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ABSTRACT 

In this paper we describe a technique for choosing multiple colours 
for use during data visualization. Our goal is a systematic method 
for maximizing the total number of colours available for use, while 
still allowing an observer to rapidly and accurately search a display 
for any one of the given colours. Previous research suggests that 
WC need to consider three separate effects during colour selection: 
colour distance, linear separation, and colour category. We describe 
a simple method for measuring and controlling all of these effects. 
Our method was tested by performing a set of target identification 
studies; we analysed the ability of thirty-eight observers to find a 
colour target in displays that contained differently coloured back- 
ground elements. Results showed our method can be used to select a 
group of colours that will provide good differentiation between data 
elements during data visualization. 

CR Descriptors: H.5.2 [Information Interfaces and Presen- 
tation]: User Interfaces - ergonomics, screen design (gruphics, 
colour); 1.3.6 [Computer Graphics]: Methodology and Tech- 
niques - ergonomics, interuction techniques 

1 INTRODUCTION 

Scientific visualization in computer graphics is a rapidly expanding 
area of research. This is due in large part to the dramatic increase 
in both the size and the number of datasets that need to be visu- 
alized [5, 171. To date. many application-specific tools have been 
built to help analyse individual datascts. Much less work has fo- 
cused on developing guidelines for the design of visualization tech- 
niques [ 161. Our work is intended to address one aspect of this more 
general question. 

A typical method of visualizing a dataset involves mapping data 
attributes to visual features (e.g., shape, size, spatial location, and 
orientation). Colour is an important and frequently-used feature. 
Examples include colour temperature gradients on maps and charts, 
colour-coded vector fields in flow visualization, or colour icons dis- 
played by real-time simulation systems. 

If we use colour to represent our data, an important question to 
ask is: “How can we choose effective colours that provide good dif- 
ferentiation between data elements during the visualization task?” 
We address this problem by trying to answer three related questions: 

l How can we allow rapid and accurate identification of individ- 
ual data elements through the use of colour? 

l What factors determine whether a “target” element’s colour 
will make it easy to find, relative to differently colourcd “non- 
target” elements? 

l How many colours can we display at once, while still allowing 
for rapid and accurate target identification? 
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Previous work has addressed the issue of choosing colours for 
certain types of data visualizatitin. For example, Ware and Beatty 
describe a simple colour visualization technique for displaying cor- 
relation in a five-dimensional dataset [2l]. Research on the design 
of military systems sometimes quotes anecdotal evidence that sug- 
gests “. .thc general guideline for computer-generated images is no 
more than five to seven colours at a time. . .” [lo], although they of- 
fer no explanation for why this might be the case. Robertson, Ware, 
Rheingans and Tebbs, and Levkowitz and Herman discuss vari- 
ous methods for building effective colour gamuts and colourmaps 
[ 14, 20, 13, 121. Recent work at the IBM Thomas J. Watson Re- 
search Center has focused on a rule-based visualization tool that 
considers how a user perceives visual features like hue, luminance, 
height, and so on [15. 21. 

None of these techniques were designed to investigate the rapid 
and accurate identification of individual data elements based on 
colour. Also, since the colour gamut and colourmap work uses con- 
tinuous colour scales to encode information, they do not address the 
question of how many colours we can effectively display at once, 
while still providing good differentiation between individual data el- 
ements. 

An intuitive first step to gaining more control over colour would 
be to use a perceptual colour model like CIE LUV, CIE Lab, or Mun- 
sell [22]. Unfortunately, fixing the colour distance in a perceptual 
colour model to a constant value does not guarantee that each colour 
will be equally easy to detect. Other factors can affect how groups 
of coloured elements interact with one another. 

Our technique does, in fact, use the CIELUV colour model to 
provide control over colour distance and isoluminance. We also ex- 
ploit two specific results related to colour target detection: linear 
separation [6, I] and colour category [I I]. These effects are con- 
trolled to allow for the rapid and accurate identification of colour 
targets. Target identification is a necessary first step towards per- 
forming other types of exploratory data analysis. If we can rapidly 
and accurately differentiate elements based on their colour. we can 
apply our results to other important visualization techniques like de- 
tection of data boundaries, the tracking of data regions in real-time, 
and enumeration tasks like counting and estimation [19, 18.81. 

