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Abstract—We show how mouse interaction log classification can help visualization toolsmiths understand how their tools are used

“in the wild” through an evaluation of MAGI - a cancer genomics visualization tool. Our primary contribution is an evaluation of twelve

visual analysis task classifiers, which compares predictions to task inferences made by pairs of genomics and visualization experts.

Our evaluation uses common classifiers that are accessible to most visualization evaluators: k-nearest neighbors, linear support vector

machines, and random forests. By comparing classifier predictions to visual analysis task inferences made by experts, we show that

simple automated task classification can have up to 73 percent accuracy and can separate meaningful logs from “junk” logs with up

to 91 percent accuracy. Our second contribution is an exploration of common MAGI interaction trends using classification predictions,

which expands current knowledge about ecological cancer genomics visualization tasks. Our third contribution is a discussion of how

automated task classification can inform iterative tool design. These contributions suggest that mouse interaction log analysis is a

viable method for (1) evaluating task requirements of client-side-focused tools, (2) allowing researchers to study experts on larger

scales than is typically possible with in-lab observation, and (3) highlighting potential tool evaluation bias.
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1 INTRODUCTION

IN this work we study whether interaction log classifica-
tion can serve as a new, effective visualization tool

design evaluation methodology, and focus on how it can
augment traditional qualitative approaches by providing
additional context for previously determined tasks. We
also explore how predictive task inferences may improve
the iterative design process of interactive visualization
tools for domain experts. To accomplish this, we ground
our exploration in an analysis of MAGI [1]—a cancer geno-
mics visualization tool.

1.1 Contributions

Our first contribution is a discussion that compares the
accuracies of twelve automated visual analysis task classifi-
cation models to hand-coded task inferences made by pairs
of genomics and visualization experts. Rather than focusing
on sophisticated classification models, our evaluation
focuses on classifiers that most visualization researchers
could implement themselves: k-nearest neighbors, linear
support vector machines (SVMs), and random forests. This
way, our findings are more applicable to visualization

researchers and practitioners at-large. We discuss the poten-
tial benefits that might come from evaluating more complex
models in Section 7. Our second contribution is an explora-
tion of common MAGI interaction trends using the predic-
tions from task classification, which expands our present
understanding of how visualization is used “in the wild” by
cancer genomics domain experts. As part of this investiga-
tion, we make our third contribution by exploring how
mouse interaction modeling can be used to inform iterative
tool design. We also provide design principle hypotheses
that can be used to guide future design studies.

These contributions extend current tool evaluation meth-
odologies, which typically focus on field studies and other
similar, typically qualitative, types of observation [2].
Although working side-by-side with domain experts in field
research yields high levels of detail about analysis work-
flows, as Carpendale notes, these types of studies are
typically smaller in scale and lack precision [3]. Our contri-
butions could provide an important addition to current
evaluation methodologies because interaction logs can be
passively collected as part of domain experts’ natural work-
flows and also contain precise, quantitative descriptions
of visual analysis. Because of this, interaction log analysis
can circumvent several common limitations present in more
focused and contextual-rich methodologies (e.g., ethnogra-
phies). For example, through interaction log analysis, it is
easier to study larger populations of domain experts while
retaining ecological validity and without potential interfer-
ence caused from direct observation. Likewise, analyzing
large collections of interaction logs may help thwart bias
caused from observing small in-lab populations.
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Another motivation of our present work was to under-
stand the degree to which anonymized interaction logs
could be used to understand analytic intent given the com-
plete omission of context. Our evaluations of visual analysis
task inference by humans and computers rely on interaction
logs that contain the size and location of each visualization
in MAGI and the sequence of mouse events caused by user
interaction (i.e., clicks, movements, and scrolls).

1.2 Outline

We begin with interaction log mining background and
related work. Then, we provide a short description of MAGI,
including a summary of the application domain. We also
explain what types of information we collected in the MAGI
interaction logs. Next, we discuss results from a preliminary
task inference study in which we worked with two MAGI
developers to identify eight common MAGI analysis tasks.
We then discuss the results from a task-labeling experiment
that provided training data for task classification evaluation.
Following our in-lab experiments, we then move on to our
classifier evaluation and explore the potential effect that
interaction logminingmight have on domain expert tool iter-
ative design. Last, we present open research questions and
consider the potential broader impact of our contributions.

2 BACKGROUND AND RELATED WORK

2.1 Understanding Users: Contribution Differences

While our present work is related to previous “clickstream”
interaction research, our contributions differ: we aim to
model less deterministic visual analysis behavior of experts
instead of modeling typical navigation behavior of the gen-
eral population through a sequence of URLs (e.g., to opti-
mize search ranking [4] or commerce [5]). These historically
studied clickstream tasks are more deterministic because a
user’s goal is to find the most relevant search result and will
end with a success (search result click) or a failure (search
termination or another query). In contrast, visual analysis
is typically driven by deriving “insight,” which is subjective
and variable across applications [6]. Because of these poten-
tial empirical differences, we test whether clickstream
features from the information retrieval community can
accurately model visualization interaction. Hence, another
contribution of this work is to assess whether features that
were advantageous for classifying these simpler, more
deterministic interactions in web search apply as well to
more open-ended visual analysis scenarios. However,
further evaluating how visual analysis interaction proce-
dures may differ from better-studied and modeled areas
of human-computer interaction remains an important area
for future research.

2.2 Understanding Analytic Intent via Interaction
Logs

Our present research complements and expands on auto-
mated analytical task inference techniques within visualiza-
tion and across the broader human-computer interaction
community. Although manual interaction analysis has
proven useful in smaller case studies such as studying
visual analysis in investigative journalism [7] and in under-
standing collaborative analysis [8], Guo et al. note that

hand-coded interaction analyses face myriad scalability
issues [9]. As such, many researchers have investigated the
automation of visual analysis interaction log evaluation.
These techniques often seek to identify design requirements
by leveraging interactions as a record of “analytical prove-
nance,” which can be loosely defined as a collection of
analytical steps undertaken during a visualization’s use.
Given the scope of provenance research, we recommend
Ragan et al.’s survey for a comprehensive overview [10].

Much of this research has focused on action log analysis,
which relies on basic software interaction sequences (e.g.,
filter ! sort ! select). For example, Zgraggen et al.
showed how extracting interaction patterns using regular-
expression-like queries from large action datasets helped
usability researchers at a large technology company identify
key issues in their products [11]. Other visual analysis task
reconstruction methods draw on techniques such as multi-
ple sequence alignment [12], [13], [14], [15], graphical
modeling [16], and human-in-the-loop qualitative explora-
tion [17]. Etemadpour et al.’s investigation into genomics
analysis workflows is more similar to our inquiry into
domain expert analysis, but also uses an action representa-
tion akin to other previous work [18]. Our present contribu-
tions differ from these efforts because we focus on lower-
level mouse event analysis (e.g., mouse dwell time) to infer
analytic intent, rather than focusing on higher-level interac-
tion representations (e.g., “undo” in a graph-like structure
representing workflows [10]).

