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Abstract— We present results from an experiment aimed at using logs of interactions with a visual analytics application to better
understand how interactions lead to insight generation. We performed an insight-based user study of a visual analytics application and
ran post hoc quantitative analyses of participants’ measured insight metrics and interaction logs. The quantitative analyses identified
features of interaction that were correlated with insight characteristics, and we confirmed these findings using a qualitative analysis of
video captured during the user study. Results of the experiment include design guidelines for the visual analytics application aimed
at supporting insight generation. Furthermore, we demonstrated an analysis method using interaction logs that identified which
interaction patterns led to insights, going beyond insight-based evaluations that only quantify insight characteristics. We also discuss
choices and pitfalls encountered when applying this analysis method, such as the benefits and costs of applying an abstraction
framework to application-specific actions before further analysis. Our method can be applied to evaluations of other visualization
tools to inform the design of insight-promoting interactions and to better understand analyst behaviors.
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1 INTRODUCTION

In this paper, we present an evaluation of a visual analysis system de-
veloped for analyzing document collections structured as spatiotem-
poral networks. To understand how analysts use this system to gener-
ate insights, we used a hybrid evaluation approach, which combines a
standard insight-based study with interaction log analysis.

Insight-based evaluation has received increasing attention in the vi-
sualization community in recent years [21, 24, 6]. Traditional visual-
ization evaluation metrics such as task accuracy and completion time
are straightforward to compute and provide useful benchmarks, but
they do not capture the whole story of how analysts use a visualiza-
tion application to arrive at insights. Insight-based evaluation, on the
other hand, lets visualization researchers and designers compare ap-
plications based on the insights analysts can gain using the system,
which often reflects the practical design goal of visual analytics appli-
cations. However, the standard insight-based evaluation methodology,
as presented by Saraiya et al. [27], does not prescribe a principled way
to evaluate the connection between what actions an analyst performs
and the insights she generates. This knowledge is critical for under-
standing how the design of interactive components in a visual analytics
application promotes or inhibits insight generation.

The primary goal of the hybrid evaluation approach is to address
this challenge of understanding how application design influences in-
sight generation. In this case study, we performed quantitative anal-
ysis of insight characteristics and features extracted from interaction
logs. The results were used to orient the subsequent qualitative anal-
ysis, where we reviewed interesting usage patterns identified from the
quantitative analysis in the context of the user study sessions and de-
rived design recommendations.

The contributions of the paper are threefold: 1) a hybrid evaluation
approach to address evaluation goals that cannot be fully achieved us-
ing standard insight-based evaluation; 2) a proof-of-concept case study
that demonstrates the practical use of the evaluation approach and re-
veals some of the design choices involved in the approach; 3) results of
the evaluation approach applied to a specific visual analytics system,
including identified analysis patterns and design recommendations.
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2 RELATED WORK

Our approach of analyzing insights alongside interaction histories
builds on previous evaluations of visualization applications. The most
related methodologies include 1) interaction and workflow analysis,
and 2) insight-based evaluation. To the best of our knowledge, a sys-
tematic investigation of the relationship between insights and interac-
tion in visual analytics has not yet been performed, and we believe
this an early step toward designing visual analytics applications that
support the goals and workflows of analysts.

2.1 Analyzing Interactions
Studying how analysts use interaction in visualization systems is an
important part of evaluating how well these interactions support anal-
ysis needs, like generating insights or performing tasks. Histories of
user interactions have been used to advance our understanding of tool
usage and user goals in a variety of areas (e.g. [2, 7, 17]). For visual
analytics tools, user interaction histories contain information about the
sequence of choices that analysts make when exploring data or per-
forming a task. They help evaluators identify which of the available
interactions in an application are preferred by analysts or are part of a
critical path of interactions that is necessary for a task.

In the past, both automatic analyses of interactions and manual re-
views have resulted in discovering design improvements for visualiza-
tion applications and workflows. In some cases, observing interactions
is the basis for cognitive and behavioral models of end users, and these
models can predict the outcome of design changes to applications and
workflows [14], including benchmark tasks for visualization [11]. In
other cases, interaction logs have been used to classify users with dif-
ferent task strategies and personality traits, as well as to predict the
performance of basic visualization tasks like visual search [5].

In addition to predictive models of behavior, identifying the roles of
specific interactions in the analysis process has led to descriptive mod-
els of how analysts use visualization to make sense of data, including
the learning loop complex [26], and Pirolli and Card’s cascading for-
aging and sensemaking loops [23]. In a case study with the popular
visual analytics application Jigsaw, Kang et al. found that analysts’ in-
teraction histories showed evidence of these high-level sensemaking
processes [18]. Similarly, Boyandin et al. [4] visualized user inter-
action logs to compare the use of interaction techniques to arrive at
findings with flow maps under animation versus small-multiples con-
ditions. Reda et al. [25] approached interaction and sensemaking from
a different angle, combining interaction logs and user-reported mental
processes into an extended log and modeling the log using transition
diagrams to better understand the transition between mental and inter-



action states. Like Kang’s case study, we identify and interpret pat-
terns of interactions with a visual analytics application using a qual-
itative review process. In addition, we describe how a quantitative,
automated analysis of interaction histories using methods including
but not limited to transition diagram analysis led us toward focused
questions to answer during the qualitative review. In Section 3, we
describe the quantitative and qualitative stages of interaction analysis.

