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Abstract—We show how mouse interaction log classification can help visualization toolsmiths understand how their tools are used “in

the wild” through an evaluation of MAGI – a cancer genomics visualization tool. Our primary contribution is an evaluation of twelve

visual analysis task classifiers, which compares predictions to task inferences made by pairs of genomics and visualization experts.

Our evaluation uses common classifiers that are accessible to most visualization evaluators: k-nearest neighbors, linear support vector

machines, and random forests. By comparing classifier predictions to visual analysis task inferences made by experts, we show that

simple automated task classification can have up to 73% accuracy and can separate meaningful logs from “junk” logs with up to 91%

accuracy. Our second contribution is an exploration of common MAGI interaction trends using classification predictions, which expands

current knowledge about ecological cancer genomics visualization tasks. Our third contribution is a discussion of how automated task

classification can inform iterative tool design. These contributions suggest that mouse interaction log analysis is a viable method for (1)

evaluating task requirements of client-side-focused tools, (2) allowing researchers to study experts on larger scales than is typically

possible with in-lab observation, and (3) highlighting potential tool evaluation bias.

Index Terms—classification, task analysis, visual analysis, biology visualization, visualization, cancer genomics

✦

1 INTRODUCTION

IN this work we study whether interaction log classifica-
tion can serve as a new, effective visualization tool design

evaluation methodology, and focus on how it can augment
traditional qualitative approaches by providing additional
context for previously determined tasks. We also explore
how predictive task inferences may improve the iterative
design process of interactive visualization tools for domain
experts. To accomplish this, we ground our exploration in
an analysis of MAGI [1] — a cancer genomics visualization
tool.

1.1 Contributions

Our first contribution is a discussion that compares the accu-
racies of twelve automated visual analysis task classification
models to hand-coded task inferences made by pairs of
genomics and visualization experts. Rather than focusing
on sophisticated classification models, our evaluation fo-
cuses on classifiers that most visualization researchers could
implement themselves: k-nearest neighbors, linear support
vector machines (SVMs), and random forests. This way, our
findings are more applicable to visualization researchers
and practitioners at-large. We discuss the potential benefits
that might come from evaluating more complex models in
Section 7. Our second contribution is an exploration of com-
mon MAGI interaction trends using the predictions from
task classification, which expands our present understand-
ing of how visualization is used “in the wild” by cancer
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genomics domain experts. As part of this investigation,
we make our third contribution by exploring how mouse
interaction modeling can be used to inform iterative tool
design. We also provide design principle hypotheses that
can be used to guide future design studies.

These contributions extend current tool evaluation
methodologies, which typically focus on field studies and
other similar, typically qualitative, types of observation [2].
Although working side-by-side with domain experts in
field research yields high levels of detail about analysis
workflows, as Carpendale notes, these types of studies are
typically smaller in scale and lack precision [3]. Our con-
tributions could provide an important addition to current
evaluation methodologies because interaction logs can be
passively collected as part of domain experts’ natural work-
flows and also contain precise, quantitative descriptions
of visual analysis. Because of this, interaction log analysis
can circumvent several common limitations present in more
focused and contextual-rich methodologies (e.g., ethnogra-
phies). For example, through interaction log analysis, it is
easier to study larger populations of domain experts while
retaining ecological validity and without potential interfer-
ence caused from direct observation. Likewise, analyzing
large collections of interaction logs may help thwart bias
caused from observing small in-lab populations.

Another motivation of our present work was to un-
derstand the degree to which anonymized interaction logs
could be used to understand analytic intent given the com-
plete omission of context. Our evaluations of visual analysis
task inference by humans and computers rely on interaction
logs that contain the size and location of each visualization
in MAGI and the sequence of mouse events caused by user
interaction (i.e., clicks, movements, and scrolls).
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1.2 Outline

We begin with interaction log mining background and re-
lated work. Then, we provide a short description of MAGI,
including a summary of the application domain. We also
explain what types of information we collected in the MAGI
interaction logs. Next, we discuss results from a preliminary
task inference study in which we worked with two MAGI
developers to identify eight common MAGI analysis tasks.
We then discuss the results from a task-labeling experiment
that provided training data for task classification evaluation.
Following our in-lab experiments, we then move on to our
classifier evaluation and explore the potential effect that
interaction log mining might have on domain expert tool
iterative design. Last, we present open research questions
and consider the potential broader impact of our contribu-
tions.

2 BACKGROUND AND RELATED WORK

2.1 Understanding users: contribution differences

While our present work is related to previous “clickstream”
interaction research, our contributions differ: we aim to
model less deterministic visual analysis behavior of experts
instead of modeling typical navigation behavior of the gen-
eral population through a sequence of URLs (e.g., to opti-
mize search ranking [4] or commerce [5]). These historically
studied clickstream tasks are more deterministic because a
user’s goal is to find the most relevant search result and
will end with a success (search result click) or a failure
(search termination or another query). In contrast, visual
analysis is typically driven by deriving “insight,” which
is subjective and variable across applications [6]. Because
of these potential empirical differences, we test whether
clickstream features from the information retrieval commu-
nity can accurately model visualization interaction. Hence,
another contribution of this work is to assess whether fea-
tures that were advantageous for classifying these simpler,
more deterministic interactions in web search apply as well
to more open-ended visual analysis scenarios. However,
further evaluating how visual analysis interaction proce-
dures may differ from better-studied and modeled areas of
human-computer interaction remains an important area for
future research.

2.2 Understanding analytic intent via interaction logs

Our present research complements and expands on auto-
mated analytical task inference techniques within visual-
ization and across the broader human-computer interac-
tion community. Although manual interaction analysis has
proven useful in smaller case studies such as studying visual
analysis in investigative journalism [7] and in understand-
ing collaborative analysis [8], Guo et al. note that hand-
coded interaction analyses face myriad scalability issues [9].
As such, many researchers have investigated the automation
of visual analysis interaction log evaluation. These tech-
niques often seek to identify design requirements by lever-
aging interactions as a record of “analytical provenance,”
which can be loosely defined as a collection of analytical
steps undertaken during a visualization’s use. Given the

scope of provenance research, we recommend Ragan et al.’s
survey for a comprehensive overview [10].

Much of this research has focused on action log analysis,
which relies on basic software interaction sequences (e.g.,
filter → sort → select). For example, Zgraggen
et al. showed how extracting interaction patterns using
regular-expression-like queries from large action datasets
helped usability researchers at a large technology company
identify key issues in their products [11]. Other visual
analysis task reconstruction methods draw on techniques
such as multiple sequence alignment [12], [13], [14], [15],
graphical modeling [16], and human-in-the-loop qualitative
exploration [17]. Etemadpour et al.’s investigation into ge-
nomics analysis workflows is more similar to our inquiry
into domain expert analysis, but also uses an action rep-
resentation akin to other previous work [18]. Our present
contributions differ from these efforts because we focus on
lower-level mouse event analysis (e.g., mouse dwell time)
to infer analytic intent, rather than focusing on higher-
level interaction representations (e.g., “undo” in a graph-
like structure representing workflows [10]).

