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Abstract

We propose an approach for modeling surfacedetail s such asscales,
feathers, or thorns. These types of cellular texturesrequire a rep-
resentation with more detail than texture-mapping but are inconve-
nient to model with hand-crafted geometry.

We generate patterns of geometric elements using a biolog-
ically-motivated cellular development simulation together with a
constraint to keepthe cells on asurface. Thesurface may bedefined
by animplicit function, avolumedataset, or a polygonal mesh. Our
simulation combines and extends previous work in developmental
models and constrained particle systems.

Key Words: particle systems, developmental models, dataam-
plification, constraints, texture mapping, bump mapping, displace-
ment mapping

1 Introduction

For several years computer graphics researchers and practitioners
have been grappling with the problem of creating and displaying sur-
faceshaving an organic appearance. Texture maps, bump maps, and
related methods often attain the appearance of detailed geometry
without actually creating it. These techniquesdo not suffice, how-
ever, whentheviewpoint is close enoughthat the three-dimensional
(3-D) geometric structure of a surfacetexture is apparent.

We are interested in making images of surfaces covered with
interacting geometric elements, such as scales, feathers, thorns, and
fur. We model these elements as small 3-D cells constrained to lie
on a surface. The cells interact to form cellular textures: surface
textures with 3-D geometry, orientation, and color. Our approach
combines properties of particle systems, developmental models,
and reaction-diffusion methodsinto one system. Figure 7 shows an
example combining all of these approaches.

There are afew challengesin making images of these types of
materials:

¢ The geometry is often too pronounced for using texture- or
bump-maps.
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Figure 1. Thorny Head: Both flat and thorn-shaped cells are con-
strained to lie on a surface defined by a polygonal dataset of a
human head. Flat cellsare used in the neck and chest regions, while
thorn-shaped cells are used on the head. The orientation of each
thorn approachesthat of its neighbors, leading to a continuousfield
of thorns that sweeps across the head. The size of the thorns is
related to the level of detail of the model; smaller thorns are placed
on smaller features.

¢ It is often difficult to map appropriate texture coordinates
onto the global geometry and topology.

¢ The placement, orientation, coloration, and shape of the in-
dividual elements may depend on:

— neighboring elements,
— surface characteristics such aslocal curvature, or
— global phenomenasuch as sunlight.



Geometry

Image

Figure 2: The cellular particle simulator computesthe locations, orientations, and other values associated with the cells. Thisinformationis
converted to geometry and appearance parameters, which is then passed to arenderer to create the image. Note that the cell orientations (red
arrows) become the orientations of the thorns. Using ageometric modeler, we created a geometric object that changes shape from a bump to
athorn based on a single parameter [31]. We usethe cell state variable S,y to control this parameter (Section 4).

Becauseof the potentially complicated interdependenciesof the
elements, it is difficult to create either geometric or textural models
of such objectsby hand. So weturnto automatic data-amplification
techniques, which are similar to the structured particle systemsused
to generate models of plants [26, 30].

Developmental Approach For generating organic patterns, it is
natural to consider a biologically-based simulation. In previous
work [8], we developed a biological developmental model to simu-
late and study patterns generated by the motions and interactions of
discretecells(Figure 3). Theseartificial cellsmove about, grow, and
dividein asimulated petri dish, the extracellular environment. The
extracellular environment can contain physical barriers, diffusing
chemicals, gravity, etc. The ability to form avariety of interesting
patterns with the system has prompted usto explore its application
to geometric texture generation (Figure 1).

The textures we model are formed from many interacting geo-
metric elements. Actual fur, scales, and thorns may beformed from
single cells or multiple cells [19]. In either case, we assume that
the texture patterns arise from the interactions of discrete elements
capable of movement and orientation change, and model each of
these elements as one cell. The patterns are formed asthe cells ex-
perience physical processes of collision, adhesion, and other local
interactions.

Software Structure The approach advocated by this paper is to
automatically grow cellular textures by simulating discrete cellson
surfaces. We then convert the resulting cellular information into
model geometry and coloration, which is rendered. The images
of this paper were generated using oriented, spherical cells, which
are converted into thorns, scales, and other shapes for rendering
(Figure 2).

Overview The remainder of this paper is structured as follows.
Section 2 describes related work. It is followed by an overview
of the system architecture in Section 3. Section 4 describes the
cellular particle system, and includes examples of cell programs
that implement various behaviors. In Section 5 we discuss the
particle converter, which producesgeometry from the cell positions,
orientations and other parameters.