Another way that interaction histories have been used in visualiza-
tion applications is to identify states that make navigating or reason-
ing about an application easier. Heer et al. proposed a model for an-
alyzing visualization interaction histories and used it to identify us-
age patterns for Tableau [15]. In doing so, they developed “hand-
crafted”, application-specific chunking rules that group low-level in-
teractions into a manageable sequence of states. We build on this idea
by proposing an automatic approach for chunking interactions based
on frequently occurring patterns in a collection of end users’ histo-
ries. Another kind of abstraction is categorizing individual actions
into top-level categories; this step simplifies the process of identifying
interaction sequences with similar semantics but different low-level
details (e.g., adjusting the range of a data filter using different inter-
actions). A few taxonomies have been proposed to characterize user
interactions with visual analytics systems from a high level. Some of
the taxonomies focuss solely on data analysis tasks, such as Zhou and
Feiner [34] and Amar et al. [3]. Heer and Shneiderman [16], on the
other hand, proposed a taxonomy that captures three types of tasks
in iterative visual analysis: data and view specification, view manip-
ulation, and provenance. Our categories are based on a taxonomy of
seven general interaction types that Yi et al. describe based on a re-
view of interactive information visualizations [32]. We chose to build
on this taxonomy in coding interactions for our case study because it
has coverage over most of the behaviors we observed. We describe our
coding process in more detail in Section 4.4.

Previous visual analytic applications, such as HARVEST [13], have
included features to track insight provenance as end users interact. A
benefit of doing this capture at the application-level rather than cod-
ing interactions post hoc is that displaying information about seman-
tic actions to analysts could help them perform tasks better, as Gotz
et al. found [12]. However, the automatic-capture approach requires
instrumenting the visual analytic application, so it cannot be used to
evaluate deployed applications, as in our case study.

Recovering longer reasoning processes by observing interactions is
difficult. For example, knowing when one reasoning process ends and
another begins may be unclear from a sequence of interaction alone.
Previously, Dou et al. [8] demonstrated that interaction logs from a
visual analytics tool can be visually examined and coded by humans
to recover analysts’ reasoning processes, such as specific findings and
strategies. Similar to this work, we performed an exploratory user
study of a visual analytics application, then used video and a visual-
ization of participants’ interactions to recover strategies. Unlike Dou
et al.’s study, we first used an automatic analysis of interaction logs
in order to focus the qualitative review of participants’ interactions.
Based on our experience in the case study, we believe this focusing
step leads evaluators toward new hypotheses and is helpful in making
manual reviews of large datasets more tractable.

2.2 Assessing Insights and Interactions

The purpose of a visualization or visual analysis software is usually to
promote the discovery of insights (“an individual observation about the
data by the participant, a unit of discovery” [27]) about the underlying
data in visual representations [30]. The “complex, qualitative” [21]
nature of insights requires evaluation methods beyond using simple
benchmark tasks to assess insight generation [22, 6]. Field studies of
analysts conducted over long periods of time, like multidimensional
long-term case studies (MILCs) [29], can help evaluators identify the
effectiveness of a tool and usability issues based on self-reports by
analysts and usage histories. This approach results in findings with
high ecological validity, but it requires a high level of participation
by analysts (e.g., maintaining a journal of insights and frustrations)
and making sense of multimodal evaluation data can be difficult. To

address this challenge, our work demonstrates a method of correlating
self-reported insights and usage histories in a systematic way.

An alternative approach that overcomes some of the challenges of
longitudinal field studies is insight-based evaluation, which is aimed
at quantifying evidence of insights by analysts during exploratory, lab-
based user studies. Saraiya et al. were among the first to demonstrate
how to quantify insight characteristics and use them to compare which
bioinformatics analysis tools were better suited for certain analysis
questions and datasets [27]. A key step in the evaluation involves cod-
ing participants’ utterances or recorded observations about the data
model (“insights”) during exploration. Insights can be assigned nu-
meric domain values with the help of domain experts, or categorized
by analysis depth. Alternatively, insights have been counted in cate-
gories that correspond to types of benchmark tasks in order to com-
pare findings between task-based and insight-based evaluations of the
same tool [22]. Liu and Heer [20] and Vande Moere et al. [31] also
coded insights recorded during user studies of visualization applica-
tions. These coding efforts provide examples for evaluators to follow
in performing their own studies, and we referred to the practices in
these earlier evaluations in devising our insight coding scheme.

While insight-based evaluations help assess whether one applica-
tion promotes insight generation compared to another, it does not an-
swer the question of which interactions or features within an appli-
cation lead to insights. Efforts to characterize behaviors of analysts
that result in insights have identified high-level patterns of interaction
with visualizations [33]. Our work presents a case study demonstrat-
ing that patterns related to quantified insight metrics can be identified
systematically from logs, then verified through a qualitative review of
the context of the interactions, using screen-captured videos and a vi-
sualization of logs. In our case study, all interactions by participants
were investigative in nature and did not involve predefined tasks. Do-
ing a head-to-head comparison of insight characteristics to task per-
formance has been done before, in between-subjects [22] and within-
subjects [10] study designs, but not at the level of understanding how
specific actions relate to insight generation.

3 EVALUATING VISUAL ANALYTICS SYSTEMS USING IN-
SIGHTS AND INTERACTIONS

In this section, we describe the evaluation goals that motivated our pro-
posed evaluation approach and present an overview of the approach.

3.1 Goals
In the case study, we aim to answer the following evaluation questions:

• How do users use the system to arrive at insights?

• Which interface design factors are potentially hindering insights
generation?

We find it difficult to answer the above questions with a standard
insight-based evaluation (e.g. [27]). It is relatively straightforward to
compute insight metrics using the standard insight-based evaluation,
given the lessons learned from existing insight-based studies; however,
it is unclear how to trace how the analysts arrive at insights. One ap-
proach would be to watch entire analysis sessions in addition to record-
ing and coding insights and try to summarize observations about what
analysis strategies were preferred by analysts, what interface compo-
nents were easy or difficult to use, and what sequences of actions seem
to consistently lead to insights. However, we found that it was diffi-
cult to summarize such high-level observations without more targeted
objectives in mind while watching the videos. An alternative would
be to perform controlled evaluation with individual components and
measure how many insights analysts could come up with each. With
this approach, however, we won’t be able to capture any usage pattern
that involves more than one component.