One benefit to analyzing lower-level mouse events op-
posed to higher-level representations is the close relation-
ship between mouse movement and gaze, which is a well-
studied physiological indicator of intent [19]. Huang et al.
as well as Rodden and Fu explore how the relation between
gaze and mouse movement can be used to improve web
search [20], [21], and Gomez et al. show that the relation also
holds for visualization [22]. We utilize this similarity later in
our classification evaluation by creating a new feature set
inspired by these similarities (Sec. 6.1.3).

Martı́n-Albo et al. build on the association between
intent and mouse interactions to show that intent can be
inferred from mouse movement alone without the aid of
eyetracking by testing the geometric and temporal similarity
between mouse traces [23]. Others like Edmonds et al.
and Matejka et al. developed tools to qualitatively analyze
mouse traces and intent through heatmaps of frequently
interacted-with interface regions [24], [25]. Blascheck et
al. pursued a hybridized in-lab approach and tested how
event-level interaction logs can be combined with talk-aloud
transcripts and eye-tracking to understand interaction [12].
Noting the potential benefits of using higher-resolution in-
teraction logs, Atterer et al. performed a case study to show
how interaction strategies and intent can be reconstructed
from low-level event logs [26]. Our present work extends
knowledge of user analytic intent by analyzing how inter-
action log classification can lead to insights about domain
experts’ ecological visual analysis behavior.

2.3 Relation to past biology visualization task analyses

Our present contributions extend previous research that also
used biology visualization as a test bed for new evaluation
methodology and task modeling. For example, Saraiya et al.
developed an evaluation methodology to measure visual-
ization effectiveness based on how many analytical insights
it may support [27] and then explored how insights could be
used to longitudinally understand visual analysis tasks [28].
O’Brien et al. then extended insight-based methodology to
improve its precision while also evaluating another biology-
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visualization-motivated application [29]. Instead of just tal-
lying the total number of insights, they suggested that
insights – and the tasks that produced them – could be
better understood by also measuring a variety of other
information such as hypothesis-driven insights and insight
complexity. Unlike these past methodological contributions,
which rely on hand-coding data, our present line of inquiry
investigates how automated modeling can empower initial
human classification. Not only does this continue O’Brien’s
line of research toward quantifying task analysis, but it also
allows task analysis to scale to much larger collections of
data thanks to automated task inference.

Others, like Streit et al., used biology visualization to
study visual analysis in areas where there are diverse types
and formats of data [30]. Whereas Streit et al. focused
on constructing a model for heterogeneous biological data
analysis, Murray et al. synthesized common analysis tasks
in biological network analysis [31]. Although both sought
to explain cancer genomics visual analysis, the aims of our
present work are distinct. Differences between our present
contributions and these past two models might be best
understood through Brehmer and Munzner’s task typol-
ogy [32]: Streit et al. primarily focused on “what” each task
was operating on, Murray et al. primarily focused on “why”
each task was being performed, and our present research
primarily focuses on “how” each task was being performed.

3 MAGI AND LOG COLLECTION

Our investigation into visual analysis task classification is
anchored by studying MAGI mouse interaction logs. MAGI
is an online visualization tool that allows cancer genomics
researchers to explore a variety of genetic mutation data
across many cancers in five visualizations [1]. A screenshot
of a query in MAGI is shown in Figure 1. Given cancer
genomics specialization variety, MAGI was designed to sup-
port a diversity of expertise through its multiple views (e.g.,
basic science vs. pharmaceutical research; wet lab biologist
vs. bioinformatician).

The top-most visualization in MAGI is an aberration
matrix, which uses color to show mutations (cells) in user-
queried genes (rows) across different sequencing samples
(columns; i.e., patients). Below the aberration matrix, the
linked heatmap can show related continuous data (e.g., gene
expression) for the same combinations of genes and sam-
ples. The third visualization row in MAGI shows a network
view and a transcript annotation chart. The network view
shows how the proteins that each queried gene encodes
can interact with one another, whereas the transcript an-
notation chart shows the physical location where mutations
occur. The last visualization shows the physical location of
copy number aberrations which affect large swaths of the
genome.

While researchers might use only one visualization for
analysis, visualizations may also be used together. For
example, a researcher might use the aberration matrix to
identify stair casing patterns of “mutual exclusivity,” which
are an indicator of biological significance. Or, they might
continue that line of inquiry after detecting mutual exclu-
sivity for a subset of mutations and examine where they
physically occur in the transcript annotation chart.

Type of information Attributes

Mouse events {click, move, scroll}, time, x, y
Tooltip events x, y, width, height
MAGI components (×6) x, y, width, height
Window state width, height
Query number of genes and datasets

TABLE 1
Data contained in each MAGI mouse trace interaction log. MAGI

components refer to the five visualizations and control panel.

Like with many other visual analysis tools for domain
experts, one difficulty in evaluating MAGI is that cancer ge-
nomics researchers are geographically distant and are often
hard to schedule for observation. This poses a hurdle for
user-centered design because these limitations often result
in studies that consider only small numbers of tool users.
Although small case studies can provide useful information
about tool-use, they can be susceptible to sample bias with-
out careful recruitment consideration. This is particularly
true in cancer genomics, which has many distinct foci that
use the same data (e.g., applied pharmaceutical vs. basic
science research). As such, it is possible that relying on
small population observations could cause iterative design
decisions to overfit a tool to the requirements of a small
number of users at the expense of a large, unstudied sub-
population. If successful, interaction log classification would
provide a way for understanding task requirements of entire
populations in ecological settings, and would provide a way
to help counter sample bias using the smaller scale, in-lab
methodologies that tool evaluators already utilize.

3.1 Mouse interaction log schema

Our interaction classification evaluation classification fo-
cuses on analyzing mouse interaction logs collected on
MAGI’s gene set query results page. We provide an example
query about the Notch pathway, which is implicated in a va-
riety of cancers [33], in Figure 1. Each collected log contains
information about all mouse events, each visualization’s size
and location, the window size, and anonymized queries. In
addition to the five visualizations, we also collected the size
and location of MAGI’s control panel and tracked when
tooltips were activated in each of MAGI’s visualizations.
Given that users can toggle visualization visibility, we also
tracked how size and location of the visualizations might
have differed over time. The full collection of log attributes
is listed in Table 1.