One benefit to analyzing lower-level mouse events
opposed to higher-level representations is the close relation-
ship between mouse movement and gaze, which is a well-
studied physiological indicator of intent [19]. Huang et al.
as well as Rodden and Fu explore how the relation between
gaze and mouse movement can be used to improve web
search [20], [21], and Gomez et al. show that the relation
also holds for visualization [22]. We utilize this similarity
later in our classification evaluation by creating a new fea-
ture set inspired by these similarities (Section 6.1.3).

Mart�ın-Albo et al. build on the association between intent
and mouse interactions to show that intent can be inferred
from mouse movement alone without the aid of eyetracking
by testing the geometric and temporal similarity between
mouse traces [23]. Others like Edmonds et al. and Matejka
et al. developed tools to qualitatively analyze mouse traces
and intent through heatmaps of frequently interacted-
with interface regions [24], [25]. Blascheck et al. pursued
a hybridized in-lab approach and tested how event-level
interaction logs can be combined with talk-aloud transcripts
and eye-tracking to understand interaction [12]. Noting the
potential benefits of using higher-resolution interaction
logs, Atterer et al. performed a case study to show how
interaction strategies and intent can be reconstructed from
low-level event logs [26]. Our present work extends knowl-
edge of user analytic intent by analyzing how interaction
log classification can lead to insights about domain experts’
ecological visual analysis behavior.

2.3 Relation to Past Biology Visualization
Task Analyses

Our present contributions extend previous research that
also used biology visualization as a test bed for new
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evaluation methodology and task modeling. For example,
Saraiya et al. developed an evaluation methodology to mea-
sure visualization effectiveness based on how many analyti-
cal insights it may support [27] and then explored how
insights could be used to longitudinally understand visual
analysis tasks [28]. O’Brien et al. then extended insight-
based methodology to improve its precision while also
evaluating another biology-visualization-motivated appli-
cation [29]. Instead of just tallying the total number of
insights, they suggested that insights - and the tasks that
produced them - could be better understood by also mea-
suring a variety of other information such as hypothesis-
driven insights and insight complexity. Unlike these past
methodological contributions, which rely on hand-coding
data, our present line of inquiry investigates how auto-
mated modeling can empower initial human classification.
Not only does this continue O’Brien’s line of research
toward quantifying task analysis, but it also allows task
analysis to scale to much larger collections of data thanks to
automated task inference.

Others, like Streit et al., used biology visualization to
study visual analysis in areas where there are diverse types
and formats of data [30]. Whereas Streit et al. focused on
constructing a model for heterogeneous biological data
analysis, Murray et al. synthesized common analysis tasks
in biological network analysis [31]. Although both sought to
explain cancer genomics visual analysis, the aims of our

present work are distinct. Differences between our present
contributions and these past two models might be best
understood through Brehmer and Munzner’s task typol-
ogy [32]: Streit et al. primarily focused on “what” each task
was operating on, Murray et al. primarily focused on “why”
each task was being performed, and our present research
primarily focuses on “how” each task was being performed.

3 MAGI AND LOG COLLECTION

Our investigation into visual analysis task classification is
anchored by studying MAGI mouse interaction logs. MAGI
is an online visualization tool that allows cancer genomics
researchers to explore a variety of genetic mutation data
across many cancers in five visualizations [1]. A screenshot
of a query in MAGI is shown in Fig. 1. Given cancer geno-
mics specialization variety, MAGI was designed to support
a diversity of expertise through its multiple views (e.g.,
basic science versus pharmaceutical research; wet lab biolo-
gist versus bioinformatician).

The top-most visualization in MAGI is an aberration
matrix, which uses color to show mutations (cells) in user-
queried genes (rows) across different sequencing samples
(columns; i.e., patients). Below the aberration matrix, the
linked heatmap can show related continuous data (e.g.,
gene expression) for the same combinations of genes and
samples. The third visualization row in MAGI shows a net-
work view and a transcript annotation chart. The network
view shows how the proteins that each queried gene enco-
des can interact with one another, whereas the transcript
annotation chart shows the physical location where muta-
tions occur. The last visualization shows the physical loca-
tion of copy number aberrations which affect large swaths
of the genome.

While researchers might use only one visualization
for analysis, visualizations may also be used together.
For example, a researcher might use the aberration matrix
to identify stair casing patterns of “mutual exclusivity,”
which are an indicator of biological significance. Or, they
might continue that line of inquiry after detecting mutual
exclusivity for a subset of mutations and examine where
they physically occur in the transcript annotation chart.

Like with many other visual analysis tools for domain
experts, one difficulty in evaluating MAGI is that cancer
genomics researchers are geographically distant and are
often hard to schedule for observation. This poses a hurdle
for user-centered design because these limitations often
result in studies that consider only small numbers of tool
users. Although small case studies can provide useful infor-
mation about tool-use, they can be susceptible to sample bias
without careful recruitment consideration. This is particu-
larly true in cancer genomics, which has many distinct foci
that use the same data (e.g., applied pharmaceutical versus
basic science research). As such, it is possible that relying on
small population observations could cause iterative design
decisions to overfit a tool to the requirements of a small
number of users at the expense of a large, unstudied sub-
population. If successful, interaction log classification would
provide a way for understanding task requirements of
entire populations in ecological settings, and would provide
a way to help counter sample bias using the smaller scale,
in-labmethodologies that tool evaluators already utilize.

Fig. 1. A screenshot of MAGI showing the aberration matrix (top), heat-
map (second top), network view (middle-left), transcript chart (middle-
right), copy-number aberration browser (bottom), and control panel (right).
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3.1 Mouse Interaction Log Schema

Our interaction classification evaluation focuses on analyz-
ing mouse interaction logs collected on MAGI’s gene set
query results page. We provide an example query about
the Notch pathway, which is implicated in a variety of can-
cers [33], in Fig. 1. Each collected log contains information
about all mouse events, each visualization’s size and loca-
tion, the window size, and anonymized queries. In addi-
tion to the five visualizations, we also collected the size
and location of MAGI’s control panel and tracked when
tooltips were activated in each of MAGI’s visualizations.
Given that users can toggle visualization visibility, we also
tracked how size and location of the visualizations might
have differed over time. The full collection of log attributes
is listed in Table 1.

3.2 Log Culling

We applied a two-step culling process to remove interaction
logs that were unlikely to contain important information
about visual analysis tasks. The first step in log culling
involved the removal of logs without mouse interactions,
which were created by web crawlers. This removal resulted
in 1,616 logs with mouse event data. Afterwards, we then
removed 63 logs that were deemed to have too few events
to describe visual analysis tasks. For example, a user might
realize that they mistyped their query and immediately nav-
igate backward. While this scenario might provide impor-
tant usability information about tool-use, it does not express
information about the analytic intent of what the user hoped
to accomplish. We defined “too few events” as any log with
a mouse event count under the central 95 percent interval’s
lower bound. To compute the central 95 percent interval,
we used an estimated lognormal distribution after visually
analyzing the data’s distribution with a quantile-quantile
plot (m ¼ �71:99; s ¼ 773:38, threshold=38.5 events).