We therefore decided to integrate interaction history analysis into
the standard insight-based evaluation given our evaluation goals. Pre-
vious works have shown that interaction history can reveal feature us-
age patterns [15] and analysis strategies [18, 8]. Also, Yi et al. summa-
rized four high-level processes through which users gain insights when
using a visualization system [33], supporting the view that interaction
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Fig. 1. An illustration of the evaluation pipeline. It starts with a standard insight-based study, in which user-reported insights and application-specific
interaction data are collected. The insight data are coded into insight metrics. The interaction data are converted into abstract, generalizable actions,
from which patterns (short and frequently appeared strings of individual actions) are extracted. Quantitative analyses such as correlation analysis
are then applied on insight metrics, patterns, and individual actions to guide the qualitative analyses that follows. Finally, qualitative analyses are
performed using user study video recordings and visualization of interaction logs to answer evaluation questions.

history at least partially captures how users arrive at insights. The po-
tential connections between interaction history and insights led us to
the hypothesis behind the proposed evaluation approach: identifying
interaction features that are correlated with insight characteristics and
reviewing those features in context – using a visualization of logs and
screen-capture video recorded during the interaction – will reveal anal-
ysis strategies and usability issues that lead to design guidelines for the
visual analytics application.

3.2 Evaluation Stages
The evaluation approach consists of four stages, as depicted in Fig-
ure 1. It starts with a standard insight-based study, in which we ask
the user to complete an open-ended analysis task and collect insights
reported by the user while completing the task. In addition, we also
collect interaction data users produced when using the visual analysis
system to come up with insights.

The insight and interaction data collected from the user study are
then further processed in an abstraction stage. The insight data are an-
alyzed and coded into insight characteristics. For the interaction data,
a theoretical framework is applied to code the application-specific ac-
tions into more abstract, generalizable actions. The purpose of interac-
tion abstraction is so that we could focus on high-level, general visual
analysis tasks instead of the application-specific implementations.

The abstract actions then go through a few quantitative analyses.
We first identified two types of elements from the interaction logs as
the basic units in the analyses. The first type of elements are individ-
ual actions. The second type of elements are patterns, which are short
strings of individual actions that have frequently appeared in the in-
teraction logs. The patterns are intended to capture blocks of actions
that are used to accomplish simple analysis objectives. Therefore, we
defined two high-level objectives for the pattern extraction algorithm:
1) the final set of patterns should be small, since the number of basic
analysis objectives for a single visual analytics system are limited; 2)
the set of patterns should have appeared frequently enough in the in-
teraction history. However, the definitions for “small” and “frequent”
will change depending on the application, and we set them as free pa-
rameters that the evaluator needs to decide upon in this study, which
we discuss in more detail Sections 5 and 7.

We then performed two types of quantitative analyses on each of
the two types of elements. For simplicity, we discuss the analyses for
actions only, but the version for patterns is similar.

• Frequency: computes correlation coefficients between the per-
centage of each abstract action among all actions and each in-
sight metric, and flags moderate and strong correlations.

• Composition: identifies abstract actions that can be achieved us-
ing a variety of application-specific actions, but analysts showed
strong preference for one application-specific action over the
others.

Results from the quantitative analyses are then used to guide fo-
cused qualitative analyses. Screen-captured videos of the user study

sessions, visualizations of the interaction logs, and action transition
matrices are used in the qualitative analyses. Occurrences of actions
and patterns flagged in the quantitative analyses are located in the
videos and visualizations and reviewed by the evaluators. For neg-
ative correlations, the evaulators investigate whether users have run
into usability issues when performing those types of actions. For pos-
itive correlations, the evaluators aim to understand if the action plays
an important role in arriving at insights, and if so, whether it is well
supported by the visual analysis system.

4 DATA COLLECTION

Given the goals of the evaluation, we first designed and conducted
an insight-based study. In this section, we present details on the study
setup and how we processed the raw data from the user study.

4.1 The Visual Analysis System
The visual analysis system we evaluated was developed for intelli-
gence analysis, and it supports integrated analysis of textual data from
multiple sources and in multiple formats. The analysis engine of the
system performs analyses on the incoming textual data and extracts
both entities – like documents, people, and keywords – and relation-
ships among entities. The entities and relationships are then repre-
sented using a graph structure. The query engine supports complex
queries based on entities’ attributes and relationships.

The visual front end of the tool consists of information views on two
tabs: the Overview tab (Figure 2) and the Explorer tab (Figure 3). In
the Overview tab, an analyst can view a list of recommended queries
based on graph metrics, such as the vertex degree for entities of a given
type. By clicking on a recommendation, the analyst can add the results
of the query into the network view (in the Explorer tab) as nodes. The
‘Dataset Details’ view in the Overview tab shows the entity types in
the dataset, the attributes that define each entity type, and how the en-
tities are connected to one another. The analyst can choose to retrieve
all entities of a given type using this view. In the Explorer tab, the
timeline view shows the distribution of documents over time, and lets
the analyst retrieve entities with a timestamp within the selected time
range. The timeline can also be stratified vertically given a chosen en-
tity type; in doing so, the analyst can see the distribution of documents
for each selected entity of that type. The network view visualizes se-
lected entities and the relationships between them as a force-directed
node-link diagram. The analyst can right-click on a node to browse
its relationships to other entities and pull these connected entities into
the view. Clicking on a node will activate an entity detail window
that displays its attributes in detail, including the option of viewing the
contents of a document entity. The analyst can choose to show or hide
nodes of any given entity type in the network view.

In addition to interacting with the previously mentioned views,
the front end provides two other ways of querying data. The ‘Data
Queries’ panel lets the analyst generate a query by specifying attribute
values or relationships to chosen entities. The analyst can also use the



search bar in the Explorer tab to input keywords or names and select
from a list of related queries.