3.2 Log culling

We applied a two-step culling process to remove interaction
logs that were unlikely to contain important information
about visual analysis tasks. The first step in log culling
involved the removal of logs without mouse interactions,
which were created by web crawlers. This removal resulted
in 1,616 logs with mouse event data. Afterwards, we then
removed 63 logs that were deemed to have too few events
to describe visual analysis tasks. For example, a user might
realize that they mistyped their query and immediately
navigate backward. While this scenario might provide im-
portant usability information about tool-use, it does not
express information about the analytic intent of what the
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Fig. 1. A screenshot of MAGI showing the aberration matrix (top),
heatmap (second top), network view (middle-left), transcript chart
(middle-right), copy-number aberration browser (bottom), and control
panel (right).

user hoped to accomplish. We defined “too few events” as
any log with a mouse event count under the central 95%
interval’s lower bound. To compute the central 95% interval,
we used an estimated lognormal distribution after visually
analyzing the data’s distribution with a quantile-quantile
plot (µ = −71.99, σ = 773.38, threshold=38.5 events).

4 TASK IDENTIFICATION WITH MAGI CREATORS

Our first analysis of the MAGI interaction log data involved
a free-text labeling task with two of the developers of MAGI,
where our overall approach resembles thematic analysis.
The purpose of this was twofold: (1) to pilot the feasibility
of labeling analysis tasks from interactions alone, and (2)
to derive a shortlist of categories, which could be used
as classifier labels and as multiple choice options in our
planned follow-up user study.

Here, we use “task” to refer to Gotz and Zhou’s inter-
action characterization for visual analysis tools [34], which
defines tasks and sub-tasks as “high-level, logical structures
of a user’s analytic process, such as the user’s cognitive
goals and sub-goals.” For convenience, and due to their
similarity, we refer to both as “task” for the remainder of the
manuscript as their distinction is not critical for our present
contributions.

(10x)

1 gene(s) and 11 datasets(s)

Is junk? Next

Fig. 2. Example free-text label trial where participants were asked to
provide a 1 to 2 sentence description of what type of task was performed
in the visualized interaction log. Interaction logs were summarized in
a visualization in each trial, which showed the location for each of
MAGI’s five visualizations in differently colored rectangles, and mouse
activity with a black heatmap overlay. Users could watch the mouse and
tooltips appear/disappear by using the playback button and two sliders
to change time. The timeline below the sliders showed mouse movement
(orange), click (red), and scroll (purple) events. Users could play the log
by clicking on a 10× playback button or manually control playback with
two sliders (top: whole-log, bottom: small adjustments to top).

4.1 Methods

4.1.1 Participants

Two participants remotely completed the free text log label-
ing task through screen sharing software. Each participant
was involved with the development of MAGI and was
familiar with MAGI’s interface and the full range of ways
MAGI could be interacted with.

4.1.2 Design and Displays

Instead of predefining a set number of interaction logs for
participants to label, the experimental environment created
trials on-demand by randomly sampling as many interac-
tion logs as a participant could label within 45 minutes.

In each trial, an interaction log summary visualization
was rendered alongside playback controls (Fig. 2). In the
visualization, each of MAGI’s charts were shown as a dif-
ferently colored rectangle. A heatmap was overlaid on top
of the visualization rectangles, which showed regions that
users commonly interacted with. Participants could also
watch the mouse move (orange crosshair) and tooltips ap-
pear (red rectangles) throughout the log’s duration by either
clicking a 10×-speed play button, or by dragging one of
two sliders that controlled the playback time. The top slider
was used to make large changes, and the bottom slider
was used to fine-tune time navigation, which was useful for
longer logs. Below the sliders, we included a small timeline
showing click, movement, and scroll events. Additionally,
the number of genes and datasets in each MAGI query was
shown above the interaction log visualization.

4.1.3 Procedure

Each participant was instructed to work with the experi-
menter to infer the predominant analytical task for as many
interaction logs as possible within 45 minutes. For each
log, the participant would brainstorm with the experimenter
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about what type of task the trial’s interaction log depicted.
Afterwards, the experimenter would write a 1-2 sentence
description of the task and verify with the participant that
the description summarized the brainstormed task. If there
was no recognizable task, or if the task wasn’t considered
useful, the log would be labeled as “junk.” After entering
the log description, participants continued to the next trial.

4.2 Results and Discussion

We collected 50 labels in total (25/participant). Because
we were interested in identifying a shortlist of commonly
performed analytical tasks we then performed two rounds
of manually grouping similar labels. To accomplish this, we
printed out cards for each label response that contained
the written description and accompanying interaction log
visualization, along with a unique ID. Then, referencing the
text summary for each card, we grouped similar cards in a
manner similar to hierarchal clustering. After, we performed
a second round of grouping to consolidate thematically
similar groups. The resultant categories were as follows:

Aberration matrix and transcript chart cross-referencing:
Frequent back-and-forth analysis between the transcript
chart and aberration matrix. For conciseness, we will refer
to this task as “cross-referencing” unless otherwise noted.

All-encompassing or undirected browsing: Interactions
with MAGI that appear undirected, that are typically
diffuse, and that use many or all of MAGI’s visualizations.

Co-occurrence or exclusivity analysis: Interactions that
concern the aberration matrix, typically characterized
by mousing over columns (co-occurrence) or exclusivity
(staircases from column-exclusivity; Fig 1).

Copy-Number-Focused Analysis: Analysis characterized
by heavy use of the copy-number aberration browser.

Junk: Logs that have no discernible analysis behavior
(e.g., immediate page refresh after < 1 second or short,
temporally distant bursts of movement).

Targeted gene, mutation, or annotation lookup: Targeted
search behavior when a user has a specific piece of
information they want to find (e.g., a particular patient-
column in the aberration matrix).

Transcript mutation distribution analysis: If users interact
with the transcript chart, they typically focus on certain
distributional characteristics such as towers of mutations at
a single point in the transcript (“hotspots”) or at mutations
that fall along coding regions.

Other: Behavior that falls outside of what was labeled in
this experiment (e.g., use of the network view).

This procedure was guided by previous analyses that
were part of MAGI’s formative iterative design, which iden-
tified hypothesis formation and testing tasks targeted on
biological significance as two of MAGI’s largest use cases.

One question that arises from these results is how
consistently these tasks can be inferred using only low-
level interaction logging data, which is critical for reliable
classification. We test this in the next study.

5 USER STUDY: LOG TASK LABELING

The primary goal of this experiment was to collect labels
to train, validate, and test interaction log classifiers. We
also wanted to test whether humans could reliably infer
analytical tasks from mouse interaction logs alone. Our
prediction was that interaction-task inference would be re-
liable between interaction log observers. To these ends, we
asked five pairs of visualization and genomics experts (1 of
each/pair) to label tasks in a series of MAGI logs using the
eight labels from our prior evaluation (Sec. 4).