Resultsare presented in Section 6, which describesthe examples
shown in the figures. Thefinal section presents a discussion of the
approach and some directions for future work.
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2 Rdated Work

This approach is a synthesis and extension of work ranging from
morphological modelsto general texture mapping. In this section,
we discuss our approach in the context of four related areas:

¢ Levelsof Detall
Biologically Motivated Morphogenesis
Reaction-Diffusion Methods
Particle Systems

Levelsof Detail Choosing theappropriatelevel of detail forimage
synthesis at a given viewing distance has long been recognized
as an important topic in computer graphics [4, 14, 15]. At large
scales, geometric model sare necessary; intermediate scal es, texture
mapping and similar techniques may be sufficient; at the smallest
scales, illumination models suffice to describe the microgeometry
of the object [38].

The level of detail of the models addressed in this paper falls
somewhere between the use of hand-crafted geometric models and
bump- or texture-mapping. A range of geometric levelsis available
to us because of the modular nature of our technique.

Complex, oriented textures have been created and rendered in
many ways, hotably with texels[15]. Thetexel approachisinterme-
diate between geometry and mapping techniques, but leaves open
the question of how to arrange the texel elements appropriately.
Our approach addresses this problem, and can produce models to
be rendered using texels.

Displacement mapping is another techniquefor adding geomet-
ric detail to surfaces[3]. Aswith texels, the displacement mapping
technique does not address the problem of determining which dis-
placementsare necessary to create aspecific effect, suchasafield of
similarly oriented thorns. A possible application of our technique

Figure 3: Theseimages demonstrate the pattern formation capabil-
ities of our 2-D cell simulator [8].



is to create such displacement maps, for example by creating flow
fields[21].

Biologically Motivated Morphogenesis The cellular develop-
ment system which formsthe basisof thiswork [6, 7, 8] incorporates
elements of several established biological models of morphogen-
esis: Turing's morphogens [35], Odell’s mechanical models [20],
and Lindenmayer-system cell lineage determinants [24], as well as
our own model of cell contact and adhesion.

Much well-known computer graphicswork isbiologically based.

The combination of developmental models with geometric con-
straints enables the creation of many organic patterns. It has been
explored in work on plant growth [13, 23], plant organ place-
ment [10], and seashell patterning [9].

Interacting geometric elements were used by [10] to model the
placement of plant organs. Our cells are a generalization of these
elements, with many additional capabilities, including independent
movement, adhesion, and changes in size and orientation due to
cell-cell interaction.

In [9], pigmentation patterns on seashells are modeled using
reaction-diffusion equationson surfacesdefined by sweeping agen-
erating curve along alogarithmic spiral. This shareswith our work
the concept of applying pattern formation modelson 3-D surfaces.
Their use of continuous reaction-diffusion equations to generate
the patterns differs from our use of discrete cells. For the types of
cellular texture we are investigating, the choice of a discrete model
seems appropriate.

Spatially-oriented models of plant growth are capable of gener-
ating attractive plant images [1, 13]. The placement of geometric
objectsinthe environment of plantsaffectstheir growth. Theimpor-
tance of combining environmental and endogenous mechanismsin
forming organic shapesin computer graphics has also been demon-
strated using environmentally-sensitive L-systems [23], which al-
low interaction between the environment and the development of
a structure defined by an L-system. In an application to synthetic
topiary, elements sensetheir global position and orientation, and are
pruned according to a bounding surface. Our work also combines
geometric environmental factors with an endogenous developmen-
tal model to describe cell behavior. We differ from these plant
models by the use of discrete motile cellsthat are able to move and
rotate independently.

Reaction-Diffusion Methods Reaction-diffusion equationswere
first proposed as a model for morphogenesisby Turing [35]. They
are a continuous approximation to a sheet of many discrete cells
interacting over time. Our system models discrete cells explicitly,
and can generate patterns similar to continuous reaction-diffusion
equations since it is actually a more detailed model of the same
biological system.

Reaction-diffusion eguations have been successfully applied to
the generation of texture maps [36, 40]. Because they are based
on natural phenomena, they have an appealing organic quality. In
addition, they avoid problems of parameterization and topology by
creating the pattern directly on a surface. Our approach shares both
of these benefits.

In our 2-D implementation (Figure 3), we include both discrete
cells and a continuous reaction-diffusion computation. The two
modelsarealso ableto interact, sincethediscretecellscan senseand
emit the continuously diffusing chemicals. The 3-D implementation
doesnot yet support continuously diffusing and reacting chemicals.
However, weare ableto reproduce someforms of reaction-diffusion
behavior using cell-cell interaction in the discrete model.

