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Abstract

We present a technique for fitting a smooth, locally parameterized surface model (called the manifold

surface model) to unevenly scattered data describing an anatomical structure. This data is acquired from

medical imaging modalities such as CT scans or MRI. The manifold surface is useful for problems which

require analyzable or parametric surfaces fitted to data acquired from surfaces of arbitrary topology (e.g.,

entire bones). This surface modeling work is part of a larger project to model and analyze skeletal joints,

in particular the complex of small bones within the wrist and hand. To demonstrate the suitability of

this model we fit to several different bones in the hand, and to the same bone from multiple people.
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Introduction

Digital anatomical structures extracted from medical images are finding a wide range of scientific and clinical

applications ranging from finite element modeling to visualization to computer assisted surgery. An impor-

tant aspect of this is the extraction of surface models of anatomical structures. Our work was stimulated in

part by the need to study in vivo skeletal joint mechanics. We use these extracted surfaces to quantify joint

kinematics, ligament strains, and distances between joint surfaces in normal, pathological, and surgically

reconstructed joints [1] [2] [3]. Quantifying these effects requires a surface model which is smooth, locally

parameterized, and capable of modeling surfaces of arbitrary topology.

The manifold surface model [4] meets these requirements. First, manifolds are locally parameterized,

with the parameterization, and corresponding degrees of freedom, under the control of the user. Therefore,

it is a simple matter to provide more degrees of freedom in areas of higher curvature. Second, the fitting

process is hierarchically layered, i.e., there is a natural method for doing a coarser to finer fit; the finest

fit level is local and is only performed where there is sufficient data to do so. These two properties help

with interpolating sparse data since the coarser fit can be used in areas with few sample points and the

finer fit applied only where needed. Manifolds are capable of modeling surfaces of arbitrary topology, so we

can model entire bones, including those with topological holes and boundaries caused by incomplete data.

Finally, the surface is Ck for any desired k, which results in smooth distance-to-surface calculations.

Previous work

There are many techniques for scattered data interpolation; for a recent survey see [5]. We focus here on those

which can handle arbitrary topological surfaces of C1 (or higher) continuity: Spline surfaces [6] [7] [8] [9],

algebraic surfaces [10], subdivision surfaces [11] [12] [13], and radial basis functions or thin-plate splines [14].
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Of these, all but [8], [14], [13], and [9] require a polyhedron to fit to and produce a single patch per face. It is

not clear how well these techniques will work for unevenly scattered points since they provide no mechanism

for smoothing or filling holes in the data. They also produce a large number of patches.

The techniques of Eck [8], Hoppe [13] and Krishnamurthy [9] produce approximating surfaces, the first two

by simplifying the mesh to produce a coarse network, the last one by having the user draw patch boundaries.

These approaches are closest to ours in spirit; the major difference lies in the structure of the output surface.

We produce the same local parameterization, in a topological sense, for a single bone across multiple people.

Spline patch techniques must also fit both to the interior control points and maintain constraints across

boundaries between patches, a notoriously difficult problem with unevenly distributed data.

In [14] the techniques of radial basis functions are extended to handle arbitrary topology. This approach

provides smoothing and can handle unevenly scattered data, however the topology of the final surface is not

guaranteed to be the same as the input data.

Several approaches specific to modeling joint surfaces exist, such as Boyd’s thin-plate splines [15] and

Ateshian’s B-splines [16], further developed in [17]. These techniques focus on modeling just a single contact

region of the bone (topologically a plane). The dynamics of multiple joint surfaces on a single bone make

a model of the entire bone (topologically a sphere) more useful than a model of just the contact region for

one neighboring bone. Sherrer in [18] produces a collection of patches with enforced C1 continuity across

boundaries. They provide a complete model but only C1 continuity and also have some difficulties enforcing

boundary constraints.
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Input data and surface type

The data sets are outer cortical bone surfaces extracted from sequential slices of a CT image volume. The

segmentation procedures involved thresholding, image algebra, and user interaction to define each bone

contour [1]. This produces dense (≈.01mm) samples along widely spaced (1mm) cross sections.

The manifold surface is described fully in [4]. The topology and rough geometry are specified by a gener-

ator polyhedron, which specifies the topology and an initial approximate geometry for the higher resolution

manifold polyhedron, which in turn specifies the connectivity and an initial geometry for a set of overlapping,

glued-together spline patches (see Figure 1). The generator polyhedron is constructed by the user and can

be any general polyhedron. Each level provides more degrees of freedom than its predecessor.