4.2 Study Procedure
We recruited 10 participants (3 male, 7 female) whose ages ranged
from 22 to 52 years (M = 28.9, SD = 9.4, Median = 25.5). Partici-
pants were students from a variety of disciplines at a major research
university. None of the participants had used visual analysis systems
regularly or had experience with investigative data analysis similar to
the study task.

We used a subset of the VAST Challenge 2014 dataset [1] in the user
study. The dataset contains texts, such as news reports, resumes, and
email headers, relevant to a disappearance case that happened in a fic-
tional country. Each participant’s task was to analyze the dataset using
the visual analysis system and identify possible explanations behind
the disappearance case, with supporting evidence from the dataset.

At the beginning of each study session, each participant was given
an overview of the task and signed the consent form. We then gave the
participant a two-page training manual for the visual analysis tool to
study at his or her own pace. Once the participant finished reading the
training manual, we asked the participant to complete a set of 18 short
training task1. An experimenter was present to answer the participant’s
questions and provided feedback to make sure that the participant un-
derstood all the operations available in the tool. The training phase
took around 15-20 minutes for all participants.

After the training phase, each participant worked on the analysis
task for 45 minutes. With consent from participants, we videotaped
participants performing the analysis and collected screen-capture
recordings. We used a think-aloud protocol and participants were in-
structed to explain their analysis processes and report their insights as
clearly as possible. An experimenter was present throughout the anal-
ysis task, and the participant was free to ask any technical question
about the use of the visual analysis tool. The experimenter did not
answer questions related to analysis approaches. After the 45-minute
analysis, each participant completed an exit questionnaire with a few
demographic questions. In total, each session lasted around 1.5 hours.

4.3 Coding Insights
To quantify the reported insights, we identified three types of informa-
tion in the insights reported by the participants: facts, generalizations,
and hypotheses. In the remainder of this paper, we refer to these three
terms collectively as insight characteristics. The choice of these in-
sight characteristics was made before coding and inspired by previous
insight-based studies [27, 10, 20] and work on information discovery
and ideation [19]. Definitions and examples for these characteristics
are listed in Table 1.

For each participant, we computed the number of unique insights
reported for each of the insight characteristics. In general, it may be
difficult to count the number of insights since users may report a com-
plex insights which cannot be easily segmented into individual ones.
In our case, however, we found that participants almost always re-
ported insights in simple forms, possibly because it is easier to report
an insight as soon as it is discovered. Two authors of this paper worked
together to come up with the coding scheme and then performed the
coding independently. The correlation between the coding results from
the two authors is 92.66%, suggesting the two coders are quite consis-
tent. The two coders then discussed the coding results to resolve some
of the inconsistencies, and in cases where the coders couldn’t come
to an agreement, the final insight score was computed by taking the
average of the scores from the two coders. In addition, we calculated
an originality score for each participant. To compute the score, we
first counted the number of times each unique fact, generalization, and
hypothesis was recorded by any of the participants. We define the
originality of each unique piece of information as the inverse of the
number of times that information was recorded by anyone. In other
words, information identified by all participants has low originality,
and information identified by only one participant has high originality.

1User study materials are available at http://bit.ly/1Hd8wxp

A participant’s originality score equals the sum of information-specific
originality scores over all the information recorded by the person.

4.4 Coding Interactions
User interactions were coded in two passes. In the first pass, two of
the authors watched the screen-capture video (including audio from
the think-aloud process) of each investigative session and coded each
session as a sequence of low-level, application-specific user actions. In
the encoding, each action is represented as a tuple containing three el-
ements: name, target, and timestamp. The name of an action indicates
its function, such as “Adjust time range”. The target of an action is the
interface component that the action is applied to, such as “Timeline”.
The timestamp records the start time of the action since the beginning
of the analysis session. Before coding, both evaluators agreed upon
a preliminary coding scheme. Each evaluator coded one session in-
dependently using the scheme, then both compared notes to resolve
any ambiguity and inconsistencies in applying the coding scheme. Af-
ter, all sessions were divided evenly between the two evaluators, then
videos were coded using the finalized scheme.

In the second pass, we categorized each low-level action as one of
seven top-level actions, which are distinct analysis behaviors not spe-
cific to the application. Six of the actions are directly borrowed from
Yi et al.’s interaction taxonomy [32]. We added one more action, Re-
trieve, to account for the types of actions that retrieve entities given
specific criteria. The definition of the seven top-level actions and cat-
egorization of application-specific actions are shown in Table 2.

5 EXPERIMENT 1: QUANTITATIVE ANALYSIS OF INTERACTION
FEATURES

We performed quantitative analyses of the coded insights and in-
teractions to identify potentially interesting interaction features for
further qualitative analyses. In this section, we present the methods
and results of the experiment. The results are interpreted in Section 6
through qualitative analysis.

5.1 Methods
We first describe details of the methods used in the quantitative anal-
ysis, including 1) why and how absolute counts of individual actions
and patterns were converted into frequencies before analysis; 2) de-
tails about the procedure we used for correlation analysis; and 3) how
we extracted common patterns from interaction sequences that warrant
follow-up investigation.

5.1.1 Converting absolute counts to frequencies
When analyzing correlations between interaction features and insight
metrics, we used frequencies of top-level actions as a percentage of
total actions, instead of absolute counts of these actions. This choice
was made to account for variations in how quickly and actively each
participant performed the analysis. Even though the analysis time was
approximately the same for each participant during the user study, we
observed that the number of actions performed by each participant in
a given session varies significantly between participants (M = 199.4,
SD = 73.16), which suggests that participants were using the system
at different paces. To compute the frequency of a pattern used by each
participant, we multiplied the number of occurrences of that pattern
by its length, and then divided the product by the number of actions
performed by each participant.

