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Abstract—When visualizing data with uncertainty, a common approach is to treat uncertainty as an additional dimension and encode it

using a visual variable. The effectiveness of this approach depends on how the visual variables chosen for representing uncertainty

and other attributes interact to influence the user’s perception of each variable. We report a user study on the perception of graph edge

attributes when uncertainty associated with each edge and the main edge attribute are visualized simultaneously using two separate

visual variables. The study covers four visual variables that are commonly used for visualizing uncertainty on line graphical primitives:

lightness, grain, fuzziness, and transparency. We select width, hue, and saturation for visualizing the main edge attribute and

hypothesize that we can observe interference between the visual variable chosen to encode the main edge attribute and that to encode

uncertainty, as suggested by the concept of dimensional integrality. Grouping the seven visual variables as color-based, focus-based,

or geometry-based, we further hypothesize that the degree of interference is affected by the groups to which the two visual variables

belong. We consider two further factors in the study: discriminability level for each visual variable as a factor intrinsic to the visual

variables and graph-task type (visual search versus comparison) as a factor extrinsic to the visual variables. Our results show that the

effectiveness of a visual variable in depicting uncertainty is strongly mediated by all the factors examined here. Focus-based visual

variables (fuzziness, grain, and transparency) are robust to the choice of visual variables for encoding the main edge attribute, though

fuzziness has stronger negative impact on the perception of width and transparency has stronger negative impact on the perception of

hue than the other uncertainty visual variables. We found that interference between hue and lightness is much greater than that

between saturation and lightness, though all three are color-based visual variables. We also found a compound relationship between

discriminability level and the degree of dimensional integrality. We discuss the generalizability and limitation of the results and conclude

with design considerations for visualizing graph uncertainty derived from these results, including recommended choices of visual

variables when the relative importance of data attributes and graph tasks is known.

Index Terms—Visual variable, perception, uncertainty visualization, graph visualization

Ç

1 INTRODUCTION

INFORMATION often carries all kinds of uncertainty, and it
is usually desirable or even essential that a visualization

presents this uncertainty explicitly to the users to help them
make more informed decisions. Previous work has shown
that visualizing uncertainty can lead to higher-quality deci-
sion making [1], [2]. While research has focused on develop-
ing techniques for visualizing uncertainty [2], [3], [4] and
evaluating techniques [5] or basic visual variables [6], [7] for
their effectiveness in conveying uncertainty, only a few have
focused on handling uncertainty in graph visualizations (e.g.
[7]), which, unlike many other visualization types, rely
heavily on line-based marks instead of point- or area-based
ones. More fundamentally, to the best of our knowledge, no
previous work has conducted a systematic empirical investi-
gation on the influence of the inherent interference between
pairs of visual variables on the effectiveness of the common
visual variables used for visualizing uncertainty. We see this
as an important aspect of uncertainty visualization since
uncertainty is often depicted alongside other data attributes
that are of interest to the users.

We attempt here to answer the following questions: 1) is
the effectiveness of a visual variable in encoding uncertainty
in a graph strongly influenced by the presence of other
visual variables, 2) is the influence of the additional visual
variables strong enough to alter the effectiveness ranking for
a set of visual variables, and 3) how do other factors in the
visualization affect the degree of interference between a pair
of visual variables? To answer these questions, we con-
ducted a controlled experiment in which participants were
asked to complete a series of graph tasks. The edges of the
graphs in the experiment each has one generic ordinal attri-
bute and one attribute representing uncertainty of the other
attribute. The tasks involve making decisions about the val-
ues of the two edge attributes. For the first two questions,
we chose brightness, fuzziness, grain, and transparency to
encode the uncertainty attribute, and width, hue, saturation
to encode the other edge attribute. The choices of the visual
variables are based on previous theoretical and empirical
work on visual variables and uncertainty visualization, as
detailed in Sections 2 and 3. For the third question, we chose
to investigate the effect of two visualization-related factors:
1) discriminability of each visual variable, i.e. the perceptual
distance between two consecutive levels of a visual variable,
and 2) the graph task performed by a user.

Our contribution is threefold. First, our work provides
empirical evidence that with line-based marks, interference
between pairs of visual variables can alter the effectiveness
ranking for visualizing uncertainty among a set of candidate
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visual variables. Second, we show empirically that both dis-
criminability and graph-task type can influence the degree
of interference between a pair of visual variables. Finally,
we derive design recommendations for choosing visual var-
iables to visualize graph with uncertainty.

2 RELATED WORK

This work builds upon research on visual variables, uncer-
tainty visualization, and perceptual studies on graph visual-
izations. We detail how our work relates to and extends
previous work in these three areas in the following sub-
sections.

2.1 Visual Variables

Our work is motivated by the concepts of “disassociativity”
and “dimensional integrality” of visual variables in uncer-
tainty visualization. We thus start with an overview of
research on visual variables and these two related concepts.

The system of visual variables was first developed by
Bertin [8]. He identified seven visual variables: position,
size, shape, color brightness, color hue, orientation, and
grain. Morrison [9] suggested the addition of color satura-
tion and arrangement, and MacEachren [10], [11] proposed
three more: fuzziness, resolution, and transparency. The list
can be further expanded by including some of the visual
primitives examined by Cleveland and McGill in their semi-
nal work on graphical perception [12], including angle, vol-
ume, and curvature. Visual variables going beyond
traditional static, 2D displays such as motion, depth, and
occlusion are also touched upon in more recent work [13].

While Bertin provided no empirical assessment of the
visual variables, the effectiveness (usually measured using
accuracy) and efficiency (usually measured using response
time) of different visual variables have been examined in
much other work. Cleveland and McGill [12] ranked
selected visual variables on the degree of accuracy users can
achieve when working with quantitative information
encoded by these visual variables, and Mackinlay [14]
extended the ranking to ordinal and nominal data types
using previous psychophysical results. Garlandini and
Fabrikant [15] empirically assessed four visual variables
(size, color brightness, color hue, and orientation) for their
effectiveness and efficiency in the design of 2D maps. Bezer-
ianos and Isenberg [16] evaluated how a user’s perception
of angle, area, and length is affected by viewing distances
and angles when working with tiled wall-sized displays.
In the same vein but from a different perspective,
John [17] assessed the effectiveness and efficiency of color
hue at different perceptual levels proposed by Bertin (i.e.
associativity, selectivity, order, and quantity) on the basis
of experimental evidence from previous research in psy-
chology and design research in thematic cartography.
Similarly, Filippakopoulou et al. [18] provided empirical
data verifying the perceptual levels of certain visual vari-
ables proposed by Bertin.

Despite these efforts to assess the effectiveness and effi-
ciency of basic visual variables, little attention has been
paid to Bertin’s notion of “disassociativity” [19]. According
to Bertin, a visual variable is “associative” if it allows the
viewer to differentiate a set of symbols for other visual

variables while ignoring variations in this variable. Bertin
argued that brightness and size are disassociative: since
these variables affect symbol visibility, it would be impossi-
ble or very difficult to ignore variations in them.