4 TASK IDENTIFICATION WITH MAGI CREATORS

Our first analysis of the MAGI interaction log data involved
a free-text labeling task with two of the developers of
MAGI, where our overall approach resembles thematic
analysis. The purpose of this was twofold: (1) to pilot the
feasibility of labeling analysis tasks from interactions alone,
and (2) to derive a shortlist of categories, which could be
used as classifier labels and as multiple choice options in
our planned follow-up user study.

Here, we use “task” to refer to Gotz and Zhou’s interac-
tion characterization for visual analysis tools [34], which
defines tasks and sub-tasks as “high-level, logical structures
of a user’s analytic process, such as the user’s cognitive

goals and sub-goals.” For convenience, and due to their sim-
ilarity, we refer to both as “task” for the remainder of the
manuscript as their distinction is not critical for our present
contributions.

4.1 Methods

4.1.1 Participants

Two participants remotely completed the free text log label-
ing task through screen sharing software. Each participant
was involved with the development of MAGI and was
familiar with MAGI’s interface and the full range of ways
MAGI could be interacted with.

4.1.2 Design and Displays

Instead of predefining a set number of interaction logs for
participants to label, the experimental environment created
trials on-demand by randomly sampling as many interac-
tion logs as a participant could label within 45 minutes.

In each trial, an interaction log summary visualization
was rendered alongside playback controls (Fig. 2). In the
visualization, each of MAGI’s charts were shown as a dif-
ferently colored rectangle. A heatmap was overlaid on
top of the visualization rectangles, which showed regions
that users commonly interacted with. Participants could
also watch the mouse move (orange crosshair) and tool-
tips appear (red rectangles) throughout the log’s duration
by either clicking a 10�-speed play button, or by dragging
one of two sliders that controlled the playback time.
The top slider was used to make large changes, and the
bottom slider was used to fine-tune time navigation,
which was useful for longer logs. Below the sliders, we
included a small timeline showing click, movement, and
scroll events. Additionally, the number of genes and data-
sets in each MAGI query was shown above the interaction
log visualization.

TABLE 1
Data Contained in Each MAGI Mouse Trace Interaction Log

Type of information Attributes

Mouse events {click, move, scroll}, time, x, y
Tooltip events x, y, width, height
MAGI components (�6) x, y, width, height
Window state width, height
Query number of genes and datasets

MAGI components refer to the five visualizations and control panel.

Fig. 2. Example free-text label trial where participants were asked to pro-
vide a 1 to 2 sentence description of what type of task was performed in
the visualized interaction log. Interaction logs were summarized in a
visualization in each trial, which showed the location for each of MAGI’s
five visualizations in differently colored rectangles, and mouse activity
with a black heatmap overlay. Users could watch the mouse and tooltips
appear/disappear by using the playback button and two sliders to
change time. The timeline below the sliders showed mouse movement
(orange), click (red), and scroll (purple) events. Users could play the log
by clicking on a 10� playback button or manually control playback with
two sliders (top: Whole-log, bottom: Small adjustments to top).
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4.1.3 Procedure

Each participant was instructed to work with the experi-
menter to infer the predominant analytical task for as many
interaction logs as possible within 45 minutes. For each log,
the participant would brainstorm with the experimenter
about what type of task the trial’s interaction log depicted.
Afterwards, the experimenter would write a 1-2 sentence
description of the task and verify with the participant that
the description summarized the brainstormed task. If there
was no recognizable task, or if the task wasn’t considered
useful, the log would be labeled as “junk.” After entering
the log description, participants continued to the next trial.

4.2 Results and Discussion

We collected 50 labels in total (25/participant). Because we
were interested in identifying a shortlist of commonly
performed analytical tasks we then performed two rounds
of manually grouping similar labels. To accomplish this,
we printed out cards for each label response that contained
the written description and accompanying interaction log
visualization, along with a unique ID. Then, referencing
the text summary for each card, we grouped similar cards
in a manner similar to hierarchal clustering. After, we
performed a second round of grouping to consolidate
thematically similar groups. The resultant categories were
as follows:

Aberration Matrix and Transcript Chart Cross-Referencing.
Frequent back-and-forth analysis between the transcript
chart and aberration matrix. For conciseness, we will refer
to this task as “cross-referencing” unless otherwise noted.

All-Encompassing or Undirected Browsing. Interactions
with MAGI that appear undirected, that are typically
diffuse, and that use many or all of MAGI’s visualizations.

Co-Occurrence or Exclusivity Analysis. Interactions that
concern the aberration matrix, typically characterized by
mousing over columns (co-occurrence) or exclusivity (stair-
cases from column-exclusivity; Fig. 1).

Copy-Number-Focused Analysis. Analysis characterized by
heavy use of the copy-number aberration browser.

Junk. Logs that have no discernible analysis behavior
(e.g., immediate page refresh after < 1 second or short,
temporally distant bursts of movement).

Targeted Gene, Mutation, or Annotation Lookup. Targeted
search behavior when a user has a specific piece of informa-
tion they want to find (e.g., a particular patient-column in
the aberration matrix).

Transcript Mutation Distribution Analysis. If users interact
with the transcript chart, they typically focus on certain
distributional characteristics such as towers of mutations at
a single point in the transcript (“hotspots”) or at mutations
that fall along coding regions.

Other. Behavior that falls outside of what was labeled in
this experiment (e.g., use of the network view).

This procedure was guided by previous analyses that
were part of MAGI’s formative iterative design, which iden-
tified hypothesis formation and testing tasks targeted on
biological significance as two of MAGI’s largest use cases.

One question that arises from these results is how con-
sistently these tasks can be inferred using only low-level
interaction logging data, which is critical for reliable classi-
fication. We test this in the next study.

5 USER STUDY: LOG TASK LABELING

The primary goal of this experiment was to collect labels to
train, validate, and test interaction log classifiers. We also
wanted to test whether humans could reliably infer analyti-
cal tasks from mouse interaction logs alone. Our prediction
was that interaction-task inference would be reliable
between interaction log observers. To these ends, we asked
five pairs of visualization and genomics experts (1 of each/
pair) to label tasks in a series of MAGI logs using the eight
labels from our prior evaluation (Section 4).

5.1 Methods

5.1.1 Participants

10 participants (5 pairs) completed the study. Five partici-
pants were recruited through university mailing lists for
graduate students and had formal knowledge of genomics.
The remaining five participants were recruited from human-
computer interaction research groups in our institution.
Each participant had at least one year of academic or profes-
sional experience in either genomics or visualization. The
median number of years each participant had spent in their
degree programwas 2 years (range: 0-5). Fig. 4 shows partici-
pant expertise. Each was compensated $10/hour. The exper-
imental protocol was approved by our university’s IRB.

5.1.2 Design and Displays

The user study was held in pairs such that each session had
one genomics expert and one visualization expert. The study
was designed for pairs of participants because we believed
pair coding would help control labeling variance and
because the experiment required expert knowledge of visu-
alization and genomics, which presented single-person
recruitment limitations. Another motivation was that fatigue
was too prohibitive in a pilot with single participants.