5.1 Methods

5.1.1 Participants

10 participants (5 pairs) completed the study. Five partic-
ipants were recruited through university mailing lists for
graduate students and had formal knowledge of genomics.
The remaining five participants were recruited from human-
computer interaction research groups in our institution.
Each participant had at least one year of academic or pro-
fessional experience in either genomics or visualization. The
median number of years each participant had spent in their
degree program was 2 years (range: 0-5). Figure 4 shows
participant expertise. Each was compensated $10/hour. The
experimental protocol was approved by our university’s
IRB.

5.1.2 Design and Displays

The user study was held in pairs such that each session
had one genomics expert and one visualization expert. The
study was designed for pairs of participants because we
believed pair coding would help control labeling variance
and because the experiment required expert knowledge of
visualization and genomics, which presented single-person
recruitment limitations. Another motivation was that fa-
tigue was too prohibitive in a pilot with single participants.

Each pair of participants saw 96 random-order trials,
which consisted of 2 replications of a 48-trial design. One
replication contained a unique set of interaction logs while
the second replication contained logs that were identical be-
tween subjects to analyze inter-rater reliability (IRR). We set-
tled on a 48-trial design after performing a power analysis
for Fleiss’ kappa [35] (κ0 = 0.6, κ1 = 0.4, α = 0.05, β = 0.2
with 5 raters), which suggested including at least 41 trials.

The 48-trial design consisted of 24 randomly sampled
logs and another 24 logs that were sampled based on three
feature sets we had planned to use in our eventual classifi-
cation evaluation (Sec. 6.1). To sample the 24 feature-based
trials, we first had a MAGI expert create example ground
truths for each of the eight previously defined task labels,
where we knew the full context of each query (e.g., “the
expert was interested in exploring a particular biological
pathway”). Then, using each of the three feature sets and
eight ground truths, we sampled 24 nearby neighbors.

To create the six unique sets of logs (5 pairs + 1 IRR),
we generated all feature-set-based trials at the same time by
picking the 6-closest logs for each of the 24 {feature set} ×
{label} combinations. Next, we semi-randomly shuffled the
samples so that each pair of participants would be given
an unordered, complete collection of the 24 combinations.
For example, the first participant would be given one of
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each 24 combinations, but these 24 logs would not always
be the first-closest-neighbors. This procedure was designed
to control for potential bias stemming from nearest-neighbor
ordering while still including all 24 conditions.

The remaining 144 random-sample logs were then sam-
pled without replacement from the set of remaining logs.

5.1.3 Procedure

Following informed consent, the study took place over three
stages: instructions, practice, and test (Fig. 3). All partici-
pants took between 1.5 and 2 hours to complete the study.

Instructions: In the MAGI overview, each pair read
through a description of each MAGI chart and watched
a short video of MAGI being used by an expert. In the
experimental task overview, participants were provided text
descriptions for each of the MAGI task labels and were
shown example stimuli.

Practice: Participants were presented a grid of 8
anonymized ground-truth logs along with task label de-
scriptions, and were asked to discuss with their partner
which label they believed should be assigned to each log.
After guessing, participants could reveal the answer by
clicking on a “show” button. Following the quiz, partici-
pants then completed five practice trials per the test proce-
dure below.

Test: Each trial had a single log, and participants were
asked to mark which task they thought was most charac-
teristic. Marking “other” required an accompanying short
text description. Each trial included task descriptions and
examples to the right of the response area and in printed

handouts. To encourage faster responses, each trial dis-
played a timer and a beep would play after 45 seconds;
however, participants could take as long as they needed.

5.2 Results and Discussion

5.2.1 Inter-rater reliability and accuracy: similar strategies

Our planned analysis of the 48 inter-rater reliability (IRR)
trials for each participant-pair using Fleiss’ κ was 0.405.
According to Landis and Koch, this maps onto fair-to-
good reliability [36]. Fair-to-good reliability suggests that
there was a moderate amount of subjectivity between pair
responses, but that the individual differences across trials
was low enough to be confident in the response reliability.
To supplement Fleiss’ κ we also measured the modal accuracy
of each participant, which defines a correct response as any
response that matches the most frequently assigned label(s)
for a given interaction log. Participant accuracies, in order of
study completion date, were: 69%, 73%, 73%, 65%, and 77%.
Both Fleiss’ κ and accuracies suggest that all participants
had similar, consistent labeling strategies.

5.2.2 Task label diversity and frequency shows consistency

To understand participant-pair task labeling strategy simi-
larity we analyzed labeling frequencies and labeling consis-
tency across participant-pairs (Fig. 5).

To measure similarity, we calculated Shannon diver-
sity indexes for each pair-participant using label frequen-
cies. The diversity indexes were 1.90, 1.97, 1.86, 1.76, and
1.91. Values closer to ln 8 ≈ 2 refer to more uniform
label frequency distributions and values closer to 0 refer
to skewed distributions. Diversity indexes are calculated

through Shannon entropy: H ′ = −
∑L

i=1
pi ln pi. L is the

number of labels and pi is the ith label frequency’s propor-
tion of the 96 total labels for a given participant-pair. Each
diversity index fell within the top 15% of the potential range
of diversity ([0, ln(8)]), which suggests that participants
applied similarly uniform task labeling strategies. These
results also support our initial task selection methodology
because our synthesized task labels were used with little
favoritism.

We also made several qualitative observations based on
labeling frequency to drill down beyond reliability sum-
mary statistics. First, participant-pair 4’s poor accuracy may
stem from slightly-deviant labeling proportions: they never
provided a cross-referencing task label IRR response, had
only one targeted analysis response, and over half of their
responses were either “junk” or undirected labels. This skew
is the likely source for their comparatively lower accu-
racy and Shannon diversity index. Another distinction is
that participant-pair 3 never provided an “other” response,
though this is not necessarily abnormal given the relatively
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Fig. 5. Task label frequencies (top) and ordered labeling consistency
between participants for each interaction log (bottom; rows: participants,
columns: interaction logs).

low “other” response rates of the other pairs. Aside from
these two deviations, participants’ strategies were largely
consistent; 20 of the 48 IRR trials had 4 or 5 identical
labels out of the 5 labels given by participant-pairs, and 17
IRR trials had 3 identical labels across the participant-pair
responses. There were no trials with five different labels.

We also found no significant difference between modally
correct labels between random and feature-based sampling
methods through a two-sided Fisher’s exact test (p = 0.57;
feature-set: 73%, 88/120; random: 69%, 83/120).

5.2.3 “Other” label descriptions

There were 23 “other” labels across the 480 total responses
(< 5%). The most frequent reason for selecting “other” was
to report different types of cross-referencing task behavior
(9), given that the provided cross-referencing task label only
pertained to interactions between the aberration matrix and
transcript chart. Other responses pertained to other MAGI
features not covered by the eight labels (e.g., the network
visualization and control panel) (11), or to simple page
exploration without analytic purpose (2). Only once did
participants respond that they were unable to determine
what type of task a user was pursuing.