Particle Systems Early particle systems [25, 28] had little or
no interparticle interaction, unlike later work based on molecular
models and other criteria[17, 34]. Our work includes elements of
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Witkin and Heckbert's surface-constrained particles [41], and the
orientation constraints of Szeliski and Tonneson [33]. Reynold’s
“boids” [27] introduced somewhat more sophisticated interacting
particles with programmable behaviors. In addition, his boids, like
our interacting cells, can sense and react to each other and to their
environment.

3 Software Architecture

We arrange the processinto three software modules (Figure 2).

cellular particle simulator with surface constraints: computes
locations, orientations, sizes and other parameters of cells
based on a behavioral specification. Allows particles to be
constrained to a surface (implicit, polygon mesh, or volume
dataset isosurface).

parameterized particle-to-geometry converter: convertscell po-
sitions, orientations and other parametersinto shape and ap-
pearance parameters.

renderer: takes shape and appearance parameters plus a scene
description and renders the scene. The images in this paper
were generated with John Snyder’sray tracer [32], which was
chosen primarily for its speed on large datasets.

The implementation of our framework involves the addition of
cell-cell interactions, orientation constraints and surface constraints
to a more traditional particle simulator. A simple version of a
particle converter can be implemented using a geometric modeler
to place a geometric object at each particle’s location with the
appropriate sizeand orientation. The cellular particle simulator and
particle converter are described in further detail in the Sections 4
and 5.

4 Cdlular Particle Simulator

The cellular particle system combines cell-cell interactions, cell-
cell adhesion, oriented particles, and surface constraints into one
unified framework. Additional discussion of the cell simulator and
its implementation can befound in [7, 8].

Our system allows the user to specify cell behaviorssuchas‘go
to asurface’ and ‘align with neighbors' by combining modular cell
programs. Cell programs are first-order differential equation terms
that modify the cell’s state (see Table 1).

In Section 4.1 we discuss how to use the simulator, and then
delve into amore detailed mathematical description of the cell pro-
gramsin Section 4.2. Section 4.3 describesthe cell programs used
to create simulations like those shown in the figures. Section 4.4
presents methods for incorporating various types of surfaces into
our surface constraint method.

4.1 Usingthe Simulator

For a particular simulation run, the user defines

o thecell state variables,

o the extracellular environment, and

o thecell programs.

Theuser also specifiesinitial placementsand other initial conditions
for the cells.

Users can control the simulation by writing cell programs to
describe the behaviors of the cells, and by putting surfaces into
the environment. More direct interaction is also possibleduring the
simulation process. Theuser can halt the simulation, changethe cell
programs, and choose individual cells or groups of cells to modify
or remove. The simulation is then restarted with the modifications.
It is sometimes convenient to freeze certain cell values when they



have reached a desirable state. Frozen values remain fixed while
others continue to vary when the simulation is restarted. Particular
seed cells can also be placed and frozen in situations where the user
wishes to achieve a certain effect. For instance, frozen cells with
a particular orientation could encourage fur to run in a particular
direction on a surface.

4.2 De€finitions

A cell is an entity that has position, orientation, shape, and an
arbitrary length state vector for parameters such as chemical con-
centrationsin areaction-diffusion simulation. It is a generalization
of aparticlein a particle system.

Cell State Variables The state of acell,
S

( p,q,r, Sdiea Ssplit
SCOaSCIaSCQa o 'aSaOaSalaSGQa o )

is a vector containing values representing position (p), orientation
(a), size (r), and concentrations of chemicals within the cell (S.;)
or inthe cell membrane (S;;). Thevariable S, ;;; isusedto trigger
an event, the cell splitting. This occurswhen the value of this state
variable exceedsa threshold, 0, 1;;. Sy;. is defined similarly, with
an associated threshold, 8 4; ..

In real cells, chemicalsin the cell membranes of adjacent cells
can bind together and enable cells to sense that they are in contact.
The chemicals can aso be adhesive. The binding of membrane
chemicalsis specific; some chemicalsbindin complementary pairs,
and othersbind to themselves. Our model allowsthe user to specify
the adhesive properties of the membrane chemicals, and provides
the amount of each bound membrane chemical as an environmental
parameter (described below).