We use a different embedding equation than the one described in the paper. Our embedding is simpler

and also pulls the division by the sum out of the individual patch equations. Each chart is embedded using

a single NUBS [19] spline patch Ec and the result blended together using the original blend functions [4].

E(p) =
∑

c

Bc(p)Ec(M(αc(p)))

where M is either the identity function (vertex and face charts) or the linear transform that takes the domain

of the edge chart to the unit square (see Appendix A of [4]). The patch domains for the face charts extend

beyond the chart’s domain. The control points are placed on the subdivision surfaces as originally described.

The fitting process

The manifold is fit to the data in three steps (see Figure 1). We assume that the user has already constructed

a generator polyhedron that has the same topology shape as the data and approximately the same geometry.

This takes about an hour and the resulting generator polyhedron can be used for all bones of the same type
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(e.g., all hamate bones have the same generator polyhedron). The fitting process brings the approximate

geometry into alignment with the data points; it does not change the topology of the manifold surface.

We first find the best fit for the generator polyhedron with default positions for the manifold polyhedron

vertices and spline patches. The second step adjusts the vertices of the manifold polyhedron while using

the default spline patch locations. Finally, the control points of the spline patches are adjusted if there are

sufficient data points that project to that patch’s region of influence. Because the surface is approximately

correct after fitting the manifold polyhedron, we do not need to fit patches in regions containing few or no

samples. Also, we do not have to apply additional constraints to make the boundaries of the patches behave

because the patches are overlapped, so boundaries of the patches do not affect the final geometry.

The fitting mechanism

In general, fitting can be expressed as the solution to the following minimization problem, where S is the

surface and the dr are the data points we fit to:

min
[( ∑

r

min
t

(dr − S(t))2
)

+ αcEc

]
(1)

A point on the surface is described by S(t) for some parameter value t. This equation minimizes the distance

between every data point and its closest point on the surface. Additional constraints (the Ec) can be added

to enforce “smooth” surfaces, i.e., ones which do not undulate unduly between the given points. The constant

αc expresses the importance of fitting the data versus producing a smooth surface. The curvature term Ec

has two purposes. First, it filters noisy data. Second, if the data is very non-uniformly sampled, it serves as

a guide for the behavior of the surface in very sparse areas.

Equation 1 requires a non-linear solver. However, if the surface is reasonably well aligned with the data

we can form a similar, linear expression by projecting the data points onto the surface and minimizing the
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resulting equations. By reasonably well aligned we mean that the closest point on the surface defines a

bijection between the surface and the data points with no folds.

The linear expression is as follows:

min
( ∑

r

(dr − S(tr))2
)

(2)

where S(tr) is the point on the surface closest to dr. A given point of S can be expressed as S(p) =
∑

i xiai(t)

where the xi are either the polyhedra vertices or the spline control points and the ai(t) are the blend

functions, which, for a given t, evaluate to a constant. After some manipulation, minimizing S reduces to a

set of linear equations with the xi as variables. Specifically, each data point dr produces an equation of the

form
∑

i xia
r
i (tr) = dr, which constrains the surface at tr to pass through the point dr for each data point.

The linear optimization problem can be written as a solution to the matrix equation Ax = d, where

A = {ar
i (tr)}, x = {xi} is the vector of variable and each row r of A corresponds to a linear constraint on x

imposed by the data point dr. We solve for x using a standard least-squares solver for a linear system [20].

Note that the linear approximation, Equation 2, differs from Equation 1 in that we minimize the distance

to a specific parameter point t on the surface, not to any point on the surface. We therefore may not find

the globally optimal solution.

It remains to show how to calculate the ai for a specific parameter point t. We begin at the patch level

and work up to the generator polyhedron level. The degrees of freedom (the xis) will be different at each

level, and hence so will the matrix A. At the patch level the xi are the control points of all of the patches.

An individual spline patch Pk is of the form Pk(p) =
∑

i bi(p)gk
i . The entire collection of the control points

is therefore {gk
i }. Our surface is constructed by “gluing” these individual patches together, i.e.,
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S(t) =
∑

k

βk(t)Pk(t) =
∑

k

βk(t)
∑

i

bi(t)gk
i (t) (3)

where the βk are the blend functions, one for each patch. The blend functions have the property that∑
k βk(t) = 1, with at most three functions non-zero.

