At 17m/s, height approxi-
mately doubles, then continues linearly from 17-33m/s. At
33m/s another height discontinuity is introduced, followed
by a linear increase for any windspeeds over 33m/s.
Pressure is represented with pexel density. Since our

results showed it was easier to �nd dense pexels in a sea of
sparse pexels (as opposed to sparse in dense), an increase in
pressure is mapped to a decrease in pexel density (i.e., very
dense pexels represent the low pressure regions associated
with typhoons). Three di�erent texture densities were used
to represent three pressure ranges. Pressure readings less
than 996 millibars, between 996 and 1014 millibars, and
greater than 1014 millibars produce very dense, dense, and
sparse pexels, respectively.
Precipitation is represented with color. We used our per-

ceptual color selection technique to choose �ve perceptually
uniform colors. Daily precipitation readings of zero, 0{
0.03 inches, 0.03{0.4 inches, 0.4{1.0 inches, and 1.0{10.71
inches were colored green, yellow, orange, red, and purple,
respectively (each precipitation range had an equal num-
ber of entries in our typhoon dataset). Pexels on the open

2http://www.ncdc.noaa.gov/ol/climate/online/gsod.html
3http://ghrc.msfc.nasa.gov/ghrc/list.html

ocean or at weather stations where no precipitation values
were reported were colored blue-green. Our experimen-
tal results showed no texture-on-color interference. More-
over, our color selection technique is designed to produce
colors that are equally distinguishable from one another.
Our mapping uses red and purple to highlight the high-
precipitation areas associated with typhoon activity.

We should note that our data-feature mapping is de-
signed to allow viewers to rapidly and accurately identify
and track the locations of storms and typhoons as spatial
collections of tall, dense, red and purple pexels. Our visu-
alization system is not meant to allow users to determine
exact values of windspeed, pressure, and precipitation from
an individual pexel. However, knowing the range of values
that produce certain types of height, density, and color will
allow a viewer to estimate the environmental conditions at
a given spatial location.

We built a simple visualization tool that maps wind-
speed, pressure, and precipitation to their corresponding
height, density, and color. Our visualization tool allows a
user to move forwards and backwards through the dataset
day-by-day. One interesting result was immediately evi-
dent when we began our analysis: typhoon activity was not
represented by high windspeed values in our open-ocean
dataset. Typhoons normally contain severe rain and thun-
derstorms. The high levels of cloud-based water vapor pro-
duced by these storms block the satellites that are used to
measure open-ocean windspeeds. The result is an absence
of any windspeed values within a typhoon's spatial extent.
Rather than appearing as a local region of high windspeeds,
typhoons on the open-ocean are displayed as a \hole", an
ocean region without any windspeed readings (see Fig. 14b
and 14d). This absence of a visual feature (i.e., a hole
in the texture �eld) is large enough to be salient in our
displays, and can be preattentively identi�ed and tracked
over time. Therefore, users have little diÆculty �nding
storms and watching them as they move across the open
ocean. When a storm makes landfall, the weather stations
along the storm's path provide the proper windspeed, as
well as pressure and precipitation. Weather stations mea-
sure windspeed directly, rather than using satellite images,
so high levels of cloud-based water vapor cause no loss of
information.

Fig. 14 shows windspeed, pressure, and precipitation
around Japan, Korea, and Taiwan during August 1997.
Fig. 14a looks north, and displays normal summer condi-
tions across Japan on August 7, 1997. Fig. 14b, looking
northeast, tracks typhoon Amber (one of the region's ma-
jor typhoons) approaching along an east to west path across
the Northwest Paci�c Ocean on August 27, 1997. Fig. 14c
shows typhoon Amber one day later as it moves through
Taiwan. Weather stations within the typhoon show the ex-
pected strong winds, low pressure, and high levels of rain-
fall. These results are easily identi�ed as tall, dense, red
and purple pexels. Compare these images to Fig. 14d and
14e, where windspeed was mapped to regularity, pressure
to height, and precipitation to density (a mapping with-
out color that our original texture experiments predict will
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(a)