Bertin’s notion of disassociativity is related to the concept
of “dimensional integrality” as discussed in Garner’s book
on perception and information processing [20]. This concept
is supported by much empirical work. For example,
Callaghan’s work on texture-segregation [21] showed that
shape-based texture-segregation is impaired by task-irrele-
vant variance in hue, but not the other way around. In [22],
two-way interference between hue and brightness was
observed in the texture-segregation task. Dimensional inte-
grality was later discussed by Colin Ware [23] in a way
tailored more towards visual stimuli. While Bertin
implied that a visual variable is either “associative” or
“disassociative,” the concept of dimensional integrality
describes a continuum from “integral” to “separable” and
applies to pairs of visual variables instead of individual
ones. The concept of dimensional integrality is the basis for
the hypotheses tested here, though our hypotheses also aim
to be more specific about factors that may affect the degree
of dimensional integrality between a pair of visual variables
in the context of visualizing uncertainty in graphs.

2.2 Evaluation of Uncertainty Visualization

There has been active research on uncertainty visualization
techniques and design studies (e.g. [3], [24], [25], [26]) in the
areas of geographic information systems, scientific visualiza-
tion, and information visualization, but they are seldom
accompanied by in-depth evaluations of the techniques.

Among the works that evaluate uncertainty visualization
techniques, some address the challenge of presenting data
and its uncertainty simultaneously with minimal mutual
interference, but through interactions instead of choices of
visual variables. Evans [27], studying combining data and
reliability information using static composition and anima-
tion, found that these two methods show no statistically
significant difference in terms of either viewing time or
accuracy. In static composition, color hue was used to repre-
sent land-use class and color saturation was used to present
reliability. Interestingly, Aerts et al. [6], also comparing
static and toggling methods, found that subjects are more
accurate estimating uncertainty values using the static
method than the toggling method, and that more subjects
prefer the static methods than the toggling method.

Other work has focused on the use of visual variables to
convey uncertainty. In [10], MacEachren discussed nine
candidate graphical variables for representing uncertainty,
including Bertin’s seven variables (location, size, brightness,
texture, color, orientation, and shape) and two further varia-
bles, color saturation and focus. The discussion, however, is
theoretical rather than empirical. Later in [28], MacEachren
et al. evaluated common visual variables for their intuitive-
ness of representing uncertainty, and assessed the accuracy
of fuzziness and brightness. In [1], Leitner and Buttenfield
tested three visual variables for encoding uncertainty,
brightness, texture, and saturation, and concluded that
brightness leads to the highest number of correct answers,
followed by texture, with saturation coming last. Recently,
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Boukhelifa et al. [7] proposed sketchiness as a new visual
variable for depicting uncertainty information using line-
based marks and evaluated its effectiveness compared to
blur, dash, and grayscale. Sanyal et al. [5] evaluated techni-
ques for visualizing 1D and 2D data that represent uncer-
tainty using either color-mapping or glyph sizes together
with the traditional error bars.

The work by MacEachren et al. [29] is probably the most
relevant to the present study. Comparing two methods for
depicting data and data uncertainty, they discovered that
using hue for data and texture overlay for data uncertainty
led to more accurate task performance than using hue for
data and saturation for data uncertainty, possibly because
the former is more visually separable than the latter.

2.3 Perceptual Studies on Graph Visualization

Several user studies have evaluated how the basic visual
properties of edges in node-link visualizations can affect the
user’s performance on graph tasks. As far as we know, how-
ever, user studies to date have focused mostly on edge
geometry rather than on other visual attributes as consid-
ered here.

In [30], Holten and van Wijk evaluated six alternative
representations of directed edges with varying shape and
color on performance in path-finding tasks, and found that
a tapered representation in which edge width varies gradu-
ally along its length led to the best performance. Most rele-
vant to the current study, Holten and van Wijk compared
multi-cue representations where shape and color were used
simultaneously to encode the edge direction with single-cue
representations, but found no statistically significant differ-
ence between the two in terms of performance. Xu et al. [31]
studied the effect of edge curvature on graph readability
with varying graph size; also on the effect of curvature,
Telea et al. [32] conducted a qualitative study comparing
hierarchical edge bundling with node-link diagrams.

3 EXPERIMENTAL DESIGN

To simplify the experiment, we consider only the case in
which each edge has one ordinal attribute and one attribute
representing uncertainty. In the experiment instructions, we
call the ordinal attribute the “strength” of the edge, and its
uncertainty “certainty”; we use these terms here for the two
attributes henceforth.

This experiment has four factors: the visual variable rep-
resenting certainty (hereafter vCertainty), the visual variable
representing strength (hereafter vStrength), discriminability,
and task type. Table 1 lists the four factors and the levels for
each. We chose the four visual variables for vCertainty since
the experiment in [28] suggests they are the most intuitive

representations of uncertainty that can be applied to line-
based marks. The three visual variables for vStrength were
chosen according to the theoretical ranking of visual varia-
bles for depicting ordinal data in [14]. Fig. 1 illustrates how
the appearance of an edge varies with each of the seven
visual variables. In particular, we use the HSL color space
in the experiment and define hue, saturation, and lightness
accordingly. We assign five encoding levels to each visual
variable, and use two discriminability levels and two task
types (visual search and comparison). We allocate a fixed
amount of time for each type of task. Section 3.3 describes
how the discriminability levels and the time limitations for
the tasks were determined. We use participants’ accuracy
as the measure of effectiveness.

Each trial in the experiment concerns either the certainty
attribute or the strength attribute. Henceforth we call the
attribute the participant needs to focus on in a trial the pri-
mary attribute and the other attribute the secondary attribute.
In each trial, the participant was asked to make judgments
about the primary attribute while trying not to be distracted
by variations in the secondary attribute.

Below we list the hypotheses tested in the experiment.
H1-H4 are concerned with interactions among visual varia-
bles while H5-H8 relate discriminability and graph task
type to user perception.

� H1. When participants are working on tasks concern-
ing the certainty attribute, the effectiveness of a
visual variable in encoding certainty is mediated
by the visual variable used for encoding strength,
i.e. there will be an interaction effect between vCer-
tainty and vStrength when certainty is the primary
attribute.

� H2. Taking H1 further, the effectiveness of fuzziness,
grain, and transparency will not change significantly
with different vStrengths. Lightness will be more
accurate when paired with width than with hue or
saturation.

� H3. In tasks concerning the strength attribute, the
visual variable encoding certainty will mediate
the effectiveness of the visual variable encoding
strength, i.e. there will be an interaction effect
between vCertainty and vStrength when strength is
the primary attribute.

TABLE 1
The Factors Included in the Experiment and their Levels

Factor # of levels Levels

vCertainty 4 lightness, fuzziness, grain,
transparency

vStrength 3 width, hue, saturation
Discriminability 2 low, high
Task type 2 visual search, comparison

Fig. 1. An illustration of how each of the seven visual variables progress
with increasing data value.
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� H4. Taking H3 further, the accuracy of width will not
vary significantly with different vCertaintys. Hue
and saturation will have much lower accuracy when
certainty is encoded using lightness compared to
other alternatives.

H2 and H4 are based on grouping of the seven
visual variables. We group lightness, hue, and satu-
ration as color-based, fuzziness, grain, and transpar-
ency as focus-based (that is, affecting the overall
clarity and visibility of a mark), and width as geome-
try-based. This grouping is similar to that in [7]. The
rationale behind H2 and H4, then, is that focus-based
visual variables will have similar degrees of interfer-
ence with either color-based or geometry-based
visual variables, and color-based visual variables
will have much greater interference with color-based
visual variables than with geometry-based ones.

� H5. Accuracy will be lower under the low-discrimi-
nability condition than the high-discriminability
condition.