Instead of solving for all of the degrees of freedom at once, producing a large but sparse matrix, we take

advantage of the overlapping structure and fit patches individually. One way to ensure that S(tr) = dr is to

ensure that, for every overlapping patch Pk, Pk(tr) = dr. The resulting error will be at worst the maximum

of the individual patch area, since the final surface is a linear combination of the given points. For each

patch we find those data points that project onto the domain of that patch and fit to just those points.

For the manifold polyhedron, our degrees of freedom are the vertices of the polyhedron. Each control

point gk
i in its default location is expressed as a linear combination of the vertices of the manifold polyhedron,

Vj , i.e., gk
i =

∑
j Bk

j Vj . Each point on the surface is therefore of the form:

S(p) =
∑

k

βk(p)Pk(p) =
∑

k

βk(p)
∑

i

bi(p)
∑

j

Bk
j Vj (4)

Similarly, we can express each vertex of the manifold polyhedron, in its default location, as the sum of

the vertices of the generator polyhedron.

Curvature constraints

An advantage of the least-squares formulation is that it does a good job of approximating noisy data. Also,

as demonstrated, the spline fitting problem can easily be approximated as a linear problem [21]. The least-

squares formulation does, however, behave badly when the weights on a variable are close to zero (visually,

this produces “spiking” in the surface). We address this problem by adding additional constraints (the Ec),
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which ensure that every variable has sufficient weight. When parameter αc from Equation 1 is set to one,

then the constraint has equal weight to moving a data point an equivalent distance from the surface.

Polyhedral constraints

When fitting the generator polyhedron and manifold polyhedron we add in additional constraints that require

vertices to lie at the centroid of their neighbors. If {νi} ⊂ {νk} are the n manifold polyhedron vertices forming

the star of ν (i.e., all the adjacent vertices) we add the constraint β(ν − 1
n

∑
i νi) = 0.

Additional patch constraints

When fitting the patches we add in additional constraints at regularly spaced intervals in the parameter

space, resulting in a more even support.

We take a uniformly distributed set of points in the domain (a 5 by 5 grid of points) and determine

where the embedded points should go based on nearby sample points. Each new constraint finds four data

points which surround the embedded point, if any exist, and interpolates between those four data points to

produce the desired location for the new constraint.

To find the four surrounding data points we first project all of the nearby data points onto the tangent

plane at the constraint point (see Figure 2). Second, we find the four closest points (measuring distance in

the plane) such that the four points are “around” the constraint point, i.e., the normalized dot products of

the projected points are bigger than 0.5. We then take the weighted average of those point’s locations.

Results

For Figure 3 we used one person’s scan in the neutral position and the hamate bone from three subjects.

We compare our models to meshes created using Nuages [22] software. The sample points we used are the

8



vertices of the Nuages’ meshes; we did not use the Nuages’ surface connectivity information. The models

ranged in size from 921 to 4754 points. The data points were spaced approximately 0.01mm′ apart along the

contours, with 1mm spacing between the contours. On average, the average distance from the data points

to the manifold surface is 0.053mm with a ±0.02 95% confidence interval. The average maximum distance

was 0.42.

The parameter αc produces similar results over a wide range of values (from 0.5 to 1.5) except for a few

bones with spurious data points on the inside of the bones. For these bones, the larger value of αc was

required.

Discussion

One drawback of the least-squares fitting technique is that uses the closest point to chose the parameter

point; if the initial surface and the data points are misaligned this can cause folding or pinching of the surface.

This problem is most obvious when the data set has two parallel surfaces close together. One solution is to

adjust the generator polyhedron, but this is not very satisfactory.

Conclusion

We have demonstrated a hierarchical technique for fitting a smooth surface to an entire bone. Manifold

surfaces have several desirable properties, such as smoothness and arbitrary topology, which make them

useful for in vivo, multiple joint analysis. The technique requires a minor amount of user interaction for each

new bone type, but the remainder of the process is completely automatic. The fitting process is robust in

the presence of noise and unevenly sampled data points.
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Figure 2: Finding the four data points to interpolate between for an additional patch constraint. Left: the
surface point, the tangent plane, and the nearby data points. Middle: the projected data points. Right: the
selected points, shown in the tangent plane.

Figure 3: The carpal bones from one person and three hamates from different people. Top: Meshes produced
from the data points using Nuages [22]. Bottom: Manifold surfaces. Note the striation in the Nuages meshes
where the slicing planes become parallel to the surface.
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