To define a cell’s motion, we specify cell programs that con-
tribute to p’, the viscous force on the cell. This is the attempted
motion of the cell, which is further modified by the influence of
collisions, adhesion, and viscous drag. We do not currently com-
puteinertial dynamics, but instead use viscous dynamics (F = nv),
which makesthe cellseasier to control and predict. Collision forces
are computed using a polynomial penalty function (kxg where X, is
the overlap between two cells).

We represent cell orientation in 3-D using a quaternion. In
the exposition that follows, we sometimes refer to the cell’s local
coordinate frame using the three basis vectors: ey, ey, e,. Thisis
the coordinate frame obtained by rotating from the lab frame using
guaternion q.

Extracellular Environment The cell’s external environment is
a vector of parameters that are provided as an input to the cell
programs. These parameters describe everything the cell can sense
from its current position:

A ( Aw, Aar, Aaz, - -+, Apo, VAp, Apt, VAp, -,

Avo, Avl, e
wa, Awy, sz, AuO, Aul, o )

The A4 values represent the amounts of membrane chemicals
that are bound to membrane chemicals on neighboring cells. The
value and gradient of a potential field, such as an implicit function
or the concentration of a diffusing chemical, are provided in Ap
and V Ayi. Thesefields are evaluated at the current location of the
cell, and will generally have different values at different locations.
Other scalar and vector fields can be providedin A and A.;, which
can also be functions of position.
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The orientation of a cell relative to its neighborsis made avail-
able to the cell programsin the vectors A ;. This vector describes
the rotation that would align this cell’s e; axis with the average
orientation of the adjacent cells. This parameter is used to align
the orientations of cells, as shown in Figure 8(a) and others. The
direction A, specifiesthe axisof rotation, and the magnitude spec-
ifiestherotation angle (similar to angular velocity). Asan example,
consider the computation of the average relative x-axis for acell b,
computed as a sum over neighboring cellsc:
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n
c€ neighbors

el x ¢

el < ]

Aux = cos™(ey - €5)

where ey, isthe x-axis of the cell ¢, and cell b hasn neighbors.

Cell Programs Each cell hasseveral cell programs, which arefirst
order differential equations describing how its state changes over
time. Examplesaregivenin Table 1 and Section 4.3. A cell program
is a function of the cell’s current state S and its environment as
expressed by A. Different typesof cells usedifferent cell programs
or different combinations of the same cell programs to definetheir
behaviors. Evenif two cellssharethe sameset of cell programs, they
will generally behave differently becausethey experience different
local conditions depending on their position.

The entire system of differential equations to be solved is ob-
tained by superposing ordinary differential equations from the cell
programs for every cell. Additional equations arise from compu-
tation in the environment (e.g., diffusion of chemicals, although
this is not in the current 3-D implementation). In order to handle
discontinuous changes, such as when cells are created or die, we
use a piecewise ordinary differential equation solver [2, App. C].

Mathematical Basis for Cell Programs Differential equations
are a general tool for creating dynamic behavior. In our cell pro-
grams, we employ equationsarising from physical models, as well
as those arising from constraint solution techniques.

Higher order linear differential equations, such as those for
mechanical or chemical systems, can be rewritten as multiple first
order differential equations (i.e., cell programs) with the addition
of state variables. In this case, the simulation dynamicsreflect the
dynamics of the equations.

In order to write constraintsascell programs, weformulate them
as energy functions! to be minimized [39]. Each constraint is ex-
pressed as an energy function E; (S, A) of the state of the system, S,
andthe parametersdescribingthe environment, A.. Hard constraints
could also fit into this framework using Lagrange multipliers [22].

Using relative constants k; to weight the soft constraints, we
express the overall energy to minimize as:

E(S, A) = KiEx(S, A) + - - - + kaEn(S, A)

We can minimize this energy according to gradient descent by
modifying the state according to

ds .
@ Tk

Super position of Cell Programs Because the overall energy is
expressed as a sum, the cell programs dS;/dt are also sums of
terms, one for each constraint. We find it convenient to write cell
programs asincremental collectionsof constraints. We write thisas
dS;/dt += {constraint term} in our example programsin Table 1.
Multiple cell programs can thus be added together conveniently.

o
S

INote that when we use constraint-based cell programs, the dynamics of our sm-
ulation dependsupon the gradient descent algorithm, and is not necessarily physically
meaningful.



Behavior

Environment Requirements

Cell Program

Go to asurface.

