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Çağatay Demiralp, Radu Jianu, and David H. Laidlaw

Abstract We present and compare two low-dimensional representations, 2D point

and 2D path, for tractography datasets. The goal is to facilitate the exploration of

dense tractograms by reducing visual complexity both in static representation and

during interaction. The proposed planar maps have desirable properties such as vi-

sual clarity, ease of tract-of-interest selection, and multiscale hierarchy. The 2D path

representation also conveys the anatomical familiarity of 3D brain models and cross-

sectional views. We demonstrate the utility of the representations in two interactive

systems where the views and interactions of the standard 3D streamtube represen-

tation are linked to those of the planar representations. We also demonstrate a web

interface that integrates precomputed neural-path representations into a geographi-

cal digital-maps framework with associated labels, metrics, statistics, and linkouts.

We compare the two representations both anecdotally and quantitatively via expert

input. Results indicate that the planar path representation is more intuitive and easier

to use and learn. Similarly, users are faster and more accurate in selecting bundles

using the path representation than the 2D point representation. Finally, expert feed-

back on the web interface suggests that it can be useful for collaboration as well as

quick exploration of data.

1 Introduction

Diffusion-weighted MRI (DWI) enables neural pathways in the in vivo brain to be

estimated as a collection of space curves, called a tractogram. The study of trac-

tograms (i.e., tractography) has important applications in both clinical and basic

neuroscience research on the brain. Tractograms have visual complexity propor-

tional to the intricacy of the axonal brain connectivity and, with increasing DWI

resolutions, this complexity is becoming greater and greater. It is thus often difficult
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2 Çağatay Demiralp, Radu Jianu, and David H. Laidlaw

Fig. 1: 2D point representation linked with a streamtube representation in an interactive tractogra-

phy visualization tool.

Fig. 2: Schematic 2D path projections of tractograms as part of a standalone interactive system

(left) and as a web-accessible digital map (right). The digital map interface easily incorporates any

tract-associated information, including labels, links, metrics, and statistics. Shown in the pop-up

window on the right is the “brain view” of the selected tract.
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for practitioners to see tract projections clearly or identify anatomical and func-

tional structures easily in these dense curve collections. This is important because,

for example, a clinical study into a neurodegenerative disease typically involves se-

lecting more than 30 tract of interests (TOIs) manually across different datasets.

Therefore, it is necessary for tractography visualization tools to provide means to

reduce and help cope with visual complexity at interaction and representation lev-

els. We believe two concepts, abstraction and filtration, applied to representation

of datasets can help users overcome the difficulties of visual complexity. While ab-

straction involves simplification and generalization, filtration here entails clustering

and hierarchization. With these ideas in mind, we proposed low-dimensional point

representations for better interaction with fiber tracts in [17], along with [7]. Driven

by known embedding methods, embedding in two-dimensional space provides an

interesting window into the manifold space of neural connectivity and help in fine

selection of tracts. A drawback of point representations is, however, that coordinate

axes in the low-dimensional space lack an anatomical interpretation. It is clear from

evaluations in [7, 17] that having a frame of reference, anatomical or otherwise,

is important for users. Motivated by this problem, we introduced two-dimensional

neural paths that have the desirable properties of low-dimensional representations

while preserving meaningful and familiar coordinates in [18]. In this chapter, we

provide a unified discussion of our these earlier work on planar point and path rep-

resentations of tractograms [17, 18].

DWI is the source of all the data used in the work presented here. We first give

an elementary introduction to DWI and then briefly discuss related work on tractog-

raphy and web-based visualizations.

2 Related Work

Diffusion-weighted magnetic resonance imaging (DWI) measures the diffusion rate

of water molecules in biological tissues in vivo [24]. Since tissue characteristics, ge-

ometric or otherwise, at a given point affect the diffusion rate, measured diffusion-

rate information is an indicator of the tissue characteristics at the point. In particular,

water in fibrous tissues such as brain white matter (i.e., a collection of myelinated

axons) diffuses faster along fibers than orthogonal to them. Therefore, it is possi-

ble to estimate fiber trajectories computationally using diffusion models such as the

tensor model that quantify anisotropic diffusion. Diffusion imaging based on fit-

ting second-order tensors to DWI sequences is known as diffusion-tensor magnetic

resonance imaging (DTI) [4]. Fiber trajectories are computed fromDTI data by inte-

grating bidirectionally along the principal eigenvector of the underlying tensor field.

This process, called fiber tracking, yields a dense collection of integral curves (i.e.,

a tractogram). All the tractograms used our work were obtained by fiber-tracking in

DTI volumes.