2 BACKGROUND 

Before we describe our technique in detail, we provide a brief 
overview of the CIELUV colour model, as well as a description of 
the linear separation and colour category effects. 

2.1 CIELUV 

The CIE LUV colour model was proposed by the Commission In- 
temationale de L’l&lairge (CIE) in 1976 [22]. Colours are speci- 
fied using the three dimensions L’ (which encodes luminance), u*, 
and u* (which together encode chromaticity). CIE LUV provides 
two useful properties for controlling perceived colour difference. 
First, colours with the same L’ are isoluminant. Second. Euclidean 
distance and perceived colour difference (specified in AE* units) 
can be interchanged, since the colour difference between two colour 
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stimuli r and y is roughly: 

AC, = &AW2 + (Au:,)~ + (At&)2 (1) 

2.2 Linear Separation 

The linear separation effect was originally described by D’Zmura 
[ 19911 He was investigating how the human visual system finds 
a target colour in a sea of background non-target colours. D’Zmura 
ran cxpcriments that asked observers to determine the presence or 
absence of an orange target. Two groups of differently coloured 
non-target clcmcnts were also present in each display (e.g., in one 
experiment half the non-targets in each display were coloured green 
and half were coloured red). Results showed that when the target 
could be separated by a straight line from its non-targets in colour 
space (Figure 1, target T and non-targets A and C), the time required 
to determine the target’s presence or absence was constant, and in- 
dependent of the total number of elements being displayed. This 
suggests detection occurs in parallel in the low-level visual system. 
When the target was collinear with its non-targets (Figure I, target 
T and non-targets A and B). the time required to identify the tar- 
get was linearly proportional to the number of elements being dis- 
played. Observers had to search serially through each display to de- 
termine whether the target was present or absent. 
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Figure 1: Example of a target with both collinear and separable non- 
targets, the colours arc shown in a u*, v’-slice from the CIELUV 
colour model, notice that target T is equidistant from all three non- 
targets A, B, and C; in Case 1, target colour T is collinear with the 
non-target colours A and B; in Case 2, target T is linearly separable 
from its non-targets A and C 

Work by Bauer [I9961 provided a number of results that 
strengthen D’Zmura’s hypothesis. First, he showed that perceptual 
colour models cannot be used to overcome linear separation. In his 
experiments the target-non-target distance was fixed to a constant 
value in CIE LUV (Figure 1). In spite of this, the target required 
serial searching when it was collinear with its non-targets, but was 
significantly easier to detect when it was separable. Bauer replicated 
his initial findings in three additional colour regions: green, blue, 
and green-yellow. This suggests linear separation applies to colours 
from different parts of the visible colour domain. 

2.3 Colour Category 

Kawai [ 19951 reported results that suggest that the time required to 
identify a colour target depends in part on the named colour regions 
occupied by the target and its non-targets. If target identification de- 
pended only on the colour distance between a target and its non- 
targets, the time taken to detect presence or absence of the target 
should decrease uniformly as target-non-target distance increases. 
Kawai ran a set of experiments that showed this was not true. 

Kawai tested displays that contained a uniquely colour target and 
a constant number of uniformly colourcd non-targets. He divided 

Figure 2: A target T and two non-targets A and B shown in a (j, g) 
slice from the OSA colour model; the boundaries of the blue, green. 
and purple colour regions are shown as thick lines; T and B occupy 
the same named colour region “blue”, but A does not 

an isoluminant colour slice used during his experiments into named 
colour regions. His results showed that search times decreased dra- 
matically whenever the non-target was moved outside the target’s 
colour region. For example, finding a target coloured T in a set 
of non-targets coloured B was significantly more difficult than than 
finding T in a set of non-targets coloured A (Figure 2). The target- 
non-target distances T-4 and i% arc equal; Kawai suggests the dif- 
ference in performance is due to the fact that both T and B are lo- 
cated in the blue colour region. but A is not. Similar search time 
asymmetries for separate experiments testing green, purple, and red 
targets were also explained by a difference in colour regions. 