� H6. Accuracy will be the same on the visual search
tasks as on the comparison tasks.

� H7. The level of distraction a secondary visual vari-
able has on the same primary visual variable will not
be affected by discriminability, i.e. there will be no
significant interaction effects between difficulty and
vStrength in edge certainty tasks or between diffi-
culty and vCertainty in edge strength tasks.

� H8. The relative accuracy for a visual variable can
generalize across task types; i.e. there are no signifi-
cant interaction effects between task type and
vStrength or between task type and vCertainty.

The following subsections describe the stimulus design,
tasks, participants and procedure in this experiment.

3.1 Design of Stimuli

All graph stimuli used in this study are visualizations of
randomly generated graph datasets with 18 nodes and
25 edges. We use random graphs instead of real-world data-
sets to remove the confounds of dataset size and the distri-
bution of data attribute values. We generated all graphs
using NetworkX [33], a Python library for network creation
and manipulation. The graph generator implements the
Gðn;MÞ variant of the Erdo��s-R�enyi model and produces a
graph by picking randomly out of the set of all graphs with
18 nodes and 25 edges.

Each graph edge has a “strength” attribute and a
“certainty” attribute; both ranging in value between 1 and
5. In half of the graphs, “strength” is the primary attribute
and “certainty” is the secondary attribute; the reverse is
true for the other half. We generated graphs separately
from the visual search task and the comparison task with
different distributions of edge attribute values.

For the visual search tasks, values for the secondary attri-
bute were always drawn from a discrete uniform distribu-
tion on {1,2,3,4,5}. The values for the primary attribute differ
between “positive” graph stimuli and “negative” graph
stimuli. A positive stimulus contains exactly one edge with
the target value, i.e., the value that the participant needs to

Fig. 2. Node-link visualizations using four of the 12 pairs of visual varia-
bles examined in this experiment. The above graphs have two attributes
that are each encoded as different visual variables (specified in the
subcaption).

Fig. 3. An example screen for a visual search trial.

Fig. 4. An example screen for a comparison trial.
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search for, for the primary attribute. The remaining edges
were randomly assigned an integer value between 1 and 5
excluding the target value for the primary attribute. A nega-
tive stimulus does not contain any edge with the target
value for the primary attribute, and each edge was ran-
domly assigned an integer value between 1 and 5 excluding
the target value.

In generating graphs for the comparison tasks, values for
the secondary attribute were also drawn from a discrete
uniform distribution on {1,2,3,4,5}. The sums of the values
for the primary attribute must differ unambiguously
between each graph pair, so we defined three distributions
representing low, medium, and high overall strength or cer-
tainty, as detailed in Table 3. Using these three distributions,
we defined three configurations for each graph pair: low
versus medium, medium versus high, and low versus high.
We then assigned one configuration to each graph pair and
generated values for each graph accordingly.

The graphical stimuli were generated using JavaScript
and D3.js [34] with an adapted version of the built-in force-
directed algorithm in D3. Fig 2 shows example stimuli using
four of the 12 pairs of visual variables. To reduce the possi-
ble interference of line length with other visual variables,
we constrain the length of each line to between 5 and 15 pix-
els. While the possible interference of line length can be
completely removed by using lines of uniform lengths, that
would impose unrealistic constraints on the graph layout
algorithm. Table 2 lists the default visual attributes (i.e., the
default value for each visual variable when it is neither the
primary nor the secondary visual variable in a condition)
for each edge in the visualizations. Colors are defined in the
HSL color space.

3.2 Tasks

Participants were given two types of tasks, visual search
tasks (VS) and comparison tasks (CP). Both tasks require
binary responses. In visual search tasks, participants look
for an edge of a specific certainty or strength value. They
need to determine whether or not the target edge is present
in a stimulus, and they press one of two keys to indicate their
response. In comparison tasks, participants see two graphs
and must decide which one has higher overall strength or
certainty, again indicating their responses by pressing one of
two keys. The overall strength or certainty is defined as the
average of all the strength or certainty attributes in a graph,
and participants were explicitly told that they should try to
estimate the average by looking at the overall appearance of
the graph rather than attempting to combine estimates for
individual edges. (The amount of time allocated to the com-
parison task also makes it impossible to complete by exam-
ining individual edges.). Fig. 3 and Fig. 4 show example
screens for VS and CP tasks respectively.

We choose these two tasks for two reasons. First, they are
common visualization tasks in the literature. For example,

the visual search task combines “Find Extremum” and
“Retrieve Value” in the visualization task taxonomy pro-
posed by Amar et al. [35], and the comparison task corre-
sponds to the “Characterize Distribution” proposed in the
same taxonomy. At the same time, the distinction between
the two tasks is also analogous to the “identification-
comparison” dimension proposed in [36] for characterizing
exploratory visualization tasks. Second, these two tasks
potentially require two distinct types of cognitive and per-
ceptual operations: visual search involves pattern matching
for each individual edge, while comparison requires
visually aggregating a set of edges.

3.3 Determining Free Parameters

Two sets of parameters were chosen through pilot studies:
1) encoding levels for each visual variable under the two
discriminability conditions, and 2) time allocated for each
task type. In addition, we also chose the target values for
the visual search task through the pilot.

We used two criteria in choosing the encoding levels:
1) the perceptual distance between consecutive levels
should be as nearly uniform as possible, and 2) encoding
choices for different visual variables should be equally diffi-
cult for the same discriminability level.

To pick two encoding levels for each visual variable satis-
fying these two criteria, we devised an experiment consist-
ing of simple identification tasks. In an identification task,
the participant is shown a page with a “target” line and five
“candidate” lines, each corresponding to one encoding level
for the visual variable. The stimulus page disappears after
2 seconds, and the participant is then instructed to select the
candidate line matching the target line by pressing the
corresponding key.

Five participants took part in this pilot study. Each
participant was first shown a set of encodings with maximal
distance between every two consecutive levels, and went
on to encoding sets with gradually decreasing distance
between consecutive levels. Participants would perform
10 repetitions for each encoding set; they worked through
all encoding sets for one visual variable first, and was
instructed to move on to the next visual variable when
the accuracy dropped below 40 percent or when no more
encoding sets were available. Finally, we calculated the
average accuracy for each set of encoding levels across all
five participants. We chose the set of encoding levels with
just above 98 percent accuracy as the “high discrimi-
nability” level and the set of encoding levels with just above
80 percent accuracy as the “low discriminability” level
for each visual variable. For the encoding sets used here,
values for individual levels were determined using either

TABLE 3
Three Distributions of the Primary Attribute as Used

in the Graphs for the Comparison Task

Distribution of the primary attribute

Attribute value 1 2 3 4 5

Low 7 8 5 3 2
Medium 3 6 7 6 3
High 2 3 5 8 7

TABLE 2
Default Visual Attributes for the Edges

width hue saturation lightness fuzziness grain transparency

0.24 cm 216 1 0.5 none solid 1 (opaque)
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Fechner’s law [37] (transparency), Stevens’ power law [38]
(lightness, saturation, width, fuzziness and grain), or
human judgment (hue). We restricted the range of hue to
within 170 to 216 (roughly between green and blue) in the
HSL color space so that the hue values would always have a
natural ordering. We varied saturation between 0.01 and 1,
value between 0.5 and 1, and transparency between 0.1 and
1 to ensure the marks would always be clearly visible.