5.1.2 Correlation analysis
The primary goal of performing the correlation analysis in this paper is
not to test hypotheses about the correlations between the two groups of
measures (insight metrics and interaction frequencies) but to explore
and identify activities worth further qualitative analysis. Therefore,
we chose to report all moderate and strong correlations regardless of
p-values. We computed pairwise correlations between every interac-
tion feature and insight metric. For pairs with moderate and strong
correlations, we created scatterplots to verify the linear relationships
between the pairs (e.g., Figure 4). When describing the strength of



Fig. 2. The Overview tab shows recommended searches (left) and the relationships between information types in the dataset (right). Selecting
either a recommended search or exploring an information type launches the Explorer, which displays additional views of the dataset.

Fig. 3. The Explorer tab shows individual records in the dataset using a network view (bottom). Details for individual records are displayed (right)
when the analyst selects a node in the view. The analyst can view active queries and compose new ones (left) and filter retrieved records using an
interactive timeline (top).

correlations, we use the guide suggested by Evans [9] and report Pear-
son’s r with absolute value between .40 – .59 as “moderate”, .60 – .79
as “strong”, and > .80 as “very strong”.

5.1.3 Extracting patterns
We define a pattern as a short sequence of consecutive actions that
has occurred frequently enough across all interaction sequences col-
lected from one user-study session. For example, participants often
performed action sequences where a single query was made, then the
result set was immediately examined serially. Later in this paper, we
describe this process as “sampling”. Before discussing the analyses
performed on patterns, we describe how we extracted patterns from
the interaction histories and summarize the patterns. Patterns were
extracted in two steps.

Step 1: Identify frequently-performed candidate patterns.
First, we went through all participants’ interaction sequences and
counted each unique subsequence of actions that occurred at least once
and had length of at least 3. We chose to start with length 3 to capture
only non-trivial patterns. In this step, the same action could not be
counted twice for the same pattern but may be counted towards differ-
ent patterns. Once we had generated counts for all the subsequences,
we took all those that appeared more than 40 times across all partic-
ipants’ sequences as the candidate patterns. We chose this threshold
frequency using the criteria discussed in Section 3.2.

Step 2: Segment interaction sequences into frequent pat-
terns. Next, we used the candidate patterns to segment each in-
teraction sequence into a list of patterns and singletons – individual
actions that had not been segmented as part of a pattern. The seg-
mentation step made sure that when generating the final patterns and
their counts, no action was counted towards more than one pattern.
We used a greedy algorithm during segmentation. For each interac-
tion sequence, we tried to match the head of the sequence to each of
the candidate patterns, and longer candidate patterns were chosen for
matching first, similar to matching regular expressions. Once the head
of the sequence was matched to a candidate pattern, the head was re-
moved and the count for that candidate was incremented. If no match
was found, the first action in the sequence was removed and its single-
ton count was incremented. The process was repeated until the entire
sequence had been segmented. After segmenting all interaction se-
quences, we counted all candidate patterns and singleton actions in
the interaction history for that participant.

Finally, we treated all candidate patterns that occurred more than
20 times during the segmentation as the final patterns. This frequency
threshold was lower than the one in Step 1 because the overall pattern
frequencies were reduced when an action could not be counted towards
more than one pattern.



Table 1. Terms used for quantifying insights.

Term Definition Example

Fact A statement that is true given the VAST Challenge 2014 dataset and de-
scribes the existence or properties of an event or an entity

“The police questioned a Gastech employee named Elian Karel after the
disappearance.”

Generalization A statement that describes connections among entities relevant to the dis-
appearance case

“There’s one Gastech employee who shares the same last name with a
POK member.”

Hypothesis A hypothetical statement relevant to the disappearance case “Henk might be motivated to join POK because his wife was sick due to
the mess of the environment.”

Table 2. The mapping between application-specific actions and abstract actions based on Yi et al.’s taxonomy.

Action Definition Application-specific actions

Select Mark something as interesting Pin entity, Flag entity

Explore Show me something else Select recommendation, Retrieve entities by type, Browse network view, Cancel timeline
filter, Cancel data type filter

Elaborate Show me more details Select search result, Select entity in network, View entity details, View document content

Reconfigure Show me a different arrangement Adjust network view, Rearrange network entities, Adjust network view size, Adjust timeline
by data type, Adjust timeline range

Filter Show me something conditionally Remove query results, Hide entities by type

Connect Show me related items Retrieve by selected network entity

Retrieve Show me matches to a query View search results, Retrieve by time range, Create a query

5.2 Results

Below we discuss the results for analyses with individual actions and
patterns respectively. We focus on the top-level actions since they
more directly reflect user intentions. Table 2 lists their definitions
and corresponding application-specific actions. We note that due to
the small sample size, the exact values of the correlation coefficients
can be easily influenced by participants with exceptional performance
and interaction patterns, and need to be interpreted in the context of
the qualitative analysis that follows in Section 6 instead of taken as
generalizable findings. Also, while the actions and patterns are not
application-specific, the findings are likely influenced by the types of
visualizations available in this application, and may not generalize to
applications with other types of visualizations.

For all correlations in this section, we report Pearson’s r, boot-
strapped 95% confidence intervals (CI), and p-values. CIs were com-
puted using the percentile method with 10,000 bootstrap replicates.
Because multiple correlation tests were performed, p-values of the cor-
relations need to be compared with the Bonferroni-adjusted alpha of
0.001.

5.2.1 Analyses with Individual Actions

We report correlations observed between action percentages and in-
sight metrics in Table 3. Among all top-level actions, the composition
of Retrieve and Explore displays much more frequent usage of one
application-specific action over the others. The majority of the Re-
trieve actions was View search results (59.78%), compared to Create
a query (21.74%) and Retrieve by time range (18.48%). For Explore
actions, the most frequently used was Browse network view (72.09%).

5.2.2 Analysis of Patterns

Using the algorithm described in Section 5.1.3, we extracted six pat-
terns. After merging similar ones, we identified the following four
patterns:

• Orienting (Reconfigure – Explore – Elaborate): The analyst re-
configures the view to look at the dataset in a different way, and
then further explores the dataset and elaborates on the details of
some entities.