3 COLOUR SELECTION TECHNIQUE 

Results discussed in the background section suggest that choosing 
effective colours for data visualization depends on at least three sep- 
arate criteria: 

colour distance: the Euclidean distance between different 
colours as measured in a perceptually balanced colour model 

finear separation: the ability to linearly separate targets from 
non-targets in the colour model being used 

colour category: the named colour regions occupied by both 
the target and non-target elements 

WC began our investigation by controlling colour distance and 
linear separation, but not colour category. We proceeded under the 
assumption that the user might choose to search for any one of the 
available data elements at any given time. This is typical during ex- 
ploratory data analysis; users will often change the focus of their in- 
vestigation based on the data they see as the visualization unfolds. 
Our requirement meant that the colour selection technique had to al- 
low for rapid and accurate identification of any of the elements being 
displayed. 

We ran four studies to investigate the tradeoff between the num- 
ber of colours displayed and the time required to determine the pres- 
ence or absence of a target element. Each study displayed a different 
number of unique colours. which we identify using the names red, 
yellow-red, yellow, green-yellow, green, blue-green, blue, purple- 
blue. purple. and red-purple (or R. YR. Y, GY, G, BG, B, PB, P, and 
RP): 

l three-colour study: each display contained three different 
colours (i.e., one colour for the target and two for the non- 
targets) which we named R, GY, and PB 
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l five-colour study: each display contained five different 
colours: R, Y, GY. B, and P 

l seven-colour study: each display contained seven different 
colours: R, Y, GY, G, BG. P. and RP 

l nine-colour srudy: each display contained nine different 
colours: R, YR. Y, GY, G, BG, PB. P. and RP 

Every colour in a given study was tested as a target. For example, 
the three-colour study was run three times, first with an R element 
acting as a target (and GY and PB elements acting as non-targets), 
next with a GY target (and R and PB non-targets). and finally with a 
PB target (and R and GY non-targets). Faster search times for cer- 
tain targets would have to be explained in terms of colour distance, 
linear separation. or colour category. Each of the four studies were 
themselves divided in the following manner: 

elements in each display were drawn as coloured squares, and 
were randomly located on an underlying 9 x 9 grid that covered 
the entire viewing area of the monitor 

half of the displays were randomly chosen to contain an cle- 
mcnt that used the target colour; the other half did not 

one-third of the displays contained a total of 17 elements (one 
target and 16 non-targets if the target was present. or 17 non- 
targets if the target was absent): one-third of the displays con- 
tained a total of 33 elements; one-third of the displays con- 
tained a total of 49 elements 

(67.1.21.1. 11.2) 

L' =67.1 

(a) (b) 

Figure 3: Choosing colours from the monitor’s gamut: (a) the 
boundary of the gamut at L’ = 67.1, along with the maximum 
inscribed circlecentered at (L*,u*,v*) = (67.1,21.1,11.6), ra- 
dius 75.0 AE’; (b) five colours chosen around the circle’s circum- 
ference; each element has a constant colour distance d with its two 
neighbours, and a constant linear separation 1 from the remaining 
(non-target) elements 

Study d 1 
three-colour 129.9 AE’ 112.5 AE’ 
five-colour 88.2 AE’ 51.9AE’ 

seven-colour 65. I AE’ 28.4 AE’ 
nine-colour 51.3 AE’ 17.6 AE’ 

Colours for each of the four studies were chosen such that the 
colour distance between pairs of colours and the linear separation 
for each colour were fixed to constant values. Our results showed 
that detection was rapid and accurate for all colours from both the 
three-colour and five-colour studies. Results from the seven-colour 
and nine-colour studies were mixed; some colours gave better pcr- 
formance than others. This difference was explained when we ex- 
amined the colour regions occupied by each of the colours. 