We used stimuli and tasks similar to the main study to
determine how much time to allocate for each task in the
main study. Participants in the pilot study were asked to
perform visual search tasks and comparison tasks on graphs
with 25 edges. However, they performed the tasks with the
secondary visual variable being absent. They were also
asked to complete the task as accurately and as quickly as
possible but were not given a limited amount of time
per task. We collected data from three participants with
10 repetitions for each condition, discarded trials with incor-
rect responses, and took the rounded average of response
time in the remaining trials for each type of task as the time
limit in the main study.

During the pilot, we discovered that participants found it
significantly more difficult to locate middle values for the
visual search task than boundary values. We started with
three variations of the visual search task: users needed to
look for an edge with value 1, 3, or 5 for the primary attri-
bute. It turned out, however, that participants took on
average two to three times longer to report presence/
absence correctly when the target value is 3 than in the
other two cases. We therefore decided to exclude value 3
in the main study since we are primarily interested in
comparing performance across different visual variables,
not the relative ease of extracting different values using
the same visual variable.

3.4 Participants

We recruited 20 participants (11 female) for this study, all
undergraduate or graduate students at Brown University.
Participants were recruited using both flyers and internal
university mailing lists. Participant ages ranged from 19 to
27 years old (M ¼ 22.63, SD ¼ 3.69). Every participant had
normal or corrected-to-normal vision and normal color
vision. None of the participants had extensive experience
with graph visualizations.

3.5 Experimental Procedure

We conducted the experiments in a laboratory setting. In
each session, the participant first filled out an informed-con-
sent form and read the learning task instructions. The partici-
pant was then given a set of practice trials, during which he
or she received feedback on the correctness of each trial and
could ask any question about the tasks. Having finished the
practice trials, the participant continued to finish the main
trials independently and filled out a demographic question-
naire at the end of the session. Each session lasted 50-70
minutes. All sessions were completed using the same com-
puter with a 15.4-inch display. The display was configured
to have resolution 1,440� 900 and brightness 120 cd=m2.

The goal of the practice trials was to familiarize the par-
ticipants with the rules and procedures for the tasks, not

with each individual pair of visual variables. Therefore, all
practice trials in a given session used the same pair of visual
variables, which was the same as the pair of visual variables
that appeared last during the main trials in that session.
Each session had 24 practice trials.

Fig. 5 illustrates the arrangements of the main trials.
These trials were first grouped based on the target type.
Half of the participants were asked to make decisions based
only on the strength of an edge in the first half of all trials,
and based only on the certainty of the edge in the remaining
trials. The other half of the participants completed trials ask-
ing about the certainty of the edges first, followed by trials
asking about edge strength. Within each group of trials
with the same target type, the trials were further grouped
into 12 major blocks. Stimuli in each block used the same set
of visual variables. The order of the 12 blocks was counter-
balanced using a Latin square design across all the partici-
pants. Trials within each of the 12 blocks were further
grouped by task types into two minor blocks. The order of
task types within each of the 12 major blocks was also coun-
terbalanced using a Latin square design both within and
across the participants. Trials within each minor block were
further divided into two difficulty levels: easy trials always
appeared before difficult trials. There were four repeated
trials for each combination of condition, task type, and diffi-
culty level. For visual search tasks, half of the four repeated
trials in each combination were positive stimuli. For com-
parison tasks, the graph on the left had the higher overall
strength or certainty in half of the four repeated trials. The
ordering of each group of four repeated trials was
completely randomized. In total, we collected 288 � 20 ¼
5,760 trials across all sessions.

At the beginning of each major trial block, the participant
was shown a page with legends for each of the two visual
variables used in this trial block. The legends were accom-
panied by short explanations to help the participant under-
stand the encoding levels for each visual variable. For
example, the explanation for the visual variable “lightness”
was “edges with higher certainty levels are darker”.

In each trial, the participant was first shown the target for
the current trial as well as the legends for the visual varia-
bles for the trial. For VS, the target consisted of a target type
(“certainty” or “strength”) and a target value (either 1 or 5).
For CP, the target specification included only the target
type. The participant could spend as much time as needed

Fig. 5. Schematic representation of trial ordering. At the highest level,
the trials are grouped by “target type”, which can be either strength
or certainty. Within each target type, trials are further grouped into
12 blocks (orange rectangles) where stimuli within the same block use
the same pair of visual variables. Within each of the 12 blocks, trials are
grouped by task type and ordered by discriminability level.
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on the target page and could proceed to the stimuli page
when ready. The stimuli page was presented for a fixed
amount of time: 5 seconds for VS and 3 seconds for CP.
This amount of time was determined through the pilot
study described earlier. When the stimuli page disappeared,
the participant had to make a response using the keyboard
before proceeding to the next trial.

4 RESULTS

We analyzed the data from the experiment using RM-
ANOVA in SPSS. We computed a single number for each
participant’s accuracy by aggregating the responses from
the four repetitions under the same condition; accuracy
ranges from 0 to 1, with 1 being correct in all four repeti-
tions and 0 incorrect in all four repetitions. The data was
split along target type (strength attribute versus certainty
attribute) before the analysis and RM-ANOVA was per-
formed for each target type. Mauchly’s test showed that
the sphericity assumption was not violated for any of the
sources discussed below. To assess if the accuracy is influ-
enced by response bias, we repeated the above analysis
with d-prime. While the exact values of p-values differ
between accuracy-based and d-prime-based analyses, the
significance of the p-values is consistent. We therefore
report all results in terms of accuracy as it is a more conven-
tional measure of the effectiveness of visualizations.

After the initial ANOVA analysis, we found a significant
three-way interaction among discriminability level,
vStrength, and vCertainty when the target type is the
strength attribute. To further investigate this complex
interaction, we split the data along the discriminability and
vStrength factors and performed additional two-way
ANOVAs on the subsets obtained.

We also performed pairwise comparisons to explore all
the significant interaction effects observed. We applied the
Bonferroni correction to adjust the alpha for all pairwise
comparisons, and we report the corrected p-value calcu-
lated by SPSS for these comparisons. SPSS calculates the
corrected p-value by applying the Bonferroni correction
backwards: the corrected p-value equals the actual p-value
multiplied by the total number of possible pairwise compar-
isons. Therefore, all p-values reported in this section can be
directly compared to the experiment-wise alpha (0.05) to
determine significance.

The following subsections report important findings
supported by statistically significant results. The complete
lists of statistically significant results for the primary analy-
ses and the pairwise comparisons are provided in Tables 4
and 5, respectively.

4.1 vStrengthMediates the Relative Effectiveness
of Certainty Visual Variables

In tasks concerning the certainty attribute, we found a sig-
nificant interaction between vStrength and vCertainty (p ¼
0.005, F6;114 ¼ 3.327), suggesting that the relative effective-
ness of the four certainty visual variables is conditional
upon the choice of vStrength. To further investigate how the
accuracy in the vCertainty is mediated by the choice of
vStrength, we performed pairwise comparisons among the
four certainty variables while holding vStrength constant
and vice versa. The results showed that when vStrength was
hue, participants were 12.1 percent more accurate in making
judgments about certainty using grain than lightness (p <
0.001; see Fig. 6, cross marks). When holding vCertainty con-
stant, we found that accuracy in interpreting lightness was
the lowest when strength was encoded using hue; partici-
pants were 14.6 percent more accurate (p ¼ 0.001; Fig. 6,
star marks) when vStrength was width and 11.7 percent
more accurate when vStrength was saturation (p ¼ 0.012;
Fig. 6, plus marks).