Typhoon Amber

(b)

Typhoon Amber

(c)

(d) (e)

Fig. 14. Typhoon conditions across Southeast Asia during the summer of 1997: (a) August 7, 1997, normal weather conditions over Japan;
(b) August 27, 1997, typhoon Amber approaches the island of Taiwan from the southeast; (c) August 28, 1997, typhoon Amber strikes
Taiwan, producing tall, dense pexels colored orange, red, and purple (representing high precipitation); (d, e) the same data as in (b)
and (c) but with windspeed represented by regularity, pressure by height, and precipitation by density
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perform poorly). Although viewers can identify areas of
lower and higher windspeed (e.g., on the open ocean and
over Taiwan), it is diÆcult to identify a change in lower
or higher windspeeds (e.g., the change in windspeed as ty-
phoon Amber moves onshore over Taiwan). In fact, view-
ers often searched for an increase in density that represents
an increase in precipitation, rather than an increase in ir-
regularity; pexels over Taiwan become noticeably denser
between Fig. 14d and 14e.

VIII. Conclusions and Future Work

This paper describes a method for combining percep-
tual textures and colors for multivariate data visualization.
Our pexels are built by varying three perceptual texture
dimensions: height, density, and regularity. Our percep-
tual colors are selected by controlling the color distance,
linear separation, and color category of each color. Both
experimental and real-world results showed that colored
pexels can be used to rapidly, accurately, and e�ortlessly
analyze large, multi-element displays. Care must be taken,
however, to ensure that the data-feature mapping builds
upon the fundamental workings of the low-level human vi-
sual system. An ad-hoc mapping will often introduce vi-
sual artifacts that actively interfere with a user's ability to
perform their visual analysis task. Our initial texture ex-
periments showed that taller, shorter, denser, and sparser
pexels can be easily identi�ed, but that certain background
patterns must be avoided to ensure accurate performance.
During our color selection experiments we found that color
distance, linear separation, and color category must all be
considered to ensure a collection of equally distinguish-
able colors. New results on the combined use of texture
and color showed that background color variation causes
a small but statistically signi�cant interference e�ect dur-
ing a search for targets based on height or density. The
size of the e�ect is directly related to the diÆculty of the
visual analysis task; tasks that are more diÆcult result in
more color interference. Variation of height and density, on
the other hand, had no e�ect on identifying color targets.
These results are similar to reports in the psychophysical
literature [8], [9], [49], although to our knowledge no one
has studied perceptual textures and colors displayed in 3D
using perspective projections.

Our results were further validated when we applied them
to real-world applications like typhoon visualization. Our
tools were designed to satisfy �ndings from our experi-
ments. For example, attributes were mapped in order of
importance to height, density, and color. In cases where
an subject analyzed height or density patterns, we tried
to ensure an e�ortless search task (i.e., looking for taller
or denser rather than shorter or sparser) to minimize any
color on texture interference that might occur.

One important area of future work is a comparison of our
visualization techniques against other methods that might
be used to represent information in our real-world applica-
tions. For example, it would be useful to test a user's abil-
ity to track storm activity in our visualization environment
against other standard techniques for representing weather

activity. Although we have yet to conducted these kinds of
practical experiments, we hope to initiate them in the near
future as part of our perceptual visualization studies.
We are now working to integrate our colored pexels with

other visual features. One candidate is orientation; in fact,
our pexels were initially designed to \stand up" o� the
underlying height �eld to support variation of orientation.
Another visual property with signi�cant potential is appar-
ent motion. This technique can be used to make individual
strips in a pexel \walk" within their spatial extent. It may
be possible to tie direction and speed of motion to two
underlying attribute values, thereby increasing the dimen-
sionality of our visualization techniques. We are designing
experiments to investigate the e�ectiveness of each of these
features for encoding information. We will also study any
interactions that occur when multiple texture, color, ori-
entation, and motion dimensions are displayed simultane-
ously.
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