3.1 Method 

We began the colour selection process by obtaining the chromatic- 
ities of our monitor’s triads. WC also measured the luminance of 
the monitor’s maximum intensity red. green, and blue with a spot 
photometer. These values were needed to convert colours from 
CIE LUV into the monitor’s RGB gamut. 

We wanted to ensure that the colours we chose had the same per- 
ceived intensity. Previous research has suggested that random vari- 
ation in intensity can interfere with an observer’s ability to perform 
visualization tasks based on colour [4]. In order to guarantee iso- 
luminance, all the colours were chosen from a single u*, v*-slice 
through the CIELUV colour space at L’ = 67.1. We wanted to 
maximize the number of available colours, while still maintaining 
control over colour distance and linear separability. To do this, we 
computed the boundary of the monitor’s gamut in the L’ = 67.1 
slice. We then found the largest circle inscribed within the gamut 
(Figure 3a). 

Given the maximum inscribed circle, we chose colours that were 
equally spaced around its circumference. For example, during the 
live-colour study we chose colours at positions 14’. 86”) 158”. 
230”, and 302” counterclockwise rotation from the x-axis (Fig- 
ure 3b). This method ensured that neighbouring colours had a con- 
stant colour distance. It also ensured that any colour acting as a tar- 
get had a constant linear separation from every other (non-target) 
colour. A similar technique was used to select colours for the threc- 
colour, seven-colour, and nine-colour studies. This gave us the fol- 
lowing colour distances d and linear separations I: 

Thirty-eight users with normal or corrected acuity participated as 
observers during our studies. After ensuring they were not colour 
blind, each observer was asked to complete one or more target 
blocks. A target block consisted of 360 displays testing a single 
colour target from one of the four studies. A total of 66 target 
blocks were completed. WC used a Macintosh computer with an 
8-bit colour display to run our studies. Responses (either “target 
present” or “target absent”) and the time to respond for each display 
an observer completed were recorded for later analysis. 

3.2 Results 

Observers had very little difficulty identifying targets during the 
three-colour and five-colour studies. Graphs of mean response time 
across display size were relatively flat for every colour (Figures 4a 
and 4b: note that the y-axis ranges from 400msec to 800 msec 
in these graphs). Mean response times ranged from 459msec 
to 549 msec during the three-colour study, and from 508 msec to 
661 msec during the five-colour study. Mean response error dur- 
ing both studies was approximately 2.5%. We concluded that users 
could accurately identify the target in all cases, and that the time re- 
quired to do so was relatively independent of display size. This sug- 
gests that, even when using five different colours, the visual system 
can search for any one of the colours in parallel. 

Target identification became significantly more difficult for cer- 
tain colouis during the seven-colour and nine-colour studies (Fig- 
ures 4c and 4d; note that the y-axis ranges from 100 msec to 
3500 msec in these graphs). Mean response error during the seven- 
colour study was still low, at approximately 3.3%. The P, Y, R, 
BG. and RP targets all exhibited relatively flat response time graphs. 
Mean response time for these elements ranged from 611 msec to 
870msec. The G and GY targets, however, gave response times 
typical of serial starch. An increase in the number of elements be- 
ing displayed brought on a corresponding increase in response time. 
The increase for target-absent displays (approximately I9 msec per 
additional element for GY, and 17msec per element for G) was 
roughly twice that for target-present displays (7 mscc and 8 msec 
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Figure 4: Response time graphs for the four studies, the graph on the left represents displays where the target was absent, while the graph on 
the right represents displays where the target was present: (a) response time as a function of display size (i.e., total number of elements shown 
in the display) for each target from the three-colour study; (b) response times for each target from the five-colour study; (c) response times for 
each target from the seven-colour study; (d) response times for each target from the nine-colour study 
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per element for GY and G, respectively). Observers had to search 
through, on average, half the elements before they found the tar- 
get in target-present displays. In target-absent displays, however, 
they had to search through all the elements to confirm that no target 
existed. This explains why per item search time increased roughly 
twice as fast for target-absent displays. 