Each pair of participants saw 96 random-order trials,
which consisted of 2 replications of a 48-trial design. One
replication contained a unique set of interaction logs while
the second replication contained logs that were identical
between subjects to analyze inter-rater reliability (IRR). We
settled on a 48-trial design after performing a power analy-
sis for Fleiss’ kappa [35] (k0 ¼ 0:6; k1 ¼ 0:4;a ¼ 0:05;b ¼ 0:2
with 5 raters), which suggested including at least 41 trials.

The 48-trial design consisted of 24 randomly sampled
logs and another 24 logs that were sampled based on three
feature sets we had planned to use in our eventual classifi-
cation evaluation (Section 6.1). To sample the 24 feature-
based trials, we first had a MAGI expert create example
ground truths for each of the eight previously defined task
labels, where we knew the full context of each query (e.g.,
“the expert was interested in exploring a particular biologi-
cal pathway”). Then, using each of the three feature sets
and eight ground truths, we sampled 24 nearby neighbors.

To create the six unique sets of logs (5 pairs + 1 IRR), we
generated all feature-set-based trials at the same time by
picking the 6-closest logs for each of the 24 {feature set} �
{label} combinations. Next, we semi-randomly shuffled the
samples so that each pair of participants would be given an
unordered, complete collection of the 24 combinations.
For example, the first participant would be given one of
each 24 combinations, but these 24 logs would not always
be the first-closest-neighbors. This procedure was designed
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to control for potential bias stemming from nearest-neigh-
bor ordering while still including all 24 conditions.

The remaining 144 random-sample logs were then sam-
pled without replacement from the set of remaining logs.

5.1.3 Procedure

Following informed consent, the study took place over three
stages: instructions, practice, and test (Fig. 3). All partici-
pants took between 1.5 and 2 hours to complete the study.

Instructions: In the MAGI overview, each pair read
through a description of each MAGI chart and watched a
short video of MAGI being used by an expert. In the experi-
mental task overview, participants were provided text
descriptions for each of the MAGI task labels and were
shown example stimuli.

Practice: Participants were presented a grid of 8 anony-
mized ground-truth logs along with task label descriptions,
and were asked to discuss with their partner which label
they believed should be assigned to each log. After guess-
ing, participants could reveal the answer by clicking on a
“show” button. Following the quiz, participants then com-
pleted five practice trials per the test procedure below.

Test: Each trial had a single log, and participants were
asked to mark which task they thought was most character-
istic. Marking “other” required an accompanying short text
description. Each trial included task descriptions and exam-
ples to the right of the response area and in printed hand-
outs. To encourage faster responses, each trial displayed a
timer and a beep would play after 45 seconds; however, par-
ticipants could take as long as they needed.

5.2 Results and Discussion

5.2.1 Inter-Rater Reliability and Accuracy: Similar

Strategies

Our planned analysis of the 48 inter-rater reliability trials for
each participant-pair using Fleiss’ k was 0.405. According to

Landis and Koch, this maps onto fair-to-good reliability [36].
Fair-to-good reliability suggests that there was a moderate
amount of subjectivity between pair responses, but that the
individual differences across trials was low enough to be
confident in the response reliability. To supplement Fleiss’ k
we also measured the modal accuracy of each participant,
which defines a correct response as any response that
matches the most frequently assigned label(s) for a given
interaction log. Participant accuracies, in order of study com-
pletion date, were: 69, 73, 73, 65, and 77 percent. Both Fleiss’
k and accuracies suggest that all participants had similar,
consistent labeling strategies.

5.2.2 Task Label Diversity and Frequency Shows

Consistency

To understand participant-pair task labeling strategy simi-
larity we analyzed labeling frequencies and labeling consis-
tency across participant-pairs (Fig. 5).

To measure similarity, we calculated Shannon diversity
indexes for each pair-participant using label frequencies.
The diversity indexes were 1.90, 1.97, 1.86, 1.76, and 1.91.
Values closer to ln 8 � 2 refer to more uniform label fre-
quency distributions and values closer to 0 refer to skewed
distributions. Diversity indexes are calculated through

Fig. 3. The procedure for our pair-participant task labeling study.

Fig. 4. User study participant demographics. Non-circle degree glyphs
relate to genomics expertise. Shaded cells mark currently-pursued
degrees. “G” columns refer to genomics experts, whereas “V” refers to
human-computer interaction (HCI) and/or visualization experts. “R”
expertise entries refer to hands-on research experience, whereas “C”
refers to coursework exposure.

Fig. 5. Task label frequencies (top) and ordered labeling consistency
between participants for each interaction log (bottom; rows: Participants,
columns: Interaction logs).

GRAMAZIO ET AL.: AN ANALYSIS OF AUTOMATED VISUAL ANALYSIS CLASSIFICATION: INTERACTIVE VISUALIZATION TASK INFERENCE... 2275



Shannon entropy: H 0 ¼ �PL
i¼1 pi ln pi. L is the number of

labels and pi is the ith label frequency’s proportion of the 96
total labels for a given participant-pair. Each diversity index
fell within the top 15 percent of the potential range of diver-
sity (½0; lnð8Þ�), which suggests that participants applied sim-
ilarly uniform task labeling strategies. These results also
support our initial task selection methodology because our
synthesized task labels were used with little favoritism.

We also made several qualitative observations based on
labeling frequency to drill down beyond reliability sum-
mary statistics. First, participant-pair 4’s poor accuracy may
stem from slightly-deviant labeling proportions: they never
provided a cross-referencing task label IRR response, had
only one targeted analysis response, and over half of their
responses were either “junk” or undirected labels. This
skew is the likely source for their comparatively lower accu-
racy and Shannon diversity index. Another distinction is
that participant-pair 3 never provided an “other” response,
though this is not necessarily abnormal given the relatively
low “other” response rates of the other pairs. Aside from
these two deviations, participants’ strategies were largely
consistent; 20 of the 48 IRR trials had 4 or 5 identical labels
out of the 5 labels given by participant-pairs, and 17 IRR
trials had 3 identical labels across the participant-pair
responses. There were no trials with five different labels.

We also found no significant difference between modally
correct labels between random and feature-based sampling
methods through a two-sided Fisher’s exact test (p ¼ 0:57;
feature-set: 73%; 88=120; random: 69%; 83=120).

5.2.3 “Other” Label Descriptions

There were 23 “other” labels across the 480 total responses
(< 5%). The most frequent reason for selecting “other” was
to report different types of cross-referencing task behavior
(9), given that the provided cross-referencing task label only
pertained to interactions between the aberration matrix and
transcript chart. Other responses pertained to other MAGI
features not covered by the eight labels (e.g., the network
visualization and control panel) (11), or to simple page
exploration without analytic purpose (2). Only once did
participants respond that they were unable to determine
what type of task a user was pursuing.