• Locating (Retrieve – Elaborate – Elaborate, Elaborate – Retrieve
– Elaborate): The analyst retrieves entities that match some spe-

cific criteria and then elaborates to examine the details of the
entities.

• Sampling (Explore – Elaborate – Elaborate – Elaborate, Explore
– Elaborate – Elaborate): The analyst explores and adds new
entities that might be of interest onto the active view, and then
elaborates to gather detailed information about the entities.

• Elaborating (Elaborate – Elaborate – Elaborate): The analyst
performs a sequence of elaborate actions to gather detailed in-
formation about one or more entities.

Among the four patterns, Sampling has a moderate positive corre-
lation with the number of generalizations (r = .49, p = .15, CI [-.03,
.98]), number of hypotheses (r = .41, p= .23, CI [-.28, .90]), and orig-
inality (r = .45, p = .19, CI [-.25, .96]). Elaborating has a moderate
negative correlation (r =−.44, p = .20, CI [-.89, .11]) with the num-
ber of generalizations. The composition analysis shows that in 98.21%
of the Sampling patterns, the Explore action is Browse the network,
which is consistent with earlier finding that Browse the network is the
most frequently used Explore action. We also found that only one of
the Locating patterns has Create a query as the Retrieve action. All
the other patterns involve retrieving entities using View search results.
This contrasts with the ratio of View search results actions to Create a
query actions discussed earlier.

6 EXPERIMENT 2: QUALITATIVE ANALYSIS OF VIDEO SEG-
MENTS AND INTERACTION LOG VISUALIZATION

In this section, we discuss the process and results from the qualita-
tive analysis. The results support our initial hypothesis: by viewing
interaction features identified during the quantitative analyses in the
context of screen-captured video and log visualizations, we were able
to uncover interesting analysis strategies and usability issues and use
them to inform the application design.

Results from the quantitative analysis suggest the following inter-
action features are worth further investigation: 1) Sampling, 2) Elab-
orating, 3) the use of query builder versus search bar for Retrieve and
Locating, 4) Filter, and 5) Connect. We conducted a follow-up quali-
tative analysis to gain an in-depth understanding of how these features
relate to successful analysis strategies or obstacles analysts encoun-
tered during the sessions.



Table 3. Moderate and strong correlations observed between action percentages and insight metrics

Action fact generalization hypothesis originality

Explore (r = .57, p = .089, CI [.17, .90]) (r = .75, p = .013, CI [.16, .96]) (r = .61, p = .063, CI [-.39, .88]) (r = .50, p = .142, CI [-.04, .85])

Elaborate (r = .44, p = .20, CI [-.07, .78])

Filter (r =−.73, p = .017, CI [-.91, -.36]) (r =−.40, p = .25, CI [-.87, .29]) (r =−.54, p = .11, CI [-.93, .17])

Connect (r =−.59, p = .07, CI [-.94, .10]) (r =−.54, p = .11, CI [-.91, .21])

Retrieve (r =−.57, p = .09, CI [-.91, -.16]) (r =−.45, p = .19, CI [-.81, .38]) (r =−.43, p = .22, CI [-.81, .14])
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Fig. 4. Scatter plots show the number of facts identified versus the proportion of specific actions used by each participant. Participants are
represented by uniquely colored marks that correspond between plots. Left: We found a strong negative correlation between the percentage of
actions that were Filter type and the number of facts identified (r =−.73). Right: We found a strong positive correlation between the percentage of
actions that were Explore and the number of facts identified (r = .57).

6.1 Methods
Each interaction feature was analyzed in two steps. In the first step,
we located and marked the occurrence of the target pattern or action
during each analysis session by looking at a visualization of the en-
tire interaction log (Figure 6). We also used the log visualization to
quickly scan for actions that led up to the target and check if any in-
sight was reported immediately after the target. In the second step,
we watched the video segments corresponding to the target pattern or
action to gather information not captured in the interaction data. In
particular, for each occurrence of a target action or pattern, we took
notes of 1) the objects manipulated, 2) the outcome of the interaction,
and 3) any user utterance that accompanied the interaction, including
both insights and questions or complaints. Two authors of the paper
independently completed the analysis and discussed the findings to fi-
nalize the results. Both authors agreed on all the findings reported.

In addition, we also computed and visualized transition matrices
using the pattern segmentation results to summarize the interaction
sequence for each participant. A row or column in the matrix can
correspond to either a pattern or an action, and each cell (i, j) contains
the number of times the pattern or action j appeared right after the
pattern or action i. The transition matrix in Figure 6 shows the average
number of transitions for each combination. The transition matrices
don’t capture as much information as the log visualization, but they
make it easy to check which patterns or actions are frequently used
together and compare the difference across participants.

6.2 Results
Here we describe the findings of the qualitative analysis, then summa-
rize design recommendations for the visual analysis system and simi-
lar applications that we derived from the results.

6.2.1 Sampling patterns are performed in chunks that lead to
insights

Looking at the log visualization, we first observed that multiple Sam-
pling patterns often appeared in succession. This is also visible from
the transition matrices. When reviewing the video segments, we fur-
ther observed that a consecutive group of Sampling patterns is always
part of a larger action structure. In all of the consecutive Sampling

Fig. 5. The transition matrix for patterns performed by all participants.
Each cell (i, j) contains the average number of times a pattern or action
j appeared immediately after the pattern or action i. The matrix is useful
for checking which patterns or actions are frequently used together.

patterns, the analyst was sampling by browsing the network view. Be-
fore starting such a sampling process, the analyst needed to add enti-
ties onto the network view using either an Explore or Retrieve action.
Furthermore, when examining the log visualization, we noticed that
there are often a mix of Reconfigure and Filter actions between the
initial Explore or Retrieve action and the group of Sampling patterns.
This seems to be consistent with Shneiderman’s information seeking
mantra [28]: the Explore or Retrieve serves the purpose of creating
an overview given a loosely defined condition, the mix of Reconfigure
and Filter actions further refines or adjusts the representation of the
overview, and the group of Sampling activities obtain details about
the entities on-demand. We also observed that more than half of the



Fig. 6. Visualization of interaction logs from the case study. Each row of colored marks indicates the sequence of top-level actions a participant
performed. Patterns of actions across participants were visible from this context. Brushing these marks in the visualization displays details on
demand and timestamps that we used to revisit screen-captured video clips of interest.