These results suggest that H1 is valid: the effectiveness of
vCertainty is mediated by the choice of vStrength in tasks
regarding edge certainty. However, H2, a stronger version
of H1, is only partly valid. Indeed, for fuzziness, grain, and
transparency, we found no significant variation in accuracy
with different strength encoding choices, as hypothesized.
However, while we hypothesized that lightness would be
more accurate when paired with width than with either hue
or saturation, our results show that the participants were
similarly accurate with lightness when either width or
saturation was present, and in both cases they were much
more accurate than when vStrengthwas hue.

4.2 vCertaintyMediates the Relative Effectiveness
of Strength Visual Variables

When the target type is strength, we found a significant
interaction between vStrength and vCertainty when the
discriminability level was high (p ¼ 0.002, F6;114 ¼ 3.779).

TABLE 4
Primary Analysis Results

Target type Effects type Variable Condition F df p-value

certainty simple task type all 118.965 1,19 0.001
certainty simple vStrength all 3.722 2,38 0.033
certainty interaction vStrength x vCertainty all 3.327 6,114 0.005
strength simple task type all 116.942 1,19 0.001
strength simple vCertainty all 2.908 3,57 0.042
strength simple discriminability all 22.404 1,19 0.001
strength simple vCertainty strength ¼ hue 3.911 3,57 0.013
strength simple discriminability strength ¼ saturation 8.307 1,19 0.01
strength interaction task type x vStrength all 8.216 2,38 0.001
strength interaction discriminability x vStrength x vCertainty all 2.570 6,114 0.023
strength interaction vStrength x vCertainty discriminability ¼ high 3.779 6,114 0.002
strength interaction discriminability x vCertainty strength ¼width 9.2 3,57 0.001
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The accuracy for each combination of strength variable and
certainty variable is shown in Fig. 7. We did not, however,
find a significant interaction between vStrength and
vCertaintywhen the discriminability level is low.

To explore the interaction effect between vStrength
and vCertainty under high discriminability, we per-
formed pairwise comparisons among the four certainty

variables when holding vStrength constant and vice versa.
The results showed that when certainty was encoded
using lightness, participants were 18.3 percent more
accurate in judging strength levels when vStrength was
width rather than hue (p ¼ 0.004; Fig. 7, star marks).
When certainty was encoded using fuzziness, however,
participants were 16.7 percent more accurate estimating

Fig. 6. Accuracy for each pair of strength visual variable and uncertainty visual variable when tasks concern the certainty attribute. Error bars show
�1 standard error. Paired symbols indicate significant pairwise differences: accuracy on lightness given width versus hue(*); accuracy on lightness
given saturation versus hue(+); accuracy on grain versus lightness given hue(�).

TABLE 5
All Significant Pairwise Differences

Target type Fixed factors Across level 1 level 2 p-value difference figure

certainty vStrength ¼ hue vCertainty grain lightness 0.001 12.1 percent Fig. 6
certainty vCertainty ¼ lightness vStrength width hue 0.001 14.6 percent Fig. 6
certainty vCertainty ¼ lightness vStrength saturation hue 0.012 11.7 percent Fig. 6
strength discriminability ¼ high, vStrength width hue 0.004 18.3 percent Fig. 7

vCertainty ¼ lightness
strength discriminability ¼ high, vStrength hue width 0.018 16.7 percent Fig. 7

vCertainty ¼ fuzziness
strength discriminability ¼ high, vCertainty lightness fuzziness 0.001 21.7 percent Fig. 7

vStrength ¼width
strength discriminability ¼ high, vCertainty fuzziness lightness 0.035 13.3 percent Fig. 7

vStrength ¼ hue
strength discriminability ¼ high, vCertainty grain lightness 0.051 15.0 percent Fig. 7

vStrength ¼ hue
strength task ¼ visual search vStrength width saturation 0.05 8.8 percent Fig. 9
strength task ¼ comparison vStrength hue width 0.022 6 percent Fig. 9
strength vStrength ¼width, discriminability high low 0.001 19.2 percent Fig. 10a

vCertainty ¼ lightness
strength vStrength ¼width, discriminability high low 0.042 10.0 percent Fig. 10a

vCertainty ¼ transparency
strength vStrength ¼width, discriminability low high 0.004 15.8 percent Fig. 10a

vCertainty ¼ fuzziness
strength vStrength ¼ hue, discriminability high low 0.025 13.3 percent Fig. 10b

vCertainty ¼ grain
strength vStrength ¼ saturation, discriminability high low 0.019 13.3 percent Fig. 10c

vCertainty ¼ transparency

“Fixed factors” indicates which factors are held constant in the pairwise comparisons. The “Across” Column indicates which factor varies in a pairwise
comparison. The “figure” column indicates the figure showing the pairwise comparisons.
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strength levels when vStrength was hue rather than width
(p ¼ 0.018; Fig. 7, circle marks). When holding vStrength
constant, participants were 21.7 percent more accurate in
interpreting width when vCertainty was lightness instead
of fuzziness (p ¼ 0.001; Fig. 7, cross marks). Participants
were 13.3 percent more accurate in interpreting hue
when hue was paired with fuzziness rather than light-
ness (p ¼ 0.035; Fig. 7, plus marks). There was also an
insignificant trend (p ¼ 0.051) that participants were
15.0 percent more accurate in interpreting hue when
vCertainty was grain instead of lightness (Fig. 7, square
marks).

These results suggest that H3 is valid: the effectiveness
of vStrength is mediated by the choice of vCertainty in
tasks concerning edge strength. However, H4 is also only
partially valid. As predicted, the effectiveness of hue for
encoding strength was reduced by the variation in light-
ness. While we predicted that all four vCertainty would
have similar impacts on the perception of width, how-
ever, fuzziness turned out to have a stronger negative
impact on the perception of width than the other three
certainty visual variables.

4.3 Task Type Matters

We found a main effect of task type when participants were
working on tasks about the strength attribute (p < 0.001,
F1;19 ¼ 116.942), and also when they were focusing on the
certainty attribute (p < 0.001, F1;19 ¼ 118.965). This means
that participants’ accuracies differ significantly between the
visual search and the comparison tasks.

Looking at Figs. 8 and 9, we see that participants were
generally more accurate on the comparison tasks than on
the visual search tasks. Averaging over all other conditions,
the difference in accuracy between the two types of tasks is
20.45 percent. These results reject H6, that “accuracy will be
the same on the visual search tasks as on the comparison
tasks”.

More interestingly, we also observed an interaction
effect between task type and vStrength (p ¼ 0.001, F2;38 ¼
8.216) in trials concerning edge strength. To investigate
this interaction effect further, we performed pairwise
comparisons among strength visual variables for each
task type. The results showed that in the visual search
task, participants were most accurate with width and
were significantly more accurate at interpreting width
than saturation (p ¼ 0.05; see Fig. 9, star marks). How-
ever, participants were least accurate with width in the
comparison task and were significantly less accurate at
interpreting width than hue (p ¼ 0.022; see Fig. 9, circle
marks). These results reject H8, in which we hypothe-
sized that the way visual variables interfere with each
other would not differ across task types.