Animplicit surfacef(x) = 0.

p'+= —kf(P)Vf(p)

Dieif too far from surface. Animplicit surfacef(x) = 0. Sy += é f(P) @4ie — Saie
Align an axiswith a vector field. A vector field, v(x). = k% cos ey - ”xgp;”)
ey isthe cell’s y-axis. q += (/2 wvq
Align x-axis with neighbors. Aux, X-axis orientation relative to | q’ += (1/2) Auxq
neighbors.
Align z-axis with neighbors. A.; z-axis orientation relative to | q’ += (1/2) A.zq
neighbors.
Maintain unit quaternion. q += 4kl -q-q)q
Adhereto other cells Membrane chemical a2 which binds to | S, += 1.0— S;»
itself.
Divide until surfaceis covered. A 42, amount of a2 which is bound. S;plit += ¢(y, Aa2) Osplic — Sspiit

Set sizerelative to surface feature size

A, p, avaluewhich reflects the size of the
nearest feature on the surface.

r'+= Ayp —r

Example of reaction-diffusion in
discrete cells.

Agp, A 42 amounts of bound membrane
chemicals.

The user has specified that the membrane
chemical a0 bindsto al, and that a2 binds

S’CO ZOAag/Aa2+
10S,/(1+S
Sla1+ 095Aag/Aa2

Sla1+ ¢(3 SCO) SCO

2,)— 055,y +13

to itself.

Slal += _Sal
S,0t=5— Sup
S’ag 1 Sa2

Table1: Example Cell Programs. Scalar or vector fields are given as afunction of spatial location, x, and are evaluated at the current location

of the cell, p. Seecell program descriptionsin Section 4.3.

4.3 Example Cdl Programs

The cell programs listed in Table 1 exemplify the types of cell
programs used to make the figuresin this paper. We describe each
briefly below.

Remember that the contributions from multiple terms are added
together to makeasingledifferential equationfor each statevariable
(using the += notation). Many of the cell programs shown here are
of the form S(t) = dS/dt = 8 — S(t) for some constant 3, which
causes S to quickly approachthe value .

Go to a surface. This cell program implements a constraint to
keep a cell on the implicit surfacef(x) = 0. An approximation to
the gradient, Vf(x), is also available in the environment. As the
simulation runs, a cell with this program will descend the gradient
and come to rest on the surface. The parameter k determines the
speed with which the particle approachesthe surface.

Die if too far from surface. Recall that when the variable Sy;.
crossesthethresholdd 4., it triggerscell death (Section 4.2). Inthis
cell program, we cause Sy, . to rise towards the threshold quickly
if the cell is greater than a certain distance from the surface. Com-
puting this requires ameasure of the distance from the surface. For
the implicit surfaces used in the figures, f(x) is an approximation
to the distance from the surface.

The equationin Table 1 causescells at adistance greater than d
todie. Similar cell programscan causeacell to dieif it becomestoo
large, its orientation straystoo far from neighboring cells, or dueto
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any other condition that is a function of the cell’s environment and
internal state.

Align with a vector field. Inthis example, we align the cell’'sy-
axis, ey with agiven vector field v(x). Thevector field is evaluated
at the cell’s current location, p.

We first compute the vector wy, which represents the transfor-
mation required to rotate the ey into v. wy is the axis of rotation,
and the length of wy specifies the angle through which to rotate.
The formulation works with any of the cell’s axes.

The form of the cell program comes from the equation

"= (1/uwaq,

which defines the rate of change of a quaternion, q, for angular
velocity w [12].

If we have multiple cell programs of this form, the w; terms
add, which allows us to constrain one, two, or all three axes of the
cells. If the orientation constraints conflict, the cell’s orientation
will approach the average orientation. If they don’t conflict, all
constraints will become satisfied.

Align with neighbors. The three orientation constraints on the
cell’s x-, y- and z-axes fully constrain its orientation. Constraining
two axeswould be sufficient in most cases, except where the vector
field v(x) happenedto be collinear with the x- or z-axis. Having the
extra constraint keeps us from running into problems in that case,
and also aids the convergence of the cell alignment process.



Maintain unit quaternion. Itiswisetoaddaconstraint to ensure
that the quaternion does not stray too far from a unit quaternion
during the integration of the differential equations. We can do
this with another simple constraint. Table 1 shows a term for
this constraint that comes from minimizing the energy expression
E = (1 — q - q)?, which describes the deviation of ¢ from a unit
quaternion.

Adhere to other cells. This equation causes the variable S, »
(representing the surface chemical a2) to approach and stay at the
value 1.0. A pair of cells expressing a2 will stick together once
they comein contact, and aforceis required to pull them apart. The
environment vector for each cell will report the amount of chemical
bound oneachcell, A ;2, which may be used in other cell programs
to determine if the cell has contacted another cell. The amount
bound is computed from the contact area between the two cells, and
the concentrations on each cell.