While it is possible that there are other tasks than the
eight we identified, they are likely to be rare outliers. Simi-

larly, the comparative scarcity of “other” responses suggests
that our eight task categories were effective at describing
typical MAGI interactions.

5.2.4 “Junk” assignment strategies

One concern we had while designing the experiment was
whether participants would put potentially meaningful logs
in “junk.” Our intent was for junk to be a catch-all for logs
that slipped past our prefiltering, which eliminated empty
or near-empty logs. For example, there was one log that we
would have considered to be undirected exploration due
to its diffuse interactions; however, the pair of participants
could not identify a behavior and marked it as junk (op-
posed to marking it as “other” as one other participant did).
Although we saw some instances of undesirable junk label-
ing while proctoring the study, we found that participants
were overall consistent with our junk-labeling expectations.

5.2.5 Takeaway: reliable, consistent human task inference

Overall, these quantitative and qualitative trends both
point to similar conceptual understanding of how each
task mapped onto mouse interactions and suggest that
participant-pairs used similar labeling strategies. This is
an important discovery because it shows that tool evalua-
tors can reconstruct meaningful information about tool use
from interaction logs alone. The reliability and presumed
reproducibility of these findings establishes a foundation for
our next evaluation. Using these results from our human-
centered evaluation we can establish a baseline from which
automated machine classification can be compared against.

6 LOG-TASK CLASSIFICATION

We evaluated 12 classifiers to test whether automated classi-
fication could predict visual analysis tasks with comparable
accuracy to domain experts from the previous experiment.
Each classifier was built from a selection of three models (k-
nearest neighbors, linear support vector machines, random
forests) and four feature sets, as described below. Our eval-
uation predictions focused on identifying a best-performing
classifier to use in a follow-up exploratory analysis of the
entire MAGI interaction log corpus. To test each model’s
effectiveness, we used the 48 IRR trials from our previous
in-lab experiment and used the non-IRR trials for training
and cross-validation.

Our model selection was guided by selecting mod-
els that would be accessible to typical visualization re-
searchers and practitioners. We determined accessibility by
how widely classification models were used in-practice and
how readily they could be used “out of the box” with
well-documented machine learning libraries (e.g., Python’s
scikit-learn). Another selection criterion was to select
models that would perform well given few training data,
which can be a common-place limitation in domain-expert-
focused research. It is important to note that there are
many potentially promising, but more complex, alternative
classification methods that could also be used, which might
result in more accurate predictions (Sec. 7). We opted to
pursue simpler models for two reasons. First, we wanted to
pursue a systematic approach to studying classifiers’ given
our present knowledge of interaction mining applications
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ROI Transition [37] Dwell [4] Mouse Tracking [38]

transition count total time stationary H
transitioned-to count µ dwell time transition H

σ dwell time total time ∀ ROI
# datasets active time ∀ ROI
# genes dwell time ∀ ROI

µ active time ∀ ROI
µ dwell time ∀ ROI

TABLE 2
An overview of three feature sets used in our classification (not shown:
“all,” the combination of these sets). ROI transition count is short-hand
for the complete adjacency matrix of transition features between each

ROI. Transitioned-to count sums one dimension of the complete matrix.
µ: mean, σ: deviation, H: entropy.

in visualization, and thought there would be too great a
number of unbound decisions to use more complex classifi-
cation pipelines. Second, we wanted to focus our evaluation
on models that would not be too elaborate for much of our
target audience to easily use.

6.1 Feature Sets

In our present classification evaluation, we consider three
feature sets: dwell, region-of-interest (ROI) transition, and
a novel “mouse tracking” approach. A summary of each
feature set is listed in Table 2. “Region of interest” (ROI)
corresponds to MAGI’s five visualizations and control panel
(Fig. 1).

6.1.1 Dwell

The features in dwell are: total session time; mean and stan-
dard deviation of dwell time; and the number of datasets
and genes in a query. Each feature is taken from a sub-
set of Agichtein et al.’s features for modeling web search
ranking [4]. We include only a subset due to differences in
application areas and in interaction log schemas (multiple-
page vs. single-page sessions).

One difficulty raised by the dwell feature set was how to
best quantize mouse traces into active and dwell periods.
To accomplish this, we chose a dwell threshold (100ms)
using the interquartile mean of all contiguous-event time
differences across all interaction logs. We operationalized
the threshold using the interquartile mean opposed to other
methods (e.g., median split) because the distribution of time
differences had a long right tail that skewed whole-range
averages. A common issue causing the skewed distribution
were sessions where a user would leave MAGI open for
days, whereas most differences were fractions of a second.

6.1.2 ROI Transition

The ROI transition feature set is comprised of the adjacency
matrix describing transition frequencies between ROIs and
the total number of transitions to each ROI. The two groups
of features are adapted from Brown et al.’s binary classi-
fiers for visual search task completion time and personality
factors such as locus of control [37]. Although Brown et al.
tested several predictive models, we use only their state-
based feature set, which had the highest predictive accuracy
for task slow vs. fast completion time (83%).

6.1.3 Mouse Tracking

The mouse tracking feature set includes five types of times
for each ROI and two types of entropy that measure how
users transitioned between ROIs. The name “mouse track-
ing” alludes to its adaptation of eye tracking features.

The first three types of time included in mouse tracking
are the total cumulative time spent in each ROI, the cumu-
lative active time spent in each ROI, and the cumulative
dwell time spent in each ROI. The last two times are the
mean active and dwell times for each ROI. These measures
are inspired from region-of-interest analysis in scan path
clustering analyses [39], [40], and were calculated with the
same methods as the dwell feature set.

The other two mouse tracking features describe different
kinds of entropy to summarize how users interacted with
MAGI at a more global scale. Within the context of MAGI,
entropy can be thought of as how deterministic a user’s
interactions are between ROIs (i.e., targeted vs. diffuse). To
calculate entropy, we consider MAGI ROIs (ℜ), the transi-
tion frequency probabilities between each ROI (M ), and the
stationary distribution of each ROI (π). The stationary distri-
bution (i.e., the limiting probability distribution) represents
the probability that the mouse will be over a given ROI at
any point in time [41, p. 199]. Both entropies are based on
Krejtz et al. scanpath classification methods [38].

The first measurement of entropy uses Shannon entropy
to calculate whether the distribution of ROI transitions is
equal, where entropy values closer to 1 represent equal
distributions and values closer to 0 represent focal distri-
butions. Our use of log

10
constrains entropy to a unit scale:

HShannon = −
∑

i∈ℜ

πi log πi (1)

The second measurement of entropy is similar, but also
considers the transition frequency probabilities to under-
stand whether interaction was more random (closer to 1)
or more deterministic (closer to 0):

HTransition = −
∑

i∈ℜ

πi

∑

j∈ℜ

Mij logMij (2)

6.1.4 All: Dwell + ROI Transition + Mouse Tracking

We also tested a composite “all” feature set, which combined
the features from all three aforementioned sets.