Fig. 7. Accuracy for each pair of strength visual variable and certainty visual variable in tasks concerning the strength attribute and high discriminabil-
ity. Error bars show �1 standard error. Paired symbols indicate significant (including borderline) pairwise differences: accuracy on width given light-
ness versus fuzziness(�); accuracy on hue given fuzziness versus lightness(+); accuracy on hue given grain versus lightness(square); accuracy on
width versus hue given lightness(*); accuracy on hue versus width given fuzziness(o).

Fig. 8. Accuracy for each certainty visual variable for the two types of
tasks when the target type is certainty. Error bars show �1 standard
error.
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4.4 Lower Discriminability does not Always
Lead to Lower Accuracy

When the target type is certainty, discriminability level did
not have a significant effect on accuracy. However, when
the target type is strength, we observed a three-way interac-
tion effect among discriminability, vStrength, and vCertainty
(p ¼ 0.023, F6;114 ¼ 2.570). To further investigate the impact
of discriminability level on tasks concerning edge strength,
we performed a set of two-way ANOVAs within each of the
three vStrength levels. The results showed a significant inter-
action effect between discriminability and vCertainty (p <
0.001, F3;57 ¼ 9.2) when strength is encoded using width, a
main effect of vCertainty (p ¼ 0.013, F3;57 ¼ 3.911) when
strength is encoded using hue, and a main effect of discrimi-
nability when strength is encoded using saturation (p ¼
0.01, F1;19 ¼ 8.307).

We performed pairwise comparisons to explore the inter-
action effect between discriminability and vCertainty when
strength is encoded using width. Pairwise comparisons
showed that when strength was encoded using width, accu-
racy was 19.2 percent higher with higher discriminability
when vCertainty was lightness (p < 0.001; Fig. 10a, circle
marks) and 10.0 percent higher when vCertainty was trans-
parency (p ¼ 0.042; Fig. 10a, cross marks), but 15.8 percent
lower (p ¼ 0.004) with higher discriminability when vCer-
tainty was fuzziness (see Fig. 10a, plus marks). When
strength was encoded using hue, accuracy was 13.3 percent
higher with higher discriminability when vCertainty was
grain (p ¼ 0.025; Fig. 10b, plus marks) but had no significant
difference across discriminability levels with other vCer-
tainty. When strength was encoded using saturation, accu-
racy was 13.3 percent higher with higher discriminability
when vCertainty is transparency (p ¼ 0.019; Fig. 10c, star
marks) but had no significant difference across discrimina-
bility levels with other vCertainty.

These findings reject H5, which states that accuracy will
always be lower under the low-discriminability condition,

Fig. 9. Accuracy for each strength visual variable for the two types of
tasks when target type is strength. Error bars show �1 standard error.
Paired symbols indicate significant (including borderline) pairwise
differences: accuracy between width and saturation in visual search(*);
accuracy between hue and width in comparison(o).

Fig. 10. Accuracy with the strength attribute in the presence of each

uncertainty visual variable, plotted against the two discriminability levels.

Error bars show �1 standard error. Paired symbols show significant

pairwise differences.
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and H7, that the level of distraction on the same primary
visual variable introduced by a secondary visual variable
will not be affected by discriminability.

5 DISCUSSION

Here we summarize and provide possible explanations for
the more important findings described in Section 4, discuss
limitations in the experimental design, and recommend
design considerations for visualizing network uncertainty.

5.1 Findings and Interpretations

We discuss each of the important findings below.

5.1.1 Effectiveness of the Certainty Visual Variable

Which visual variable is more effective in visualizing uncer-
tainty? In the context of this experiment, the question of
effectiveness is two-fold: 1) does a certainty visual variable
have high accuracy given the presence of a strength vari-
able, and 2) does variation in the certainty visual variable
negatively impact the user’s perception of the strength vari-
able? Fig. 6 shows that the answer to the first question
depends on the choice of vStrength. Lightness is as good as
fuzziness, grain, and transparency when vStrength is width
or saturation, but is the least accurate when vStrength is hue.
In particular, we note that, while all are color-based, light-
ness and saturation seem to be much more visually separa-
ble than lightness and hue. Fig. 7 answers the second
question. Fuzziness has the strongest negative impact on
the effectiveness of width: in Fig. 7, the accuracy of inter-
preting width is the lowest with the distraction of fuzziness
than with the other three certainty visual variables. Simi-
larly, lightness has the strongest negative impact on the
effectiveness of hue.

Putting the interference among visual variables aside for
a moment, we note that our result is consistent with the
findings in [7] on the relative effectiveness of fuzziness and
grain. In [7], participants were more accurate at estimating
uncertainty encoded using grain than using fuzziness.
While not statistically significant, we also found grain to
have higher accuracy than fuzziness while averaged over
all vStrength, task, and discriminability conditions, despite
the differences in tasks and in the presence of secondary
visual variables between the two experiments.

5.1.2 Differing Effectiveness across Task Types

We measured and averaged the time the pilot participants
took to accomplish each type of task correctly when the
appearance of the graph edges only vary in one visual vari-
able. The average durations were then used as the time limit
for the tasks in the main study. This gives the two task types
a comparable baseline difficulty. However, we observed in
the study that participants were significantly more accurate
on comparison tasks than on the visual search tasks. This
suggests that the difficulty of visual search tasks may
increase more than that of comparison tasks with the
addition of variation in another visual variable. One pos-
sible explanation is that in the visual search tasks, the
participant needed to scan multiple edges and spend
effort on each to separate the primary visual attribute

from the secondary visual attribute, while for the compar-
ison tasks, separation of the two visual attributes was
done in parallel for all the edges.

The effect of task type on accuracy also seems to be
mediated by the visual variable used: in Section 4.3, we
report that width led to more accurate responses than
hue and saturation in the visual search task, but not in
the comparison task. It is possible that participants may
have used different strategies when visually aggregating
values represented by width versus by hue or saturation.
This implies that empirical results obtained on the effec-
tiveness of visual variables may be task-specific for some
visual variables, and thus that in evaluating visual varia-
bles it is worthwhile to include multiple tasks that cover
distinct cognitive or perceptual operations.

5.1.3 Discriminability Mediates the Level of Integrality

between Visual Variables

Section 4.2 reports that when the target attribute is strength,
we found an interaction effect between vStrength and vCer-
tainty under high discriminability, but not under low dis-
criminability. This unexpected result might be explained by
a compound effect of discriminability level. When the dis-
criminability level is low, the discriminability between the
encoding levels for each of the strength visual variables is
reduced, and so is the discriminability for those of the cer-
tainty visual variables. Decreased discriminability of the
primary visual variable makes it more difficult to complete
the tasks accurately, while decreased discriminability of the
secondary attribute makes the tasks easier by reducing the
variation that must be filtered out when working on the
task. This compound effect of discriminability could also
explain the observed interaction between discriminability
and vCertaintywhen strength was encoded using width.