A similar set of results was obtained during the nine-colour study. 
Overall mean response error increased to 8.1%; it was lowest for the 
P, Y, and PB targets (approximately 3.4%). and highest for the G, 
GY, and RP targets (approximately 14%). The P, Y, and PB targets 
displayed relatively flat response time graphs during target-present 
displays. The remaining targets showed some form of serial search. 
The effect was weakest for the R and YR targets, and strongest for 
the G and GY targets. 

3.3 Colour Category Integration 

Results from our four studies showed that controlling colour dis- 
tance and linear separation alone is not enough to guarantee con- 
sistently good (or consistently bad) target identification for every 
colour. Results from Kawai suggest that colour category can also 
have a strong effect on the amount of time required to identify a 
colour target. We decided to see whether colour category results 
could explain the asymmetric response times we observed during 
the seven-colour and nine-colour studies. 

In order to do this, we needed a method of placing individual 
colours within a named colour region. We used a simple technique 
described by Healey and Enns [9]. This technique places individual 
colours within user-named colour regions as follows: 

0 Step 1. 
Individual colours are mapped into the Munsell colour model. 
Colours are specified in the Munsell model using the three di- 
mensions hue, chroma (which controls saturation), and value 
(which controls luminance) [3]; the hue dimension is divided 
into ten regions that are identified using the ten names R, YR, 
Y, GY, G, BG, B, PB, P, and RP. A colour is assigned the name 
of its hue dimension in Munsell space. 

0 Step 2: 
The above technique is used to subdivide all or part of a colour 
space into named colour regions. We wanted to divide our 
maximum inscribed circle into named colour regions. Healey 
and Enns divided a similar circle at L‘ = 71.6 (this corre- 
sponds closely to our circle from the L’ = 67.1 slice), as 
shown in Figure 5. 

0 Step 3: 
Observers are asked to name representative colours from each 
colour region. This converts Munsell names into user-chosen 
names; it also provides a way of measuring how strongly a 
particular name represents a given colour region. Healey and 
Enns ‘used the colour at the middle of each colour region in 
Figure 5 to represent the region. Table 1 shows the names 
chosen for each of the ten representative colours. For exam- 
ple, 5.3% of the observers called the YR region’s representa- 
tive colour “red”, 86.8% called it “orange”, and 7.9% called it 
“brown”. 

Each of the colours from our four studies was assigned a name 
using the method described in Step I above; this also placed each 
colour within one of the ten named colour regions. The user-chosen 
colour names shown in Table I allow us to measure the similarity of 
different colour regions. This category similarity is dependent on: 

l the range of user-chosen colour names assigned to a given re- 
gion 

Figure 5: Example of segmenting the circumference of a maximum 
inscribed circle from a u* v* -slice through CIE LUV at L’ = 71.6; 
ticks along the the circle mark the boundaries between the ten named 
regions, points are the representative colours for each region 

l how “strongly” a region covers any user-chosen name in its 
range 

l how the ranges of the two regions overlap 

As an example, consider the P and R regions, which have ranges: 

purple magenta pink red 
P 86.9% 2.6% 5.2% 
R 26.3% 71.0% 

Colours from P and R overlap only at the “pink” name. Their 
overlap is not that strong, since neither P nor R are strongly clas- 
sified as pink. The amount of overlap is computed by multiplying 
the percentages for the common name. This gives a P-R overlap of 
5.2% * 26.3% = 0.014. A closer correspondence of user-chosen 
names for a pair of regions results in a stronger category similar- 
ity, for example, G and GY have an overlap of 97.3% * 100.0% = 
0.973. Categories that overlap over multiple names are combined 
using addition, for example, YR and Y overlap in both the “orange” 
and the “brown” name, giving a YR-Y overlap of (86.8%*2.6%) + 
(7.9% * 44.7%) = 0.058. These overlap values can be used to ex- 
plain why certain colours were difficult to use for target identifica- 
tion. 