Divideuntil surfaceiscovered. Divideuntil theamount of bound
surface chemical a2 reaches the level v. A,2 reports the total
amount bound from all cellsthat arein contact, which givesthe cell
ameans of determining how many neighborsit has. Note that the
mechanism has more general utility than just counting neighbors.
For instance, acell with twicethe concentration of a0 will contribute
moreto A ;o.

The auxiliary function ¢ (v, A 4p) is used in this cell program
to compute a continuous version of the condition (A4 > #).
The function ¢(a, b) computesa continuous version of the boolean
condition (b > a):

#(a,b) = (tanh((b — a)) + 1)/2.

The value of this function will be near one for (b >> a) and near
zerofor (a << b).

Set sizerelativetosurfacefeaturesize. InFigurel, thecell sizes
are related to the sizes of features in the polygonal database. This
is achieved by providing the cellswith avalue A, that represents
the area of the nearest triangle. The value A ,p could be used to
pass information about local curvature or any other parameter that
we wish to use to change the cell behavior.

Example of reaction-diffusion in discretecells. Thefull deriva-
tion [7] of this set of equationsis beyond the scope of this paper,
however we will describe the equations briefly. The first equation
in this set defines a genetic switch [18] that tends to drive S, to-
wards one of two values, depending on the influence of the term
Ago/Ag42. Intermsof Meinhardt’s activator-inhibitor models[16],
S,y is the activator and S, ; is the inhibitor, which is propagated
by the activity of membrane chemicals. The other equations deter-
mine interactions of membrane chemicals that lead to an effective
diffusion of thevalue of S,; amongthe cells. Thevalueof S,y can
then be used to determine the final rendered shape of the cell, as
illustrated in to Figures2 and 7.

4.4 Surface Constraints

We have applied surface constraintsto avariety of surfaceclasses:
e polygonal mesh,
e implicit function, and
o isosurfaces of volume data.
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The surface constraint cell program evaluates an implicit func-
tion to enable the cell to find and stay on the surface (Table 1).

Several of the surfacesused to create the figures are defined by
triangular meshes. We create a rough approximation to an implicit
function for these meshes. Any implicitization method will work,
and in fact it doesn’t have to be very exact. We implement this
function by constructing an approximate kd-tree for the triangular
mesh. In constructing a true kd-tree, each additional vertex may
add several new partitions. Our approximation adds only the one
necessary partition for each added vertex. This makes the tree
smaller and faster to precompute, but no longer actually gives the
closest point. To evaluate the function, we look up the triangle
center in the kd-tree supposedly nearest to a given point. We then
check adjacent triangles to see if they are closer, to improve the
characteristicsof the approximation. Wethen computethedirection
and distance to that triangle, and use it as we would the gradient
of an implicit function. We find the approximation, in conjunction
with the local search, to be satisfactory for this application.

5 Particle Converter

The particle converter converts information about the particles and
their environment into geometry and appearance parameters for
rendering. It receives al of the results of the simulation, includ-
ing the position, orientation and size of each cell, concentration
of reaction-diffusion chemicals, and other arbitrary user-defined
parameters, such astype or color. It also may have accessto infor-
mation about how far each cell is from the surface and properties of
the surface near the cell (e.g, curvature) The converter also knows
which cells contact each other.

The particle converter concept has proven to be extremely con-
venient. It enables usto do avariety of useful operations, includ-
ing:

e choosing an appropriate representation for each cell based on
its screen size (Figure 4);
smoothly changing the appearance of a cell based on a con-
tinuously varying parameter (Figure 7);
using the cell positionsto generate a spatial subdivision (sim-
ilar to [33, 37, 41));
using the cell orientations to compute a flow field on the
surface (useful for displacement maps [21]); and
experimenting with various colorations and geometriesusing
the same simulation dataset.

The output of the particle converter is a collection of geometry
and appearance information suitable for a particular renderer. This
collection will generally include one or more geometric primitives
for each cell, and the local texture, transparency, or bump informa-
tion. The geometry can besimple, asin Figure 5, whereeach cell is
rendered as afew polygons with a mottled-green texture map. Or
it can be more complicated, asin the parameterized 3D thorn shape
that curls based on cell state information (Figure 7 (c)).

The particle converter can also use contact information to calcu-
late the size or shape of geometric primitives based on neighboring
cell proximity, or to interpolate parameters such as orientation be-
tween cell centers.