Sampling activities led to insights directly relevant to the contents ex-
amined during those activities, which explains the positive correlation
between the amount of Sampling and multiple insight metrics.

6.2.2 Elaborating patterns are used in both unguided and tar-
geted ways

Given the negative correlation between the Elaborating pattern and
the number of generalizations reported, we initially hypothesized that
the frequent occurrence of an Elaborating pattern might suggest that
the analyst was overly focused on a small set of information, losing
the big picture, and therefore made fewer generalizations about the
dataset. However, when examining the log visualization and video
segments, we identified the following distinct scenarios when an Elab-
orating pattern occurred:

S1 – The analyst exhaustively examined the details of all the entities
available on the network view. This happened twice with P1. In both
cases, he queried for all documents related to a keyword and got only
a few documents each time. He then selected and read each document
without stopping to browse the network view.

S2 – In two cases, the analysts seemed frustrated and appeared to
select entities randomly. One analyst said “I don’t know what I’m
doing here” while clicking. Both cases appeared near session ends.

S3 – The analyst alternated between the details of two entities sev-
eral times, possibly comparing the detailed information.

S4 – The analyst added entities to the network view through either
Explore or Retrieve, and did a Reconfigure right afterwards to make the
network view more readable. The Reconfigure separated the Elaborate
actions from the more targeted Explore and Retrieve actions, resulting
in stand-alone Elaborating patterns.

The first two scenarios may have negative impact on insight gen-
eration. Exhaustively checking the details of similar entities as in S1
could be less efficient than sampling diverse information if the task
requires connecting dots among a variety of entities and events. In S2,
frustration may signal dissatisfaction with insights generated so far or
the analysis process. However, the latter two cases don’t seem to be
related to sub-optimal analysis practices or obstacles in analysis.

6.2.3 Queries often return unexpected selections

By examining the log visualization, we observed that a creating a
query was frequently followed up by two types of actions: 1) one or
more Reconfigure actions; 2) a single Filter action. From watching
the video, we noted that in the first case, analysts usually found useful
information from the query. Here, the Reconfigure actions were used
to adjust the network view so that the analyst could more easily ex-
amine the details of the entities retrieved by the query. However, the
second case revealed an issue with the query builder: when a Filter
action was performed immediately after creating a query, it was usu-
ally because the query added no entities into the network view or, in
rare cases, added too many entities that seemed overwhelming to the
analyst (“I’ve got more than what I can deal with here”). Often, the
query was then immediately removed. We found similar cases with
queries created from the contextual menu in the Network view. We
concluded that adding a feature to preview the results of a query when
using the builder or a contextual interaction would reduce the occur-
rence of these interactions and improve the quality of the analysis.

6.2.4 Filter actions are performed in chunks
The transition matrices show that an Filter action often transition into
another Filter action. It was also evident when we scanned the log
visualization that Filter actions occurred more frequently in groups
than individually. Many of the individual Filter actions fell into the
category described above and was used to remove queries that returned
zero entities. Looking at the groups of Filter actions, we observed two
scenarios: 1) when the Network view became cluttered with too many
entities, and 2) when the query list contained too many queries with
zero entities and the analyst felt the need to clean up the query list.
The second scenario happened more frequently than the first scenario.
While the first scenario corresponds to the original design goals of
these filtering actions, the second scenario points to the same issue
revealed while we examined the query creation action earlier.

6.3 Design Recommendations for the System
An advantage of this evaluation methodology from a developer’s
standpoint is that it can provide data-driven design recommendations
that point to specific interactions and components. Our approach
builds on the traditional insight-based evaluation by helping to identify
ways to improve a system in addition to measuring its effectiveness.

We summarize below two potential improvements for the system
we tested as suggested by our case study. First, since the Sampling
pattern was prevalent and frequently led to insights, we recommend
providing better application support for sampling-type activities, e.g.
making a sampled entity more visually distinct from those that have
not been examined. Second, we observed that queries created using the
query builder and the network’s contextual menu frequently returned
empty results and caused participants to undo these interactions; we
thus recommend providing previews of query results in the context of
query tools so that unnecessary interactions can be avoided.

Since the above recommendations focus on the high-level aspects
of the system design, they may generalize to similar visual analytics
systems which have network views and query builders as core com-
ponents. However, they may not generalize to systems that consist
primarily of other types of visualizations and interface components.

7 DISCUSSION

In this section, we discuss lessons learned from the case study and
limitations of this evaluation approach.

7.1 Lessons Learned
7.1.1 Benefits of combining action and pattern analysis
In this case study, including both individual actions and patterns as fea-
tures in the analysis has yielded additional information. For example,
analysis of individual actions shows that both the query builder and the
search bar have been used frequently, but the pattern analysis reveals
that using the search bar often led to multiple Elaborate actions while
creating a query rarely did. Similarly, we were able to tell that brows-
ing a network view was much more likely to be followed by multiple
Elaborate actions than other Explore actions only by combining the
results from analyzing both types of features. Such observations are
more valuable than information about action usage or pattern preva-
lence alone, and enabled more focused qualitative analysis.