6.2 Classification Evaluation Methods

Our final experimental design consisted of twelve classifi-
cation models (3 classifiers × 4 feature sets), all of which
were implemented in Python’s scikit-learn. To select
parameters for each model, we performed an exhaustive
search for all parameter combinations using 3-fold cross
validation. Parameter selections for each model are listed in
Table 3. Then, to examine predictive variance, we evaluated
each model fifty times using the same parameters across
runs.
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Classifier Feature Set Parameters

k-nearest All k = 9, w=distance
k-nearest Dwell k = 10, w=uniform
k-nearest ROI Transition k = 5, w=distance
k-nearest Mouse Tracking k = 7, w=uniform
Linear SVM All c = 69.519
Linear SVM Dwell c =< 0.001
Linear SVM ROI Transition c = 0.001
Linear SVM Mouse Tracking c = 0.004
Random Forest All estimators=75
Random Forest Dwell estimators=40
Random Forest ROI Transition estimators=40
Random Forest Mouse Tracking estimators=40

TABLE 3
Parameter selection for each tested classifier. w: weight

6.3 Classification Evaluation Predictions

Before conducting the comparative classifier evaluation, we
made the following predictions:

P1 Random forest models would be more accurate
compared to k-nearest neighbor and linear SVM
accuracies.

P2 Mouse tracking features would be more accu-
rate compared to dwell and ROI transitions for
predicting task labels.

We predicted that random forests would be the most
accurate because it was unclear whether our feature sets
were linearly separable. Further, random forests provide a
way to down-weight less effective features based on how
their decision trees are trained, whereas k-nearest neigh-
bors treats all features equally because it uses Euclidean
distance. We predicted that mouse tracking would be the
most accurate feature because it considered both time and
transition, but at multiple levels of detail. In contrast, dwell
considers only entire-session times and ignores regions of
interest. Similarly, ROI transition focuses only on individual
transitions, ignores more global descriptions of behavior,
and does not consider interaction times.

6.4 Classification Evaluation Results and Discussion

6.4.1 Analysis of classifier performance

Because our test data has five “correct” labels for each
interaction log (1 label/participant) we tested P1 and P2
with two types of accuracies: match-any and modal accuracy.

Match-any accuracy is calculated based on whether a
classifier prediction matches any of the five labels provided
by participants and is a lower-bound measure of classifier
performance.

Modal accuracy is the same accuracy that was used in
our previous user study: predictions are correct only if
they match the most frequently assigned label(s) for each
interaction log.

We used two accuracies — one loose and one strict
— due to the qualitative, under-defined nature of what a
“reasonably correct” prediction could be. It is important to
note that the difference between the two accuracies is also
meaningful: if match-any accuracy is 75% and modal accu-
racy is 50%, then 2/3 of the match-any-correct labels are also
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Fig. 6. Means and standard deviations of classifier accuracies after
running each model 50 times. Match-any accuracy is calculated based
on whether predictions matched any label assigned to an interaction
log by participants. Modal accuracy is calculated based on whether pre-
dictions match the most frequently assigned label(s) for an interaction
log. Higher accuracies with smaller accuracy intervals are better. k-
Nearest Neighbors has no standard deviation because successive runs
will always select the same k shortest Euclidean-distance points. Below
the three models we also include modal accuracies for each of the
five participant-pairs for easier comparison (stacked glyphs represent
multiple participants with the same accuracy).

modally-correct responses and 1/3 are modally incorrect
responses. For this reason, we planned our analyses to first
examine match-any accuracy and use modal-accuracy as a
mechanism to break match-any accuracy ties.

The twelve models’ match-any accuracies ranged from
38% (linear SVM, dwell) to 73% (random forest, mouse
tracking) and the modal accuracies ranged from 18% (k-
nearest neighbors, dwell) to 56% (random forest, mouse
tracking). The full-range of results are shown in Figure 6.

Previous visual analysis interaction classification has
achieved similar accuracies. For example, Brown et al.’s
task completion time predictive models [37] had between
62% and 83% accuracy and their personality-attribute mod-
els had between 61% to 67% accuracy when testing for
traits like locus of control and neuroticism. In comparison,
our models were similarly accurate, but modeled a more
complex and nuanced characterization of interaction (e.g.,
binary vs. octenary models).

Before testing our predictions, we first analyzed the
variance of model type and feature set with respect to
match-any accuracy, and found a significant main effect
for each (model: F (2, 588) = 483.74, p < 0.001; feature:
F (3, 588) = 164.39, p < 0.001) as well as a significant
interaction between the two (F (6, 588) = 95.53, p < 0.001).
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The significant interaction between model type and fea-
ture set likely refers to the dissimilarities in accuracy for
k-nearest neighbors and linear SVM models compared to
random forest models. Match-any accuracy across model
types was largely fixed for ROI transition features and
varied for the other three such that ROI transition features
were most-accurate for k-nearest neighbors and linear SVM
models and were least-accurate for random forests. This
suggests that dwell and mouse tracking are not linearly
separable and, for similar reasons, are not well-suited for
simple Euclidean-distance-based classification models. The
lack of separability is supported by close-to-zero SVM mar-
gin parameter selections, which suggests that across all
feature sets the data was too noisy to define a hyperplane
that cleanly separated data. It would be interesting to test
whether certain subsets of data are more easily separated
to achieve better performance; however, such analysis falls
outside the present comparative model analysis goals.

To better understand the performance differences be-
tween model types and feature sets we systematically tested
our planned predictions for match-any accuracy using 2-
sample Welch’s t-tests. We first tested match-any accuracy
by model type (P1) and found that random forests were sig-
nificantly better than both k-nearest neighbor (t(291.26) =
15.03, p < 0.001) and linear SVM models (t(242.83) =
17.99, p < 0.001), and also that k-nearest neighbor models
were better than linear SVM models (t(348.73) = 6.37, p <
0.001). Thus, random forests were best, followed by k-
nearest neighbors and then by linear SVM models.

After finding that random forests were the most match-
any accurate classifiers, we then tested whether mouse
tracking was the most accurate feature set (P2) using only
random forest predictions. Our second prediction partially
held: mouse tracking was significantly more accurate than
dwell (t(93.01) = 2.17, p = 0.03) and ROI transition
(t(97.99) = 13.09, p < 0.001), but was not significantly
different compared to all (t(97.83) = 1.68, p = 0.1). The
non-significant difference between all and mouse tracking
may suggest that “all” accuracy primarily stems from mouse
tracking and has nearly no benefit from dwell and ROI tran-
sition features. Another important result was that the ROI
transition feature set performed significantly worse than the
three other feature sets (all: t(97.91) = 11.67, p < 0.001;
dwell: t(93.43) = 12.35, p = 0; ROI transition: t(97.99) =
13.09, p < 0.001).