We have implemented two particle converters. One provides
optionsfor choosing a particular geometry and texture for each cell.
In addition, it considersinformation associated with the underlying
polygons, such as which body part it represents in an anatomical
model (lips, eyes, etc.) This can be used to change the rendering
of cellsin certain areas, as can be seen on the lips of the man in
Figure 1.

Our second particle converter was implemented using a general
purpose modeler [31]. Taking advantage of the flexibility of this
modeler, we can create parameterized objects such as the bump-to-
thorn shape shown in Figure 2. The modeler is used to create the



Figure 4: In the top image, the thorny spheresat further distances
are rendered with fewer polygons. The bottom image shows a
closeup of the nearest and furthest objects, so we can see the re-
duced number of polygons.

thorny spheresin Figure 7.

Rendering an appropriately scaled representation One of the
drawbacks of data amplification techniques[30, 26] such asoursis
their ability to generate aridiculous amount of geometry to render.
To amelioratethis, we usethe particle converter to choosegeometric
primitives appropriate to the size of the object in the final image
(Figure4). Thisapproach could becarried even further, for instance,
by creating texture maps based on the cell positions.

6 Resaults

In this section we list a series of examplesthat highlight features of
our system.

Scales Figure 5 shows four views of a spherical object with a
uniform covering of similarly-oriented cells. The cell programs
used here incorporate terms to divide until the surface is covered,
to stay on the surface, and to die if pushed too far off of the surface.
Initially, several cells were placed near the surface, and allowed to
divide and wander. The cells were also given a soft constraint to
align their y-axeswith the gradient of the surface implicit function,
and to align their x- and z-axes with their neighbors.

Note that two singularities in the orientations of cells arise nat-
urally on the sphere, dueto its topology. Oneis visible on the near
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Figure 5: Scales: Four views of a spherical object uniformly cov-
eredwith similarly oriented cells. Eachcell isrendered asagroup of

four polygonswith a texture and transparency map. The polygons
aretilted slightly to give alayered appearance.

Figure 6: Cellular textures can handle unusual topologies.

side of the upper right sphere. Unlikestandard texture mapping, this
method introduces no particular parameterization problems, suchas
stretching or shrinking of the texture.

A Knotty Problem Figure 6 shows that the cellular texture ap-
proach is capable of creating textures for surfaces with unusual
topologies. It is hot necessary to have a parameterization for the
surface. This surface was designed by John Hughes and John Sny-
der.

Thorny Head: Changing cell size to match surface features
The examples described so far have used cells that are relatively



uniform in size. Figure 1 shows an example where the cell size
is related to the detail level in the underlying polygona model.
We achieve this by providing the cells with another environmental
variable: the area of the nearest triangle in the underlying polygon
mesh. Note the finer texture and geometry around the eyes and
mouth.

Different rendering parameters were chosen according to prop-
erties of the underlying polygonal model. Each polygon in the
underlying database is associated with a region of the body. The
particle converter assigned different shading propertiesto the cells
in the head and neck regions. At the eyes, the underlying polygonal
representation shows through the cell texture.

Thorny Spheres: Differentiated cellular textures Thisexample
shows several important capabilities of the system. It shows

¢ thecreationof simplereaction-diffusion patternson asurface,

¢ the use of the concentrations of cell chemicals to change

parameters of the rendered geometry, and

¢ the ability to restart simulations from an previous state with

new cell programs, causing new behaviorsto occur.

These cells are using reaction-diffusion equations similar to
those in Table 1 to create patterns of chemicalsin the cells. The
diffusion of chemicals occurs by contact between cell membranes,
thus it can only occur between adjacent cells.

Using a geometric modeler, we created a parameterized geo-
metric object that changesfrom abump to athorn based onasingle
parameter [31]. The particle converter sets this parameter to the
value of astate variable representing the concentration of one of the
reaction-diffusion chemicals.

We can seethat thereisapatch of cellson thefront of the sphere
with very little of the chemical (rendered as bumps), and a larger
patch on the back with more of the chemical (rendered as thorns).
In addition to the sharp boundary between the patches, note that the
height of the thorns on the back patch varies continuously as they
sweep around the sphere.

These simulations began where the earlier sphere simulation of
Figure 5 left off, with new rules to causethe cells to differentiate.
This isa common motif of user interaction with the system: halt a
simulation, modify cell programsand parameters, and then continue
simulating.