During the seven-colour study the P, Y, R, BG, and RP targets 
gave good performance. The G and GY targets gave poor perfor- 
mance. An examination of Table 2 suggests the following explana- 
tion: 

l targets R. Y, P, and RP have a weak category similarity to the 
other colours used during the study; Y has no category simi- 
larity to the other colours, R and RP have a category similarity 
(i.e., an R-RP overlap) of 0.145, and P and RP have a category 
similarity of 0. I73 

l target BG has a moderate category similarity to GY and G 
(0.256 and 0.263. respectively) 

l targets G and GY have a moderate category similarity to BG, 
and a very strong category similarity (0.973) to one another 

For each target in the seven-colour study, an increase in its cat- 
egory similarity to the other colours corresponded closely to an in- 
crease in its mean response time. We can measure this correspon- 
dence by computing Spearman’s correlation coefficient on the rank 
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1 purple magenta pink red orange brown yellow green aqua blue other 
P ( 86.9% 2.6% 5.2% - - - - - _ _ 5.2% 

RP 15.7% 28.9% 55.3% - - - - - - - - 
R- - 26.3% 71.0% - - - - - - 2.6% 

YR - - - 5.3% 86.8% 7.9% - - - - - 
y- - -- 2.6% 44.7% 47.4% - - - 5.2% 

(-Jy - - - - - - - 97.3% - - 2.6% 
G- - - - - _ _ 100.0% - - - 

BG - - - - _ - - 26.3% 57.8% 15.8% - 
B- - - - _ - - _ 7.9% 

( PB 1 5.2% - - - - - - - - 
89.4% 2.6% 
92.1% 2.6% 

Table I : Responses for the rcpresentativc colours from the ten named regions, shown as the percentage of observers who chose a given name 

order of our colours in terms of total category similarity and mean 
response time. 

R 
Y 

GY 
G 

BG 
P 

RP 
Total 

R Y GY G BG P RP 
- 0 0 0 0 ,014 ,145 1 
0 - 0 0 0 0 0 
0 0 - ,973 ,256 0 0 
0 0 ,973 - .263 0 0 
0 0 .256 ,263 - 0 0 

,014 0 0 0 0 - .I73 
,145 0 0 0 0 ,173 - 
,159 0 1.229 1.236 ,519 .I87 ,318 J 

Table 2: Similarity table, showing individual and total category sim- 
ilarity values for each of the colours used during the seven-colour 
study 

Table 2 sums the category similarity measures for each of the 
seven colours we used. The rank order of total category similar- 
ity from lowest to highest is Y. R, P, RR BG, GY. and G. Rank- 
ing our colours based on total mean response time (including both 
present and absent trials across all three display sizes) from smallest 
to largest gave an order of P, R. Y, BG, RP, GY. and G. The Spear- 
man correlation between these rankings is r = 0.821, confirming 
that higher mean response times for a given target correspond to a 
higher category similarity. 

A similarity-response time correlation can also be observed dur- 
ing the nine-colour study. Targets P, Y, YR, and PB had a weak cat- 
egory similarity to other colours used during the study. Targets R, 
RP, and BG had a moderate category similarity to each other and to 
G and GY. Targets G and GY had a moderate category similarity to 
BG. and a strong category similarity to one another. The Spearman 
correlation between the colours’ total similarity and mean response 
time ranking was T = 0.762. Results for YR and BG are somewhat 
anomalous; category similarity values suggest we should have ob- 
served better performance for the YR target, and worse performance 
for the BG target. Results for the other colours correspond closely 
to their category similarity measures. 

3.4 Colour Category Study 

Results from investigating colour category integration might imply 
that effective colours can bc selected by controlling colour category 
alone. This was tested by selecting seven colours from colour re- 
gions that had low category similarity with one another. An exam- 
ination of observer responses in Table 1 shows that colours chosen 
from the R, YR, Y, G, B, P, and RP regions satisfy our restriction; 
the largest category overlap occurs between RP-R (0.145) and RP-P 
(0.173). The colours we used were exactly those chosen by Healey 
and Enns to represent the above seven regions. Seven observers 

with normal or corrected acuity participated as observers during the 
colour category study. A total of 360 displays for each target were 
completed by the observers. 