While it is possible that there are other tasks than the
eight we identified, they are likely to be rare outliers. Simi-
larly, the comparative scarcity of “other” responses suggests
that our eight task categories were effective at describing
typical MAGI interactions.

5.2.4 “Junk” Assignment Strategies

One concern we had while designing the experiment was
whether participants would put potentially meaningful logs
in “junk.” Our intent was for junk to be a catch-all for logs
that slipped past our prefiltering, which eliminated empty or
near-empty logs. For example, there was one log that we
would have considered to be undirected exploration due to
its diffuse interactions; however, the pair of participants
could not identify a behavior andmarked it as junk (opposed
to marking it as “other” as one other participant did).
Although we saw some instances of undesirable junk label-
ing while proctoring the study, we found that participants
were overall consistent with our junk-labeling expectations.

5.2.5 Takeaway: Reliable, Consistent Human Task

Inference

Overall, these quantitative andqualitative trends both point to
similar conceptual understanding of how each task mapped
onto mouse interactions and suggest that participant-pairs
used similar labeling strategies. This is an important discovery
because it shows that tool evaluators can reconstructmeaning-
ful information about tool use from interaction logs alone. The
reliability and presumed reproducibility of these findings
establishes a foundation for our next evaluation. Using these
results from our human-centered evaluation we can establish
a baseline from which automated machine classification can
be compared against.

6 LOG-TASK CLASSIFICATION

We evaluated 12 classifiers to test whether automated classi-
fication could predict visual analysis tasks with comparable
accuracy to domain experts from the previous experiment.
Each classifier was built from a selection of three models
(k-nearest neighbors, linear support vector machines, ran-
dom forests) and four feature sets, as described below.
Our evaluation predictions focused on identifying a best-
performing classifier to use in a follow-up exploratory anal-
ysis of the entire MAGI interaction log corpus. To test each
model’s effectiveness, we used the 48 IRR trials from our
previous in-lab experiment and used the non-IRR trials for
training and cross-validation.

Our model selection was guided by selecting models that
would be accessible to typical visualization researchers and
practitioners. We determined accessibility by how widely
classification models were used in-practice and how readily
they could be used “out of the box” with well-documented
machine learning libraries (e.g., Python’s scikit-learn).
Another selection criterion was to select models that would
perform well given few training data, which can be a
common-place limitation in domain-expert-focused research.
It is important to note that there are many potentially promis-
ing, but more complex, alternative classification methods that
could also be used, which might result in more accurate pre-
dictions (Section 7). We opted to pursue simpler models
for two reasons. First, we wanted to pursue a systematic
approach to studying classifiers given our present knowledge
of interaction mining applications in visualization, and thou-
ght there would be too great a number of unbound decisions
to use more complex classification pipelines. Second, we
wanted to focus our evaluation on models that would not be
too elaborate formuch of our target audience to easily use.

6.1 Feature Sets

In our present classification evaluation, we consider three
feature sets: dwell, region-of-interest (ROI) transition, and a
novel “mouse tracking” approach. A summary of each fea-
ture set is listed in Table 2. “Region of interest” corresponds
to MAGI’s five visualizations and control panel (Fig. 1).

6.1.1 Dwell

The features in dwell are: total session time; mean and stan-
dard deviation of dwell time; and the number of datasets
and genes in a query. Each feature is taken from a subset of
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Agichtein et al.’s features for modeling web search rank-
ing [4]. We include only a subset due to differences in appli-
cation areas and in interaction log schemas (multiple-page
versus single-page sessions).

One difficulty raised by the dwell feature set was how to
best quantize mouse traces into active and dwell periods.
To accomplish this, we chose a dwell threshold (100 ms)
using the interquartile mean of all contiguous-event time
differences across all interaction logs. We operationalized
the threshold using the interquartile mean opposed to other
methods (e.g., median split) because the distribution of time
differences had a long right tail that skewed whole-range
averages. A common issue causing the skewed distribution
were sessions where a user would leave MAGI open for
days, whereas most differences were fractions of a second.

6.1.2 ROI Transition

The ROI transition feature set is comprised of the adjacency
matrix describing transition frequencies between ROIs and
the total number of transitions to each ROI. The two groups
of features are adapted from Brown et al.’s binary classifiers
for visual search task completion time and personality
factors such as locus of control [37]. Although Brown et al.
tested several predictive models, we use only their state-
based feature set, which had the highest predictive accuracy
for task slow versus fast completion time (83 percent).

6.1.3 Mouse Tracking

The mouse tracking feature set includes five types of times
for each ROI and two types of entropy that measure how
users transitioned between ROIs. The name “mouse
tracking” alludes to its adaptation of eye tracking features.

The first three types of time included in mouse tracking
are the total cumulative time spent in each ROI, the cumula-
tive active time spent in each ROI, and the cumulative dwell
time spent in each ROI. The last two times are the mean
active and dwell times for each ROI. These measures are
inspired from region-of-interest analysis in scan path clus-
tering analyses [39], [40], and were calculated with the same
methods as the dwell feature set.

The other two mouse tracking features describe different
kinds of entropy to summarize how users interacted with
MAGI at a more global scale. Within the context of MAGI,
entropy can be thought of as how deterministic a user’s
interactions are between ROIs (i.e., targeted versus diffuse).

To calculate entropy, we consider MAGI ROIs (<), the tran-
sition frequency probabilities between each ROI (M), and
the stationary distribution of each ROI (p). The stationary
distribution (i.e., the limiting probability distribution) repre-
sents the probability that the mouse will be over a given ROI
at any point in time [41, p. 199]. Both entropies are based on
Krejtz et al. scanpath classification methods [38].

The first measurement of entropy uses Shannon entropy
to calculate whether the distribution of ROI transitions is
equal, where entropy values closer to 1 represent equal dis-
tributions and values closer to 0 represent focal distribu-
tions. Our use of log10 constrains entropy to a unit scale

HShannon ¼ �
X

i2<
pi logpi: (1)

The second measurement of entropy is similar, but also
considers the transition frequency probabilities to under-
stand whether interaction was more random (closer to 1) or
more deterministic (closer to 0)

HTransition ¼ �
X

i2<
pi

X

j2<
Mij logMij: (2)

6.1.4 All: Dwell + ROI Transition + Mouse Tracking

We also tested a composite “all” feature set, which com-
bined the features from all three aforementioned sets.

6.2 Classification Evaluation Methods

Our final experimental design consisted of twelve classifica-
tion models (3 classifiers � 4 feature sets), all of which were
implemented in Python’s scikit-learn. To select param-
eters for each model, we performed an exhaustive search for
all parameter combinations using three-fold cross validation.
Parameter selections for each model are listed in Table 3.
Then, to examine predictive variance, we evaluated each
model fifty times using the same parameters across runs.

6.3 Classification Evaluation Predictions

Before conducting the comparative classifier evaluation, we
made the following predictions:

P1 Random forest models would be more accurate
compared to k-nearest neighbor and linear SVM
accuracies.