A Bear of aSurface InFigure 8, we show afur-covered model of
abear defined as an isosurface of sampled volume data. We would
likefor the bear’sfur to have anatural-looking orientation [15]. The
bear on the left, with the fully combed fur, started from asingle cell
and used a set of rules similar to thoseused for Figure 5to distribute
and orient the cells. Each cell on the bear is rendered with a group
of geometric objects meant to roughly represent a hunk of thick
hair.

The bear on the right, with the patchy fur, was the result of a
serendipitous combination of unintentional cell programs. Rather
than having each cell align with all of its neighbors, each cell
chooses one neighbor to align with. Also, cells do not attempt
to align with neighbors that are oriented in the directly opposing
direction. Thisbear started from about 2000 arbitrarily chosencells
on the surface.

Additional, more specific, orientation constraints could cause
the fur to run more naturally down the limbs. Other cell programs
could be added to cause the fur to be shorter in the region of the
face and longer on the haunches, or to change the coloration based
on the orientation or curvature of the bear’s features.
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7 Discussion

The combination of particle constraint techniqueswith devel opmen-
tal models enables the generation of a variety of cellular textures,
as shown in the figures. We have found the approach to be a pow-
erful method of creating attractive computer graphics models of
organic objects. In our experience with making cellular textures,
we encountered some difficulties, which we describe below. Some
of these limitations are associated with our current implementation,
and can be remedied without changing the basic framework. The
problems with simulation speed and data explosion are less easily
finessed, and will require further research to addressfully.

Some commercially produced computer graphics films and vi-
deos contain models that have textures that appear similar to ours.
The techniques used to generate them are generally proprietary
and unpublished, hence we cannot definitively compare them with
our work. Software for orienting fur on a CG character has been
developed at Industrial Light & Magic [5]. It isinteresting to note
that their discussion of the difficulties encountered closely parallels
our own experience.

Shapes Thespherical shapesof cellsin asimulation generally are
not the shapeswewant to render, and so the particle converter might
make objectswith undesirableintersections. Thiscanbeminimized
by a careful choice of cell geometry, but a more robust solution is
to use the desired geometric shape directly in the cellular particle
simulation. Thiswould allow cell programs to calculate collisions
based on more accurate geometry.

Experiencewith Writing Cell Programs Writing cell programs
can bedifficult. Programming independently moving cellsby spec-
ifying differential equations has many desirable properties, but re-
quires a different intuition than other types of programming, and
often takes awhile to get right. Aswith many tasks, it gets easier
with practice. Here are some suggestions for using this program-
ming paradigm:

e Copy and combineknown cell programs from other research-
ers, such as surface or orientation constraints [41, 33].
Think about the constraints in the energy formulation (Sec-
tion 4, and [39)]).
Satisfy one constraint at a time; e.q., first get cell positions
right, then modify other attributes.
Force certain problem cellsto be acertain way (through direct
interaction, Section 4.1).
Kill problem cells and regrow (Section 4.1).
Apply artificial evolution [29], and be patient.

Simulation Speed Simulations can be slow for some kinds of
cell programs. We have some that run in seconds, and others, like
the large datasets, that take many hours (e.g., the bear in Figure 8,
and the head in Figure 1). Generally, performance degrades as the
differential equationsget stiff [11]. For some behaviors, clever cell
programslikethosedescribedin [41] avoid creating stiff differential
equations, and so run faster.

Data Explosion The data produced both by the simulation and
by the particle converter can get very large. We have partialy
addressed this by parameterizing the particle converter output by
viewing distance (Figure 4). However, the simulation still has to
compute enough cellsto cover the surfaces, independent of viewing
distance.



Figure 7: Varying Thorns. Reaction-diffusion-like equations determine the pattern of bumps and thorns on these spheres. Note the
continuously varying thorn height and thorn curvature on the center and rightmost spheres.

Figure 8: The bear on the left is fully combed, with all cells oriented like their neighbors. The bear on the right has patches of similarly-
oriented cells.

Future Work

There are several directions in which we would like to extend this
work. First, we plan to continue extending and refining the cell
programs to generate more complex cellular textures. We also
are interested in running simulations on objects as they move and
change shape. Modeling the motion of feathers on the wings of a
flying bird, or hair on a running animal would be exciting. Initial
experiments (not discussed in this paper) indicate that this will be
feasible.

Implementing more sophisticated cell geometriesin the particle
simulator will give us more realistic placement of detail, and avoid
self-intersectionsin therendering. Finally, wewouldliketo explore
the possibilities of creating shapes directly from the fundamental
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interactions of the cells, without the surface constraint.
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