Colour Category Absent 

I 
D , 

17 11 ., 

Display Size (Elements) 

Display Size (ElemenLs) 

(b) 

Figure 6: Response time graphs for the lirst colour-category study: 
(a) target absent displays; (b) target present displays 

Mean response error was 3.4%. which shows responses were ac- 
curate. The pattcm of response times. however. was similar to the 
original seven-colour study. Several colours (in particular R and 
YR) exhibited poor search jjerformance. This can be explained by 
examining the distance between neighbouring pairs of colours. and 
the linear separation for each colour when it acted as a target (Ta- 
ble 3). Colours that gave the worst search performance (R. YR, 
and RP) had the smallest neighbour distances and linear separation: 
in fact, the R, YR. and RP targets had a linear separation that was 
smaller than the one used during the nine-colour study. Colours that 
gave the best search performance (Y. G. B, and P) had the largest 
neighbour distances and linear separation. 

From these results we concluded that colour category alone can- 
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CWd CCW d 1 
R 42.0 AE’ 42.0 AE’ 12.2 AE’ 

YR 42.0 AE’ 49.8 AE’ 14.6 AE’ 
Y 49.8 AE’ I 12.6 AE’ 39.0 AE’ 
G 112.6 AE’ 67.5 AE’ 52.9 AE’ 
B 61.5 AE’ 63.2 AE’ 29.1 AE’ 
P 63.2 AE’ 48.6 AE’ 20.4 AE’ 

RP 48.6 AE’ 42.0 AE’ 14.2 AE’ 

Table 3: The exact distance in CIE LUV between a colour, its clock- 
wise neighbour (CW d), and its counter-clockwise neighbour (CCW 
d), as well as the linear separation from the other colours when it 
acted as a target 

not be used to ensure consistently good identification based on 
colour. Colour distance and linear separation need to be considered, 
since they have an effect on search performance. We used a more 
systematic colour selection technique to choose another set of seven 
colours: 

a single green was chosen from the combined G-GY colour re- 
gion; observers see the entire region as green, which means it 
can be used for only a single colour 

the clockwise neighbour of our green was a yellow, chosen to 
lie on the border between the GY and Y colour regions 

thecounterclockwise ncighbour of our green was a blue-green, 
chosen to lie in the center of the BG colour region (we did not 
use the colour from the border between G and BG, because it 
was too difficult to differentiate from our green) 

the remaining four colours (chosen from the YR. R, RP. and 
PB colour regions) were at equal steps between our yellow and 
our blue-green 

This gave us a constant neighbour distance d and linear separa- 
tion 1 (59.4 AE’ and 24.6 AE’. respectively) between the Y, YR, 
R, RP, PB. and BG colours (G had a larger d and 1 than the other 
colours). Results from displays using these colours as targets are 
shown in Figure 7. Mean response error was 5.2%. Response time 
graphs for all seven colours are much flatter than in the original 
seven-colour study, although G and Y still gave mixed results during 
target-absent displays. We could have further differentiated these el- 
ements by choosing a yellow from the center of the Y colour region 
(rather than at the GY-Y border). This might have resulted in poorer 
performance for the other targets due to the reduction in colour dis- 
tance and linear separation between our Y, YR, R, RP. PB. and BG 
colours. however. It appears that seven isoluminant colours is the 
maximum we can display at one time, while still allowing rapid and 
accurate identification of any one of the colours. 

4 VISUALIZING MEDICAL IMAGES 

As we discussed in the introduction, our long-term goal is a set 
of guidelines that help users maximize the total number of colours 
available during visualization, while still allowing for the rapid and 
accurate detection of any one of the given colours. Experimental 
results showed how we can control colour distance, linear separa- 
tion, and colour category to pick seven isoluminant colours that sat- 
isfy our requirements. Extending these results to a practical appli- 
cation is a non-trivial problem. However, even the specilic results 
reported here can help to design useful visualization applications. 
To this end, we discuss how colours from our experiments were used 
to visualize slice data from a Computerized Tomography (CT) scan. 