5.1.4 Discriminability May Reflect the Inherent Degree

of Integrality between Visual Variables

Looking at the change in accuracy between high overall
discriminability to low overall discriminability, we
observed three patterns: a) significant decrease in accu-
racy (observed when vStrength ¼ width and vCertainty ¼
lightness or transparency; when vStrength ¼ hue and
vCertainty ¼ grain; and when vStrength ¼ saturation and
vCertainty ¼ transparency), b) no significant difference in
accuracy, c) significant increase in accuracy (observed
when vStrength ¼ width and vCertainty ¼ fuzziness). We
hypothesize that the shift from pattern (a) to pattern
(c) corresponds to a shift from weaker to stronger inter-
ference between pairs of visual variables. A significant
decrease in accuracy suggests that the positive contribu-
tion to accuracy of reduced variation in the secondary
visual variable is not enough to cancel out the negative
contribution of increased ambiguity in the primary
visual variable. A significant increase in accuracy sug-
gests that the effect of reduced variation in the second-
ary visual variable outweighs the effect of increased
ambiguity in the primary visual variable. This hypothesis
is also consistent with the degree of interference between
visual variable pairs discussed in the previous section.
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5.1.5 Participants Could More Easily Judge the

Presence or Absence of the Extreme

Values than of the Middle Values

Another interesting observation related to discriminability
during the pilot study is that searching for a middle target
value seemed much more difficult than searching for one
that is either the minimum or maximum in the data. In the
pilot, we asked the participants to look for an edge with
value 1, 3, or 5 for the primary attribute. It turned out that
participants took on average two to three times longer to
report presence/absence correctly when the target value is 3
than in the other two cases. This observation, though not
tested in the main study, seems to indicate that marks with
extreme values on a visual dimension more easily attract
attention among a group of stimuli than values in themiddle.

5.2 Open Questions

A further question is how the results may generalize with
varying graph size and density. Previous work [39] has
shown that the readability (measured using both accuracy
and response time) of a graph tends to decrease dramati-
cally with increasing graph density and size. We predict
that performance will drop for all pairs of visual variables
with increasing graph density and size, but the relative level
of interference between pairs of visual variables observed in
this study will remain.

We would like to emphasize that task and visual mark
types need to be considered when generalizing the results
of this study. We expect our results to apply to a visualiza-
tion as long as it uses line-based marks to convey informa-
tion and its users may need to search for specific visual
marks or judge the aggregated value of a group of visual
marks. However, it is worth noting that our results may not
generalize to different visualization tasks: as we discuss in
Section 5.1.2, the degree to which one visual variable influ-
ences the user’s performance with another variable seems
to vary between tasks. Therefore, it is important to consider
whether the key perceptual-level tasks a visualization needs
to support match with the tasks tested here when applying
the results. A number of tasks that are more specific to
graphs [40] have not been tested in this study, and more
experiments may be needed to better understand how the
results generalize to those graph tasks. Such experiments
will also provide opportunities to test how users process
multiple visual variables differently across tasks. We also
speculate that the results may not completely generalize to
other types of visual marks. It is possible that certain visual
variables, e.g. width, may become more salient and more
robust to interference when being applied to visual marks
that occupy more space.

One factor not considered here is the learning effect and
how it may differ across different visual variables or tasks.
In our experiment, none of the participants had previous
experience with graph visualizations and the practice trials
were not designed to give each participant extensive
training on each individual visual variable. Therefore,
results of the experiment apply only to novice users of
node-link visualizations. It is possible that, given the
same amount of training, users might improve more sub-
stantially in accuracy on some visual variables than on

others. Future work could also investigate the maximum
accuracy users can achieve for each pair of visual varia-
bles with plenty of practice.

It also remains an open question whether, and to what
extent, participants can make judgments by taking the two
attributes encoded using separate visual variables as a
whole. Example tasks in the context of the experiment pre-
sented here would be to find a graph edge that has high
strength and high certainty, or to determine which graph is
“better” by weighing both strength and certainty. This prob-
ably boils down to whether the participant can treat a pair
of visual variables as a new compound variable and what
the properties, e.g. discriminability between adjacent levels,
are of this new compound variable. While reminiscent of
research on redundancy gain (e.g., [22]), this is a different
problem and needs to be tested in future work.

Finally, the analysis on the effect of discriminability on
the interference between paired visual variables here has
been qualitative. It would be interesting to quantitatively
relate the effect of discriminability to the level of dimen-
sional integrality between a pair of visual variables.

5.3 Design Recommendations

We now distill our results and discussion into the following
design recommendations:

� Lightness is an effective visual variable for depicting
uncertainty; however, we echo previous work [19] in
advising strongly against using lightness and hue to
encode distinct data dimensions simultaneously.

� Fuzziness, grain, and transparency are all robust to
the choice of visual variables to encode the second-
ary dimension. However, fuzziness has a strong neg-
ative impact on the perception of width and other
alternatives should be considered when lines with
different widths are to be distinguished.

� In addition to taking user tasks into consideration
when designing visualization layouts and interac-
tions, it may also be worthwhile to consider user
tasks at the earlier stage of choosing visual variables.

� When two visual variables are employed simulta-
neously to visualize two data dimensions, percep-
tion of one of the variables can be made easier either
by increasing its discriminability or by reducing the
discriminability of the other visual variable.

6 CONCLUSION

This paper presents an experiment investigating the effec-
tiveness of four visual variables—lightness, fuzziness, grain,
and transparency—in the context of secondary visual varia-
bles and common graph-related tasks. Part of our goal was
to quantify the effectiveness of a visual variable in repre-
senting uncertainty by not only how accurate people can be
in interpreting the uncertainty it represents but also by the
degree to which it influences the perception of other visual
variables present. Our results show that fuzziness, grain,
and transparency, the three visual variables that change the
overall visibility of the mark, are robust to variation in the
secondary visual variable. However, fuzziness has strong
negative impact on the perception of width. Lightness, on
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the other hand, has strong bidirectional interference with
hue but not with saturation, though all three are color-based
dimensions. Our results also show that the negative effect
on accuracy of interference between a pair of visual varia-
bles may be reduced by increasing the discriminability of
the primary visual variable and decreasing the discrimina-
bility of the secondary visual variable. Finally, our results
provide some evidence that the effectiveness of visual
variables may depend on task type.

ACKNOWLEDGMENTS

This work was funded partially by IIS-10-18769. The
authors would like to thank the reviewers for their valuable
feedback.

REFERENCES

[1] M. Leitner and B. P. Buttenfield, “Guidelines for the display of
attribute certainty,” Cartography Geograph. Inf. Sci., vol. 27, no. 1,
pp. 3–14, 2000.

[2] A. M. MacEachren, A. Robinson, S. Hopper, S. Gardner, R.
Murray, M. Gahegan, and E. Hetzler, “Visualizing geospatial
information uncertainty: What we know and what we need to
know,” Cartography Geograph. Inf. Sci., vol. 32, no. 3, pp. 139–160,
2005.

[3] A. Pang, “Visualizing uncertainty in geo-spatial data,” in Proc.
Workshop Intersections Between Geospatial Inform. Info. Technol.,
2001, pp. 1–14.

[4] K. Potter, P. Rosen, and C. R. Johnson, “From quantification to
visualization: A taxonomy of uncertainty visualization approach-
es,” in Uncertainty Quantification in Scientific Computing. New
York, NY, USA: Springer, 2012, pp. 226–249.

[5] J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, and R.
Moorhead, “A user study to compare four uncertainty visualiza-
tion methods for 1D and 2D datasets,” IEEE Trans .Vis. Comput.
Graph., vol. 15, no. 6, pp. 1209–1218, Nov./Dec. 2009.

[6] J. C. Aerts, K. C. Clarke, and A. D. Keuper, “Testing popular visu-
alization techniques for representing model uncertainty,” Cartog-
raphy Geograph. Inf. Sci., vol. 30, no. 3, pp. 249–261, 2003.