TABLE 2
An Overview of Three Feature Sets Used in Our Classification

(Not Shown: “All,” the Combination of These Sets)

ROI Transition [37] Dwell [4] Mouse Tracking [38]

transition count total time stationaryH
transitioned-to count m dwell time transition H

s dwell time total time 8 ROI
# datasets active time 8 ROI
# genes dwell time 8 ROI

m active time 8 ROI
m dwell time 8 ROI

ROI transition count is short-hand for the complete adjacency matrix of transi-
tion features between each ROI. Transitioned-to count sums one dimension of
the complete matrix. m: mean, s: deviation,H: entropy.

TABLE 3
Parameter Selection for Each Tested Classifier

Classifier Feature Set Parameters

k-nearest All k ¼ 9, w=distance
k-nearest Dwell k ¼ 10, w=uniform
k-nearest ROI Transition k ¼ 5, w=distance
k-nearest Mouse Tracking k ¼ 7, w=uniform
Linear SVM All c ¼ 69:519
Linear SVM Dwell c ¼< 0:001
Linear SVM ROI Transition c ¼ 0:001
Linear SVM Mouse Tracking c ¼ 0:004
Random Forest All estimators=75
Random Forest Dwell estimators=40
Random Forest ROI Transition estimators=40
Random Forest Mouse Tracking estimators=40

w: weight.
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P2 Mouse tracking features would be more accurate
compared to dwell and ROI transitions for predict-
ing task labels.

We predicted that random forests would be the most
accurate because it was unclear whether our feature sets
were linearly separable. Further, random forests provide
a way to down-weight less effective features based on
how their decision trees are trained, whereas k-nearest
neighbors treats all features equally because it uses
euclidean distance. We predicted that mouse tracking
would be the most accurate feature because it considered
both time and transition, but at multiple levels of detail.
In contrast, dwell considers only entire-session times and
ignores regions of interest. Similarly, ROI transition
focuses only on individual transitions, ignores more
global descriptions of behavior, and does not consider
interaction times.

6.4 Classification Evaluation Results and
Discussion

6.4.1 Analysis of Classifier Performance

Because our test data has five “correct” labels for each inter-
action log (1 label/participant) we tested P1 and P2 with
two types of accuracies: match-any and modal accuracy.

Match-any accuracy is calculated based on whether a clas-
sifier prediction matches any of the five labels provided by
participants and is a lower-bound measure of classifier
performance.

Modal accuracy is the same accuracy that was used in our
previous user study: predictions are correct only if they
match the most frequently assigned label(s) for each interac-
tion log.

We used two accuracies—one loose and one strict—due to
the qualitative, under-defined nature of what a “reasonably
correct” prediction could be. It is important to note that the
difference between the two accuracies is also meaningful:
if match-any accuracy is 75 percent and modal accuracy is
50 percent, then 2/3 of the match-any-correct labels are also
modally-correct responses and 1/3 are modally incorrect
responses. For this reason, we planned our analyses to first
examine match-any accuracy and use modal-accuracy as a
mechanism to breakmatch-any accuracy ties.

The twelve models’ match-any accuracies ranged from
38 percent (linear SVM, dwell) to 73 percent (random forest,
mouse tracking) and the modal accuracies ranged from
18 percent (k-nearest neighbors, dwell) to 56 percent
(random forest, mouse tracking). The full-range of results
are shown in Fig. 6.

Previous visual analysis interaction classification has
achieved similar accuracies. For example, Brown et al.’s
task completion time predictive models [37] had between 62
and 83 percent accuracy and their personality-attribute
models had between 61 to 67 percent accuracy when testing
for traits like locus of control and neuroticism. In compari-
son, our models were similarly accurate, but modeled a
more complex and nuanced characterization of interaction
(e.g., binary versus octenary models).

Before testing our predictions, we first analyzed the vari-
ance of model type and feature set with respect to match-
any accuracy, and found a significant main effect for each
(model: F ð2; 588Þ ¼ 483:74; p < 0:001; feature: F ð3; 588Þ ¼
164:39; p < 0:001) as well as a significant interaction
between the two (F ð6; 588Þ ¼ 95:53; p < 0:001).

The significant interaction between model type and fea-
ture set likely refers to the dissimilarities in accuracy for
k-nearest neighbors and linear SVM models compared to
random forest models. Match-any accuracy across model
types was largely fixed for ROI transition features and var-
ied for the other three such that ROI transition features
were most-accurate for k-nearest neighbors and linear SVM
models and were least-accurate for random forests. This
suggests that dwell and mouse tracking are not linearly sep-
arable and, for similar reasons, are not well-suited for sim-
ple euclidean-distance-based classification models. The lack
of separability is supported by close-to-zero SVM margin
parameter selections, which suggests that across all feature
sets the data was too noisy to define a hyperplane that
cleanly separated data. It would be interesting to test
whether certain subsets of data are more easily separated to
achieve better performance; however, such analysis falls
outside the present comparative model analysis goals.

To better understand the performance differences between
model types and feature sets we systematically tested our
planned predictions for match-any accuracy using two-sam-
ple Welch’s t-tests. We first tested match-any accuracy by
model type (P1) and found that random forests were
significantly better than both k-nearest neighbor (tð291:26Þ ¼
15:03; p < 0:001) and linear SVM models (tð242:83Þ ¼
17:99; p < 0:001), and also that k-nearest neighbor models

Fig. 6. Means and standard deviations of classifier accuracies after run-
ning each model 50 times. Match-any accuracy is calculated based on
whether predictions matched any label assigned to an interaction log by
participants. Modal accuracy is calculated based on whether predictions
match the most frequently assigned label(s) for an interaction log. Higher
accuracies with smaller accuracy intervals are better. k-Nearest Neigh-
bors has no standard deviation because successive runs will always
select the same k shortest euclidean-distance points. Below the three
models we also include modal accuracies for each of the five participant-
pairs for easier comparison (stacked glyphs represent multiple partici-
pants with the same accuracy).
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were better than linear SVM models (tð348:73Þ ¼
6:37; p < 0:001). Thus, random forests were best, followed by
k-nearest neighbors and then by linear SVMmodels.

After finding that random forests were the most match-
any accurate classifiers, we then tested whether mouse
tracking was the most accurate feature set (P2) using only
random forest predictions. Our second prediction partially
held: mouse tracking was significantly more accurate
than dwell (tð93:01Þ ¼ 2:17; p ¼ 0:03) and ROI transition
(tð97:99Þ ¼ 13:09; p < 0:001), but was not significantly
different compared to all (tð97:83Þ ¼ 1:68; p ¼ 0:1). The non-
significant difference between all and mouse tracking may
suggest that “all” accuracy primarily stems from mouse
tracking and has nearly no benefit from dwell and ROI tran-
sition features. Another important result was that the ROI
transition feature set performed significantly worse than the
three other feature sets (all: tð97:91Þ ¼ 11:67; p < 0:001;
dwell: tð93:43Þ ¼ 12:35; p ¼ 0; ROI transition: tð97:99Þ ¼
13:09; p < 0:001).