Colour Category Absent 

G - 
Y 
BG 
R - 

I nr , 
1. 1. 4” 

Display Size (ElemenLs) 

Colour Category Present 

Display Size (Elements) 

(b) 

Figure 7: Response time graphs for the second colour-category 
study: (a) target absent displays; (b) target present displays 

The scan was taken to locate an aneurism in a patient’s brain. This 
resulted in 1 I6 individual slices, each of which had a 512 x 512 
resolution. 

We began by displaying slices as greyscalc images (Figure 8a); 
values in each slice had been scaled to range from (0. .255) for 
exactly this purpose. Higher values in a slice correspond to denser 
material detected during the CT scan. Greyscale images arc a stan- 
dard method for displaying medical slice data [20, 21, since they 
allow a user to easily locate individual regions of similar density. 
Through consultation we identified seven intensity ranges that cor- 
responded to seven individual regions of interest. Slices were then 
viewed using seven different colours. Figure 8b displays the slice 
using colours from our original seven-colour experiment. Figure 8c 
displays the slice using colours from our final colour category ex- 
perimcnt. 

There are three important points to note. First. as with the 
greyscale representation, it is easy to locate individual regions in 
both colour slices. The densities (and therefore the intensity values) 
of different regions of interest are consistent across slices. There- 
fore, our colour displays work well for any individual slice chosen 
by the user. 

Second, as predicted by our experiment results, the colours used 
in Figure 8b do not always provide good differentiation between re- 
gions, compared to the colours used in Figure 8c. Consider the re- 
gion reference by the arrow. In Figure 8b, it appears to made up of 
a single type of element. In fact, it is made up of two types of ele- 
ments; this is clear when examining the same region in Figure SC. 
Notice there is no corresponding tradeoff between Figure SC and 
Figure 8b, that is, there are no pairs of elements that are difficult to 
differentiate in Figure 8c but easy to differentiate in Figure 8b. 

Finally, colour images can provide visual cues that might not bc 
immediately apparent in a greyscale display. For example, consider 
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the small spots of purple at the top of the region in the center of the 
image. These spots represent areas of high relative density, and are 
quickly identified as different from the surrounding material. The 
same information is present in the greyscale image, but the visual 
system is not immediately drawn to it, since the contrast between 
the region and its neighbours is not as pronounced. One method of 
visualizing slice data is to “fly” through the slice stack, rapidly dis- 
playing individual slices one after another in a movie-like fashion 
[7]. In this context, we expect users could more accurately detect ar- 
eas with a specific density range using colour rather than greyscale. 

5 DISCUSSION 

This paper has presented a simple method for choosing effective 
colours for use during data visualization. We accomplish this by 
controlling colour distance, linear separation of colours, and colour 
category similarity during colour selection. We found that an isolu- 
minant slice through a monitor’s gamut yielded up to seven differ- 
ent colours, any one of which could be rapidly and accurately de- 
tected, even in the presence of all the others. Each colour needed 
a minimum colour distance, linear separation, and colour category 
differentiation to guarantee good performance. One of our future 
goals is a set of investigations that explicitly measure the tradeoff in 
observer performance when these effects are varied. This will also 
allow us to identify the minimum required value for each effect. 

The perceived intensity of each colour was held constant during 
our studies to eliminate the potential for visual interference. It might 
be possible to use intensity in a controlled manner to increase the 
number of colours we can display simultaneously. For example, we 
might be able to choose multiple groups of colours, with each group 
being restricted to an isoluminant slice through the monitor’s gamut. 
A colour group would be assigned to a conceptually related set of 
attribute values in the dataset to be visualized. Proper division by 
intensity might allow a user to select individual colours either from 
within a group (e.g., a dull red element or a bright green element) or 
across groups (e.g., all red elements). This type of technique is not 
possible if colours of varying intensity are chosen from the moni- 
tor’s gamut in an ad hoc fashion. 
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