[7] N. Boukhelifa, A. Bezerianos, T. Isenberg, and J.-D. Fekete,
“Evaluating sketchiness as a visual variable for the depiction of
qualitative uncertainty,” IEEE Trans. Vis. Comput. Graph., vol. 18,
no. 12, pp. 2769–2778, Dec. 2012.

[8] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Madison,
WI, USA: Univ. Wisconsin Press, 1983.

[9] J. L. Morrison, “A theoretical framework for cartographic general-
ization with the emphasis on the process of symbolization,” Int.
Yearbook Cartography, vol. 14, no. 1974, pp. 115–127, 1974.

[10] A. M. MacEachren, “Visualizing uncertain information,” Carto-
graphic Perspectives, vol. 13, no. 13, pp. 10–19, 1992.

[11] A. M. MacEachren, How Maps Work: Representation, Visualization,
and Design. New York, NY, USA: Guilford Press, 2004.

[12] W. S. Cleveland and R. McGill, “Graphical perception: Theory,
experimentation, and application to the development of graphical
methods,” J. Amer. Statist. Assoc., vol. 79, no. 387, pp. 531–554,
1984.

[13] M. Carpendale, “Considering visual variables as a basis for infor-
mation visualisation,” Dept. Comput. Sci., Univ. Calgary, Calgary,
AB, Canada, Tech. Rep. TR#2001-693, 2003.

[14] J. Mackinlay, “Automating the design of graphical presentations
of relational information,” ACM Trans. Graph., vol. 5, no. 2,
pp. 110–141, 1986.

[15] S. Garlandini and S. I. Fabrikant, “Evaluating the effectiveness
and efficiency of visual variables for geographic information visu-
alization,” in Spatial Information Theory. New York, NY, USA:
Springer, 2009, pp. 195–211.

[16] A. Bezerianos and P. Isenberg, “Perception of visual variables on
tiled wall-sized displays for information visualization
applications,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12,
pp. 2516–2525, Dec. 2012.

[17] V. John, “Functional efficiency, effectiveness, and expressivity of
Bertin’s visual variable colour hue in thematic map design,” J.
Humanities Soc. Sci., vol. 8, pp. 46–55, 2013.

[18] V. Filippakopoulou, B. Nakos, E. Michaelidou, and L. Stamou,
“Evaluation of the selectivity of visual variables,” THALES
Project, no. 65/1216, 2004.

[19] A. Reimer, “Squaring the circle? bivariate colour maps and
Jacques Bertins concept of disassociation,” in Proc. Int. Cartograph.
Conf., 2011, pp. 3–8.

[20] W. R. Garner, The Processing of Information and Structure. New
York, NY, USA: Psychol. Press, 2014.

[21] T. C. Callaghan, “Interference and dominance in texture segrega-
tion: Hue, geometric form, and line orientation,” Perception Psycho-
phys., vol. 46, no. 4, pp. 299–311, 1989.

[22] T. C. Callaghan, “Dimensional interaction of hue and brightness
in preattentive field segregation,” Perception Psychophys., vol. 36,
no. 1, pp. 25–34, 1984.

[23] C. Ware, Information Visualization: Perception for Design. New York,
NY, USA: Elsevier, 2012.

[24] R. A. Boller, S. A. Braun, J. Miles, and D. H. Laidlaw, “Application
of uncertainty visualization methods to meteorological
trajectories,” Earth Sci. Inf., vol. 3, no. 1-2, pp. 119–126, 2010.

[25] A. Slingsby, J. Dykes, and J. Wood, “Exploring uncertainty in geo-
demographics with interactive graphics,” IEEE Trans. Vis. Comput.
Graph., vol. 17, no. 12, pp. 2545–2554, Dec. 2011.

[26] D. Spiegelhalter, M. Pearson, and I. Short, “Visualizing uncer-
tainty about the future,” Science, vol. 333, no. 6048, pp. 1393–1400,
2011.

[27] B. J. Evans, “Dynamic display of spatial data-reliability: Does it
benefit the map user?” Comput. Geosci., vol. 23, no. 4, pp. 409–422,
1997.

[28] A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and
M. Gahegan, “Visual semiotics and uncertainty visualization: An
empirical study,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12,
pp. 2496–2505, Dec. 2012.

[29] A. M. MacEachren, C. A. Brewer, and L. W. Pickle, “Visualizing
georeferenced data: Representing reliability of health statistics,”
Environ. Planning A, vol. 30, no. 9, pp. 1547–1561, 1998.

[30] D. Holten and J. J. van Wijk, “A user study on visualizing directed
edges in graphs,” in Proc. SIGCHI Conf. Human Factors Comput.
Syst., 2009, pp. 2299–2308.

[31] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and P. H. Nguyen, “A
user study on curved edges in graph visualization,” IEEE Trans.
Vis. Comput. Graph. vol. 18, no. 12, pp. 2449–2456, Dec. 2012.

[32] A. Telea, O. Ersoy, H. Hoogendorp, and D. Reniers, “Comparison
of node-link and hierarchical edge bundling layouts: A user
study,” in Visualization and Monitoring of Network Traffic. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2009.

[33] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proc. 7th
Python Sci. Conf., Pasadena, CA USA, Aug. 2008, pp. 11–15.

[34] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven doc-
uments,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12,
pp. 2301–2309, Dec. 2011.

[35] R. Amar, J. Eagan, and J. Stasko, “Low-level components of ana-
lytic activity in information visualization,” in Proc. IEEE Symp. Inf.
Vis., 2005, pp. 111–117.

[36] N. Andrienko, G. Andrienko, and P. Gatalsky, “Exploratory spa-
tio-temporal visualization: An analytical review,” J. Vis. Languages
Comput., vol. 14, no. 6, pp. 503–541, 2003.

[37] L. L. Thurstone, “Three psychophysical laws,” Psychol. Rev.,
vol. 34, no. 6, pp. 424–432, 1927.

[38] S. S. Stevens, Psychophysics. New Brunswick, NJ, USA: Transaction
Publishers, 1975.

[39] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability
of graphs using node-link and matrix-based representations: A
controlled experiment and statistical analysis,” Inf. Vis., vol. 4,
no. 2, pp. 114–135, 2005.

[40] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry, “Task
taxonomy for graph visualization,” in Proc. AVI Workshop BEyond
Time Errors: Novel Evaluation Methods Inform. Vis., 2006, pp. 1–5.

GUO ET AL.: REPRESENTING UNCERTAINTY IN GRAPH EDGES: AN EVALUATION OF PAIRED VISUAL VARIABLES 1185



Hua Guo is a PhD candidate in the Department
of Computer Science, Brown University. She is a
member of the Visualization Research Lab,
Brown University. Her research interest is to
inform and automate visualization design and
evaluation using human-centered approaches.

Jeff Huang received the PhD degree in informa-
tion science from the University of Washington.
He is an assistant professor in the Computer
Science Department, Brown University. His
research interests include the intersection
between human-computer interaction and
information retrieval, involving the decoding of
user behavioral data to drive novel applications.

David H. Laidlaw received the PhD degree in
computer science from the California Institute of
Technology, where he also did post-doctoral
work in the Division of Biology. He is a professor
in the Computer Science Department, Brown Uni-
versity. His research centers on applications of
visualization, modeling, computer graphics, and
computer science to other scientific disciplines.
He is a fellow of the IEEE and the IEEE Computer
Society and recipient of the 2008 IEEE VGTC
Visualization Technical Achievement Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1186 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 10, OCTOBER 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