While random forest mouse tracking classifiers were sig-
nificantly more match-any accurate compared to the other
random forest classifiers, we also compared modal accura-
cies due to the small in-practice accuracy differences
between all, dwell, and mouse tracking features (Fig. 6). As
before, mouse tracking was significantly more modally
accurate than dwell (tð86:93Þ ¼ 25:97; p < 0:001) and ROI
transition (tð96:99Þ ¼ 26:29; p < 0:001), and was also signifi-
cantly more modally accurate than “all” (tð96:88Þ ¼
7:45; p < 0:001). Although “all” includes mouse tracking
features, mouse tracking may have performed better
because the ROI transition and dwell features could have
been maladaptive for predicting modal task labels.

Thus, these analyses indicate that random forest mouse
tracking classification models were best.

6.4.2 Binary Classification: Detecting Visual Analysis

One remaining question after comparing classification
accuracies was whether certain task labels were more diffi-
cult to predict than others. The previous analysis provided
overall model accuracies compared to expert-coded
“groundtruth,” but did not elaborate on why model accu-
racies differ. Unfortunately, answering “why” is challeng-
ing with our present results because of the number of
labels. Therefore, we framed our analysis of why accura-
cies might differ based on how easy it was for the classi-
fiers to detect the presence versus absence of visual
analysis tasks. Rather than consider eight labels, classifiers
that use this simplified task/no-task representation need
only consider two. We tested task/no-task classification
accuracy by retaining “junk”-label predictions as “no-task”
labels and by transforming the rest to “task-present”
labels. If accuracies across the 12 binary models were to be
universally higher, it would signify that it is easier to dis-
tinguish whether there was salient visual analysis com-
pared to differentiating what specific visual analysis task a
user was undertaking. We predicted that

P3 Binary task-present/no-task classification would
result in higher accuracies.

We based P3 on qualitative inferences that “junk”-
labeled logs generally have different looking mouse trails

compared to the other seven labels. For example, it is easier
to differentiate an empty log from one with lengthy interac-
tion sequences, but it may be much harder to identify
whether a lengthy interaction sequence depicts undirected
exploration or cross-referencing tasks.

We report both match-any and modal binary classifica-
tion accuracies in Fig. 7. As predicted (P3), ranges for
match-any and modal accuracies were both higher (match-
any: 56-91 percent; modal: 65-85 percent). Random forest
mouse tracking classifiers had the same match-any accuracy
as modal accuracy (82 percent). The best performing task-
present/no-task classifier was random forest dwell, which
had both the best match-any accuracy (91 percent) and
a modal accuracy (85 percent).

The smaller task-present/no-task accuracy intervals
between match-any and modal accuracies compared to
octenary classification suggests that most of octenary modal
error was due to error between non-junk labels opposed to
confusion between the “junk” label versus other labels (P3).
For example, random forest mouse tracking classification
had no difference between accuracies in task-present/no-
task classification unlike in octenary classification. This dif-
ference in labeling confusion between task-present/no-task
and octenary classification is an important distinction
because it means that both binary and multi-class classifiers
can be used as a method for pruning uninteresting interac-
tion logs that lack visual analysis tasks.

The support for P3 also suggest that it is more difficult to
differentiate visual analysis tasks from one another opposed
to deciding whether an interaction log contains a visual
analysis task. We qualitatively validated this by visually
exploring predicted “junk” labels and found that most his-
tories showed short or otherwise sparse interactions com-
pared to more lengthy or short, but consecutive, sequences
of mouse events. Most often we found that no-task “junk”
logs contained interactions indicative of user error such
as “quickbacks:” logs where users immediately navigated
backward. In contrast, the other labels were often associated
with longer-duration logs with greater numbers of events,
which creates a separable boundary between the “junk”
and non-junk labels.

Fig. 7. Means and standard deviations of task/no-task classifier accura-
cies after running each model 50 times. Predictions were taken by trans-
forming the earlier multi-class predictions into binary junk versus non-
junk categories.
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6.5 Exploring Possible Classification Benefits
to Design

In this section, we explore several possible ways that auto-
mated visual analysis task classifiers can improve the itera-
tive design process. Our aim is to provide insight about
howMAGI is used, to identify how this insight can be incor-
porated into iterative design, and to enumerate testable
hypotheses about cancer genomics visualization interaction,
which can be used to inform future design studies. Our dis-
cussion is based on exploratory analysis after using random
forest mouse tracking classification to predict analysis tasks
for the remaining 1,267 logs that were not part of our prior
in-lab study (Section 5). While interpretation of these results
is limited by a lack of ground-truth, our previous analyses
show that task/no-task separation, and therefore compari-
son, is reliable. Additionally, we can be sufficiently confi-
dent in comparisons where there are large label-count
differences given classification error rates.

Prediction results are shown in Fig. 8. Junk labels were
the most common (326) followed by cooccurrence and
exclusivity analysis (287), undirected or all-encompassing
exploration (253), and targeted analysis (226). The other
tasks were assigned smaller label amounts: copy number
analysis (2), other (12), cross referencing (45), and transcript
chart analysis (113).

6.5.1 Understanding Behavior via Interaction

Frequency

Fig. 8 shows that the aberration matrix was interacted
with most frequently compared to the other visualizations.
This information provides several testable hypotheses about
user behavior that can be used to inform future iterative
design decisions. One possibility is that most researchers use
MAGI to test co-occurrence and exclusivity predictions and
therefore use the aberration matrix more than the other fea-
tures of MAGI. Another possibility is that the aberration
matrix is usedmost frequently because its spatial positioning
at the top of MAGI causes an availability or similar spatial
cognitive bias since it is the first chart users see on the query.
Or, it could be that the aberration matrix is used most often
because of a combination of the two other possibilities. These
classification-based hypotheses lend themselves naturally to

established iterative design evaluation methodologies such
as A/B testing, which could help MAGI designers under-
stand whether the spatial positioning of the aberration
matrix is a large factor for its frequent use.

This location proximity effect might also be supported by
the comparatively low interaction frequencies associated
with the copy number analysis task, as the copy number
aberration browser is located at the bottom of the page.
Hence, just as the aberration matrix was favored because it
is first, the copy number aberration browser might not be
utilized because it is last. Another possible explanation for
its infrequent use is that the copy number analysis task may
be partially subsumed by other tasks given that the mouse
would need to move over other visualizations en route to the
browser. However, anecdotally, we did not find predomi-
nantly copy number focused interactions in other labels.

6.5.2 Which Exploration Strategy is More Common:

Top-Down or Bottom-Up?

Two common visualization design heuristics are to support
either top-down or bottom-up exploration. Top-down strate-
gies refers to Ben Schneiderman’s popular tool design man-
tra: “overview first, zoom and filter, then details-on-
demand” [42]. In contrast, bottom-up strategies refer to div-
ing into details first: “search, show context, [then] expand on
demand” [43]. This is a critical point for tool design because
supporting detail-oriented, bottom-up exploration can often
be at odds with supporting top-down exploration. As such,
typical visualization design patterns maintain that it is best
to focus on dominant tool-use patterns (e.g., Ziemkiewicz
et al.’s evaluation of immunobiology visualization [44]).