7.1.2 Benefits and costs of using abstract, top-level actions
We applied abstraction to actions before performing analyses for three
potential benefits. First, using abstract actions unifies application-
specific actions that serve similar analysis tasks, reducing unimpor-
tant variances in the interaction sequences and allowing more impor-
tant patterns to emerge. Second, abstract actions are more directly
related to user intents and therefore are more meaningful building
blocks for analyzing insight generation. Finally, using abstract ac-
tions makes it easier to compare and contrast results from multiple
user studies. Given the complexity and diversity of visual analytics
systems in general, it is unlikely that two systems provide identical
sets of application-specific actions. At the same time, abstract actions
are not application-specific and enable comparison between systems.

However, using abstract actions also has its costs. First, an existing
interaction taxonomy may not apply to a given application as-is. In our
case, we had to add an additional category to account for actions that
are important to our system but not necessarily to other visual analytics
systems. In addition, choosing the most suitable interaction taxonomy
to use from existing ones requires effort from the evaluator. Finally,
abstraction hides nuances between actions that are classified into the
same group, and sometimes it may be important for the evaluator to
be aware of those differences. For example, we found that two types
of Explore actions – selecting a recommended search and browsing
network view – were often performed in different use cases.

7.1.3 Free parameters in the pattern extraction algorithm
Extracting patterns from interaction sequences is not a well-defined
task. In the case study, we made assumptions about minimum length
and frequency for patterns given the nature of the application and the
length of the user study sessions. We expect these assumptions to
change when extracting patterns given another applications. For ex-
ample, with an application that supports more types of actions and
more complex analysis goals, it might be desirable to set the mini-
mum pattern length longer. In addition, the minimum frequency for
patterns should scale with the average number of actions per session.

7.2 Limitations and Open Questions
7.2.1 Required effort from evaluators
While the proposed approach helps the evaluator to narrow the focus
and spend less time during the qualitative analysis, such an evalua-
tion still requires lots of effort from the evaluator. First, executing
an insight-based user study and coding insights is difficult and time-
consuming. Our approach relies on data from a standard insight-based
user study and does not make running the user study easier. Second,
since evaluators still need to review videos to confirm or disconfirms
patterns, the cost of performing the evaluation scales with the number
of participants, as with the standard insight-based evaluation. Finally,
it is always possible that certain interesting usage patterns or issues
may not manifest themselves in the quantitative stage. If it is impor-
tant for the evaluator to be comprehensive, a more complete video
review may still be necessary.

7.2.2 Temporal aspects of the interaction history
The current case study does not consider temporal information in the
interaction data, which could be useful in at least two ways. First,
we did not analyze how long participants spent completing individual
actions or patterns. It is possible that knowing whether certain actions
or patterns take a lot of time on average, or that some participants
were much faster at completing them than others, could help identify
usability problems in an application. Difference in time allocation on
actions may also suggest difference in analysis strategies. It is possible
that existing temporal data-mining techniques, such as motif discovery
in time series, can be applied to mitigate this issue. Second, we did
not align insights with interaction histories to identify sequences of
actions that lead up to insights. A major reason this is difficult is that
an analyst might perform key interactions that lead to insights they
report later on. In this case, it is difficult to identify the time points at
which necessary information for an insight was unearthed.

7.2.3 Flexible pattern extraction

The pattern extraction algorithm we presented performs exact match-
ing for top-level action sequences, and is not able to capture more ex-
pressive patterns or ones with variable-length action sequences. The
limitations of the current matching process are illustrated using two
examples from the case study. First, the Sampling pattern consists of
two action sequences that differ only by one trailing Elaborate action.
Here, the user’s intention is possibly better reflected by the order in
which actions are performed instead of the exact number of actions
performed. Second, as discussed in Section 6.2.1, Sampling patterns
often appear in chunks preceded by either an Explore or Retrieve ac-
tion, but this pattern is difficult to identify with a frequency analysis
when only top-level actions – and not other subpatterns – are parsed.
One future direction is to develop a more flexible pattern extraction
algorithm with pattern matching similar to regular expressions.

7.2.4 Controlling ordering effects

During the training portion of our study, the application components
and interactions were presented to all participants in the same order. In
general, it is possible that the presentation order of available interac-
tions may introduce an ordering effect on the participant’s preference
for certain interactions and analysis strategies. Because the number of
user interactions in the application we tested is large, it is impractical
to fully control for potential ordering effects through counterbalancing
the presentation order of actions; however, more investigation of how
training influences analysis strategies could inform evaluators about
potential ordering effects and methods to minimize those effects.

8 CONCLUSION

We presented findings from a case study where we performed an
insight-based user study of a visual analytics system, then afterwards
looked at quantified insight characteristics alongside patterns in par-
ticipants’ interaction logs. The contributions of this work are three-
fold. First, we describe an evaluation approach using interaction logs
in concert with insight-based evaluation, which lets us answer ques-
tions about the relationship between interactions and insights. Second,
we contribute a case study with an existing visual analytics application
that demonstrates the practical use of the evaluation approach and the
experimental design choices involved in using it. Third, we contribute
findings about the link between interactions and insights from our case
study. We found correlations between insight characteristics, like the
number of facts an analyst recovers, and the types of top-level actions
she performs, like explore actions.

Furthermore, using the logs we identified common analysis patterns
composed of these top-level actions – behaviors we call Orienting,
Locating, Sampling, and Elaborating – and measured correlations
between frequencies of these patterns and insight characteristics. Us-
ing these quantitative findings and screen-captured video, we identi-
fied two design recommendations that are applicable to similar visual
analytics applications.

• Design marks representing information so that analysts can dis-
tinguish visually between information they have already ex-
plored (e.g., during Sampling interactions) and new information.

• Provide a preview of query results during interactions that lead to
queries (e.g., searching for connected information using a con-
textual menu). Queries with too many or too few results often
lead to extra actions that undo the query and waste time.

This work is a step toward systematically identifying interactions and
application features that promote insights in visual analytics systems.
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