While random forest mouse tracking classifiers were
significantly more match-all accurate compared to the other
random forest classifiers, we also compared modal accu-
racies due to the small in-practice accuracy differences
between all, dwell, and mouse tracking features (Fig. 6).
As before, mouse tracking was significantly more modally
accurate than dwell (t(86.93) = 25.97, p < 0.001) and
ROI transition (t(96.99) = 26.29, p < 0.001), and was also
significantly more modally accurate than “all” (t(96.88) =
7.45, p < 0.001). Although “all” includes mouse tracking
features, mouse tracking may have performed better be-
cause the ROI transition and dwell features could have been
maladaptive for predicting modal task labels.

Thus, these analyses indicate that random forest mouse
tracking classification models were best.
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Fig. 7. Means and standard deviations of task/no-task classifier accu-
racies after running each model 50 times. Predictions were taken by
transforming the earlier multi-class predictions into binary junk vs. non-
junk categories.

6.4.2 Binary classification: detecting visual analysis

One remaining question after comparing classification accu-
racies was whether certain task labels were more difficult to
predict than others. The previous analysis provided overall
model accuracies compared to expert-coded “groundtruth,”
but did not elaborate on why model accuracies differ.
Unfortunately, answering “why” is challenging with our
present results because of the number of labels. Therefore,
we framed our analysis of why accuracies might differ based
on how easy it was for the classifiers to detect the presence
vs. absence of visual analysis tasks. Rather than consider
eight labels, classifiers that use this simplified task/no-task
representation need only consider two. We tested task/no-
task classification accuracy by retaining “junk”-label pre-
dictions as “no-task” labels and by transforming the rest
to “task-present” labels. If accuracies across the 12 binary
models were to be universally higher, it would signify that
it is easier to distinguish whether there was salient visual
analysis compared to differentiating what specific visual
analysis task a user was undertaking. We predicted that

P3 Binary task-present/no-task classification
would result in higher accuracies.

We based P3 on qualitative inferences that “junk”-
labeled logs generally have different looking mouse trails
compared to the other seven labels. For example, it is
easier to differentiate an empty log from one with lengthy
interaction sequences, but it may be much harder to identify
whether a lengthy interaction sequence depicts undirected
exploration or cross-referencing tasks.

We report both match-any and modal binary classifi-
cation accuracies in Figure 7. As predicted (P3), ranges
for match-any and modal accuracies were both higher
(match-any: 56%–91%; modal: 65%–85%). Random forest
mouse tracking classifiers had the same match-any accu-
racy as modal accuracy (82%). The best performing task-
present/no-task classifier was random forest dwell, which
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had both the best match-any accuracy (91%) and a modal
accuracy (85%).

The smaller task-present/no-task accuracy intervals be-
tween match-any and modal accuracies compared to octe-
nary classification suggests that most of octenary modal
error was due to error between non-junk labels opposed
to confusion between the “junk” label vs. other labels (P3).
For example, random forest mouse tracking classification
had no difference between accuracies in task-present/no-
task classification unlike in octenary classification. This
difference in labeling confusion between task-present/no-
task and octenary classification is an important distinction
because it means that both binary and multi-class classifiers
can be used as a method for pruning uninteresting interac-
tion logs that lack visual analysis tasks.

The support for P3 also suggest that it is more diffi-
cult to differentiate visual analysis tasks from one another
opposed to deciding whether an interaction log contains
a visual analysis task. We qualitatively validated this by
visually exploring predicted “junk” labels and found that
most histories showed short or otherwise sparse interac-
tions compared to more lengthy or short, but consecutive,
sequences of mouse events. Most often we found that no-
task “junk” logs contained interactions indicative of user
error such as “quickbacks:” logs where users immediately
navigated backward. In contrast, the other labels were often
associated with longer-duration logs with greater numbers
of events, which creates a separable boundary between the
“junk” and non-junk labels.

6.5 Exploring possible classification benefits to design

In this section, we explore several possible ways that au-
tomated visual analysis task classifiers can improve the
iterative design process. Our aim is to provide insight about
how MAGI is used, to identify how this insight can be
incorporated into iterative design, and to enumerate testable
hypotheses about cancer genomics visualization interaction,
which can be used to inform future design studies. Our
discussion is based on exploratory analysis after using ran-
dom forest mouse tracking classification to predict analysis
tasks for the remaining 1,267 logs that were not part of
our prior in-lab study (Sec. 5). While interpretation of these
results is limited by a lack of ground-truth, our previous
analyses show that task/no-task separation, and therefore
comparison, is reliable. Additionally, we can be sufficiently
confident in comparisons where there are large label-count
differences given classification error rates.

Prediction results are shown in Figure 8. Junk labels
were the most common (326) followed by cooccurrence and
exclusivity analysis (287), undirected or all-encompassing
exploration (253), and targeted analysis (226). The other
tasks were assigned smaller label amounts: copy number
analysis (2), other (12), cross referencing (45), and transcript
chart analysis (113).

6.5.1 Understanding behavior via interaction frequency

Figure 8 shows that the aberration matrix was interacted
with most frequently compared to the other visualizations.
This information provides several testable hypotheses about
user behavior that can be used to inform future iterative
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Fig. 8. Distribution of predicted task labels for the 1,267 logs that were
not included in our in-lab labeling study using a random forest classifier
and “mouse tracking” feature set.

design decisions. One possibility is that most researchers
use MAGI to test co-occurrence and exclusivity predictions
and therefore use the aberration matrix more than the other
features of MAGI. Another possibility is that the aberration
matrix is used most frequently because its spatial position-
ing at the top of MAGI causes an availability or similar
spatial cognitive bias since it is the first chart users see on the
query. Or, it could be that the aberration matrix is used most
often because of a combination of the two other possibilities.
These classification-based hypotheses lend themselves nat-
urally to established iterative design evaluation methodolo-
gies such as A/B testing, which could help MAGI designers
understand whether the spatial positioning of the aberration
matrix is a large factor for its frequent use.

This location proximity effect might also be supported
by the comparatively low interaction frequencies associated
with the copy number analysis task, as the copy number
aberration browser is located at the bottom of the page.
Hence, just as the aberration matrix was favored because
it is first, the copy number aberration browser might not
be utilized because it is last. Another possible explanation
for its infrequent use is that the copy number analysis task
may be partially subsumed by other tasks given that the
mouse would need to move over other visualizations en
route to the browser. However, anecdotally, we did not find
predominantly copy number focused interactions in other
labels.

6.5.2 Which exploration strategy is more common: Top-

down or bottom-up?