Hence, the predictive classification results highlight an
open research problem: researchers use MAGI for both top-
down analysis tasks (e.g., “undirected exploration”) in simi-
lar proportion to bottom-up strategies (e.g., “targeted
search”). As such, both exploration procedures should be
supported in future design iterations. This raises an impor-
tant design question given Ziemkiewicz et al.’s finding that
visual analysis tools that seek to support all analysis behav-
ior may lead to substandard designs [44]. What, then, is the
best strategy for supporting tasks that are equally common
without creating two separate tools?

To address this open research question in the design of
MAGI, we implemented and deployed a new resizable and
repositionable layout so that researchers can alter MAGI’s
components to better match their individual requirements.

6.5.3 Can Classification Counter Incorrect

Generalization?

The predictive classification results were in many ways a
surprise to us given past observations of MAGI, which led
us to expect that cross-referencing was a common and
important task requirement; however, our modeling sug-
gests that this might not be true. The surprise that our prior
observations did not generalize to the larger collection of
interaction logs is an example of how bias can affect experi-
mental analysis, which we also discuss in Section 6.5.2 with
respect to overfitting search task support. In particular, our
revelation about cross-referencing task frequency highlights
how human tendency to use a representativeness heuristic

Fig. 8. Distribution of predicted task labels for the 1,267 logs that were
not included in our in-lab labeling study using a random forest classifier
and “mouse tracking” feature set.
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when generalizing information [45] can be maladaptive in
design evaluation. The difficulty lies in the fact that most
design studies typically rely on field studies with small pop-
ulations [3]. Because humans tend to generalize through
representativeness, which does not take sample size into
consideration, it means that evaluators are likely to overfit
task requirements if they do not take extraordinary care.
Based on our present findings we hypothesize that interac-
tion log classification can benefit iterative design and task
requirement analysis by helping counter sample biases in
tool evaluation by showing the distribution of tasks for
larger sample sizes than what it typically attainable through
in-person observation. By showing an alternative hypothe-
sis to tool evaluators, it is possible that evaluators could not
just avoid jumping to incorrect conclusions about tool use,
but they might also make new discoveries about qualitative
in-person observations.

Our top-down versus bottom-up predictive findings also
highlight another application of how interaction mining
may help offset bias. Given that it is so common to only con-
sider one strategy in tool design, evaluators of smaller in-lab
observations may dismiss both requirements’ similar
importances (or not see them at all due to sample bias).

For these reasons, we suggest supplementing in-lab
observation with interaction log analysis of how a tool is
used remotely by a larger sample of users. By using both
methodologies, designers can make detailed predictions
with in-lab observations and better identify potential
sources of bias by consulting the interaction logs of
larger tool-use samples. Pursuing this mixed-method
evaluation design would preserve the realism of field
observations while also affording designers greater gen-
eralizability confidence.

Thus, classification can critically serve as a tool to test in-
lab ecological validity, and with the right data can paint a
comprehensive picture of the types of tasks a tool is most
used for. This insight into tool use will also likely benefit
from future development and adoption of more advanced
approaches, which we discuss in Section 7. However,
knowledge acquisition from such automated approaches is
inherently limited by the lack of context of interaction logs.
Environmental factors, true ground truth, and cognitive
state cannot be known, only inferred. In contrast, these
shortcomings are what talk-out-loud qualitative methods
excel at collecting. Hence, even with the advent of more
powerful task data mining techniques, we believe qualita-
tive evaluation will remain an equally valuable, rather than
replaceable, aspect of tool design. The strength of classi-
fication should therefore not be tested by whether such
approaches can serve as a replacement to qualitative
inquiry, but rather how they can supplement it.

7 BROADER IMPACT AND POTENTIAL OPEN

QUESTIONS

7.1 Generalizability of Contributions

Although our contributions use MAGI as a case study, they
also demonstrate how interaction log analysis can serve as a
viable evaluation methodology for the broader visualization
research community independent of application area. These
contributions also show that mouse interaction analysis

generalizes from the more deterministic text-focused appli-
cations in Section 2 to more open-ended visual analysis
environments that incorporate not just text, but also interac-
tive visualizations.

7.2 More Accurate Modeling May Result in Different
Types of Generalizability and Implications
for Design

While the classification error is low enough in our evaluation
to infer user behavior and possible design implications,
the development of more accurate classification could lead
tomore precise predictions and discussion about the relation
between tasks and effective design. One potential way to
achieve higher accuracy is to include an explicit feature selec-
tion step in future task classification pipelines. An alternative
potential approach to increase accuracy is to model tasks
as mixtures. For example, mixture models would break
away from modeling only the most dominant session inter-
actions, and could provide more robust understanding
of likely-heterogeneous tasks such as “all-encompassing
exploration.”

7.3 Can Unsupervised Learning Achieve
Comparable Accuracy?

Our present evaluation only considers supervised learning
approaches, which leaves the potential effectiveness of
unsupervised approaches an open problem. This open
problem can be tested in the future by evaluating whether
clustering based on geometric-temporal distances of interac-
tion segments [23] can accurately predict visual analysis
tasks. However, one barrier to this approach, which must
also be examined, is how to best segment interaction logs
into discrete components that accurately represent stages of
visual analysis. While it is possible that segmentation could
be skipped, it is unlikely that clustering would produce
accurate results without it because of the large geometric-
temporal variability of entire minutes-long mouse move-
ment between users. One benefit to clustering, as opposed
to classification, is that the phylogenies produced by hierar-
chical approaches could be used to test the quality of exist-
ing theoretical interaction taxonomies that are either based
on literature surveys or qualitative observation.

8 CONCLUSION

Our findings illustrate the potential utility of mouse interac-
tion log analysis as a new method for analyzing typically
hard-to-access domain expert populations.

Using 1,553 interaction logs of MAGI, an online cancer
genomics visualization tool, we first showed through in-lab
evaluation that low-level interaction data alone is sufficient
for reliable task inference. We then discussed how accessi-
ble classification methods matched our in-lab study infer-
ences with up to 73 percent accuracy and could separate
interaction logs with visual analysis tasks from those with-
out with up to 91 percent accuracy. Unlike previous interac-
tion log analysis research, our investigation considered
whether interactions could be inferred by humans and
machines from mouse event data opposed to higher level
representations of interaction that explicitly contain richer
semantic information.

GRAMAZIO ET AL.: AN ANALYSIS OF AUTOMATED VISUAL ANALYSIS CLASSIFICATION: INTERACTIVE VISUALIZATION TASK INFERENCE... 2281



We conclude that domain expert tool evaluation can be
improved by combining contextually-rich qualitative obser-
vation with larger-scale interaction log analysis. By leverag-
ing a mixed-methods approach, tool designers can retain a
deep understanding of the environment that their tool is
used in and the analytical goals their tool is used to achieve;
they can then test specific task-based predictions based on
qualitative observation by analyzing interaction logs of
larger population samples to assess the ecological validity
of their in-lab findings.
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