Two common visualization design heuristics are to sup-
port either top-down or bottom-up exploration. Top-down
strategies refers to Ben Schneiderman’s popular tool design
mantra: “overview first, zoom and filter, then details-on-
demand” [42]. In contrast, bottom-up strategies refer to div-
ing into details first: “search, show context, [then] expand on
demand” [43]. This is a critical point for tool design because
supporting detail-oriented, bottom-up exploration can often
be at odds with supporting top-down exploration. As such,
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typical visualization design patterns maintain that it is best
to focus on dominant tool-use patterns (e.g., Ziemkiewicz et
al.’s evaluation of immunobiology visualization [44]).

Hence, the predictive classification results highlight an
open research problem: researchers use MAGI for both
top-down analysis tasks (e.g., “undirected exploration”) in
similar proportion to bottom-up strategies (e.g., “targeted
search”). As such, both exploration procedures should be
supported in future design iterations. This raises an im-
portant design question given Ziemkiewicz et al.’s finding
that visual analysis tools that seek to support all analysis
behavior may lead to substandard designs [44]. What, then,
is the best strategy for supporting tasks that are equally
common without creating two separate tools?

To address this open research question in the design of
MAGI, we implemented and deployed a new resizable and
repositionable layout so that researchers can alter MAGI’s
components to better match their individual requirements.

6.5.3 Can classification counter incorrect generalization?

The predictive classification results were in many ways a
surprise to us given past observations of MAGI, which led
us to expect that cross-referencing was a common and im-
portant task requirement; however, our modeling suggests
that this might not be true. The surprise that our prior
observations did not generalize to the larger collection of
interaction logs is an example of how bias can affect experi-
mental analysis, which we also discuss in Section 6.5.2 with
respect to overfitting search task support. In particular, our
revelation about cross-referencing task frequency highlights
how human tendency to use a representativeness heuristic
when generalizing information [45] can be maladaptive in
design evaluation. The difficulty lies in the fact that most
design studies typically rely on field studies with small
populations [3]. Because humans tend to generalize through
representativeness, which does not take sample size into
consideration, it means that evaluators are likely to overfit
task requirements if they do not take extraordinary care.
Based on our present findings we hypothesize that interac-
tion log classification can benefit iterative design and task
requirement analysis by helping counter sample biases in
tool evaluation by showing the distribution of tasks for
larger sample sizes than what it typically attainable through
in-person observation. By showing an alternative hypothe-
sis to tool evaluators, it is possible that evaluators could not
just avoid jumping to incorrect conclusions about tool use,
but they might also make new discoveries about qualitative
in-person observations.

Our top-down vs. bottom-up predictive findings also
highlight another application of how interaction mining
may help offset bias. Given that it is so common to only
consider one strategy in tool design, evaluators of smaller
in-lab observations may dismiss both requirements’ similar
importances (or not see them at all due to sample bias).

For these reasons, we suggest supplementing in-lab ob-
servation with interaction log analysis of how a tool is used
remotely by a larger sample of users. By using both method-
ologies, designers can make detailed predictions with in-
lab observations and better identify potential sources of
bias by consulting the interaction logs of larger tool-use
samples. Pursuing this mixed-method evaluation design

would preserve the realism of field observations while also
affording designers greater generalizability confidence.

Thus, classification can critically serve as a tool to test
in-lab ecological validity, and with the right data can paint
a comprehensive picture of the types of tasks a tool is most
used for. This insight into tool use will also likely benefit
from future development and adoption of more advanced
approaches, which we discuss in Section 7. However, knowl-
edge acquisition from such automated approaches is in-
herently limited by the lack of context of interaction logs.
Environmental factors, true ground truth, and the cognitive
state cannot be known, only inferred. In contrast, these
shortcomings are what talk-out-loud qualitative methods
excel at collecting. Hence, even with the advent of more
powerful task data mining techniques, we believe quali-
tative evaluation will remain an equally valuable, rather
than replaceable, aspect of tool design. The strength of
classification should therefore not be tested by whether such
approaches can serve as a replacement to qualitative inquiry,
but rather how they can supplement it.

7 BROADER IMPACT AND POTENTIAL OPEN QUES-

TIONS

7.1 Generalizability of contributions

Although our contributions use MAGI as a case study, they
also demonstrate how interaction log analysis can serve
as a viable evaluation methodology for the broader visu-
alization research community independent of application
area. These contributions also show that mouse interac-
tion analysis generalizes from the more deterministic text-
focused applications in Section 2 to more open-ended visual
analysis environments that incorporate not just text, but also
interactive visualizations.

7.2 More accurate modeling may result in different

types of generalizability and implications for design

While the classification error is low enough in our evalu-
ation to infer user behavior and possible design implica-
tions, the development of more accurate classification could
lead to more precise predictions and discussion about the
relation between tasks and effective design. One potential
way to achieve higher accuracy is to include an explicit
feature selection step in future task classification pipelines.
An alternative potential approach to increase accuracy is
to model tasks as mixtures. For example, mixture models
would break away from modeling only the most domi-
nant session interactions, and could provide more robust
understanding of likely-heterogeneous tasks such as “all-
encompassing exploration.”

7.3 Can unsupervised learning achieve comparable ac-

curacy?

Our present evaluation only considers supervised learn-
ing approaches, which leaves the potential effectiveness
of unsupervised approaches an open problem. This open
problem can be tested in the future by evaluating whether
clustering based on geometric-temporal distances of inter-
action segments [23] can accurately predict visual analysis
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tasks. However, one barrier to this approach, which must
also be examined, is how to best segment interaction logs
into discrete components that accurately represent stages of
visual analysis. While it is possible that segmentation could
be skipped, it is unlikely that clustering would produce
accurate results without it because of the large geometric-
temporal variability of entire minutes-long mouse move-
ment between users. One benefit to clustering, as opposed to
classification, is that the phylogenies produced by hierarchi-
cal approaches could be used to test the quality of existing
theoretical interaction taxonomies that are either based on
literature surveys or qualitative observation.

8 CONCLUSION

Our findings illustrate the potential utility of mouse inter-
action log analysis as a new method for analyzing typically
hard-to-access domain expert populations.

Using 1,553 interaction logs of MAGI, an online cancer
genomics visualization tool, we first showed through in-lab
evaluation that low-level interaction data alone is sufficient
for reliable task inference. We then discussed how accessible
classification methods matched our in-lab study inferences
with up to 73% accuracy and could separate interaction
logs with visual analysis tasks from those without with up
to 91% accuracy. Unlike previous interaction log analysis
research, our investigation considered whether interactions
could be inferred by humans and machines from mouse
event data opposed to higher level representations of in-
teraction that explicitly contain richer semantic information.

We conclude that domain expert tool evaluation can
be improved by combining contextually-rich qualitative
observation with larger-scale interaction log analysis. By
leveraging a mixed-methods approach, tool designers can
retain a deep understanding of the environment that their
tool is used in and the analytical goals their tool is used to
achieve; they can then test specific task-based predictions
based on qualitative observation by analyzing interaction
logs of larger population samples to assess the ecological
validity of their in-lab findings.
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