Tractograms are often visualized with streamlines or variations of streamlines in

3D [22, 28]. Reflecting the intricacy of the connectivity in the brain, these 3D mod-
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els are generally visually dense. Consequently, typical interaction tasks over tracts,

such as fine bundle selection, are often difficult to perform and have been a focus

of recent research [1, 2]. We proposed planar point representations to improve in-

teraction with DTI fiber tracts [17], concurrently with Chen et al. [7]. There are,

however, differences between these two works. First, we use hierarchical clustering

to create multiscale representations, which makes the exploration of large datasets

easier, both visually and computationally. Second, while our work uses a simple

force-based embedding method, Chen et al. uses the SMACOF algorithm, an iter-

ative method that minimizes the metric stress of multidimensional scaling (MDS)

using majorization [21]. And third, we use the embedding procedure also to create

a “nice” coloring such that colors of data points perceptually reflect the structure in

data points.

To address the expert concern about the insufficient anatomical context in the 2D

point representation, we recently introduced 2D path representations [18], which are

also projections of fiber tracts into a plane, but as planar curves rather than points.

One of the advantages of the 2D path representation is that it can be naturally

integrated into web-based digital geographic map frameworks. Basic data visual-

ization has been available on the web for many years but was usually limited to

traditional techniques such as bar graphs and charts. More recently, however, visu-

alization research started targeting this environment and advanced applications have

emerged.ManyEyes [26] paved the way for everyday data visualization, with subse-

quent studies such as [25] and [8] proving the need for accessible web visualization.

While web-development toolkits such as [5] greatly aid web visualization develop-

ment, large-scale web-visualization is limited by inherent browser capabilities, as

demonstrated in [19]. Alternatively, stand-alone systems have been made available

in applet form or can be run as client applications directly from websites. However,

users still must control the parameters involved in producing visualizations, specify

their data queries and learn the system features. This often constitutes an undesir-

able overhead. Yet another approach, most similar to our work from an implemen-

tation standpoint, is to use Ajax (asynchronous JavaScript and XML) technology to

perform the rendering on the server side and serve images asynchronously to the

client browser. The essential difference between the present work and traditional of-

fline visualization systems is that the former separates interaction and display from

rendering and computation. Our brain maps differ by eliminating users’ efforts in

creating visualizations and assigning this task to experts and by using the Google

Maps API, which is an Ajax framework for interactive display of pre-rendered im-

ages. Closest to our work are X:MAP [27] and Genome Projector [3], which present

genome browser tools implemented using the Google Maps API. We extend this

idea to a new domain and demonstrate its usefulness for tractography datasets.



Exploring brain connectivity with two-dimensional maps 5

3 Methods

Both point and path representations are projections of fiber tracts onto the plane:

Each tract is represented with a 2D point in the former and with a 2D curve in the

latter. Formally, given a polyline form of a fiber tract C ∈ R
n×3 with n vertices in

3-space, its point representation is obtained with a map πpoint : R
n×3 → R

2 and its

path representation is obtained with another map πpath : R
n×3 → R

m×2 .

Generation of these two representations shares three common steps. First, we

obtain a whole-brain tractogram by fiber tracking in a diffusion-tensor volume fitted

to a given DWI brain sequence. Second, we compute similarities between all pairs

of tracts within the tractogram, obtaining a similarity (or affinity) matrix. Third,

using the similarity matrix from the previous step, we run a hierarchical clustering

algorithm on the tractogram, obtaining a clustering tree (i.e., dendrogram).

We create the 2D point representation of the tractogram by embedding the tracts

in the plane with respect to the similarity matrix, using a simple iterative force-

directed method. We use the hierarchical clustering tree to create multiscale point

representations.

In the case of the path representation, we first pick a cut on the clustering tree

and obtain a clustering. Then, by treating cluster centroids as pivots, we create pro-

jections of tractograms onto the major orthogonal planes as curves. We render these

2D curves stylistically using heuristics determined by the topology and geometry of

the corresponding tracts and tract clusters.

We give details of these steps in subsequent sections.

3.1 Image Acquisition and Fiber Tract Generation

DWI brain datasets used in this paper were acquired from healthy volunteers on a

1.5T Siemens Symphony scanner with the following acquisition parameters in 12

bipolar diffusion-encoding gradient directions: thickness = 1.7 mm, FOV = 21.7 cm

× 21.7 cm, TR = 7200 ms, TE = 156 ms, b = 1000, and NEX = 3. For each DWI se-

quence, the correspondingDTI volume was then obtained by fitting six independent

parameters of a single second-order tensor at each voxel to the twelve measurements

from the DWI sequence [4]. We generate fiber-tract models of the whole brain by in-

tegrating (second-order Runge-Kutta integration) the major eigenvector field of the

diffusion tensor field bidirectionally starting at seed points. We integrate with a con-

stant step size of 0.5 mm and stop integration when a gray-matter area is reached

or the linear anisotropy or signal-to-noise (SNR) ratio at the current point passes

predetermined thresholds.
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3.2 Measuring Similarities Between Fiber Tracts

We quantify the similarity between two tracts using the distance measure discussed

in [9]. This measure tries to capture how much any given two tracts follow a similar

path, while giving more weight to the points closer to tract ends. Given two integral

curves Ci = {C1
i , . . . ,C

m
i } and C j = {C1

j , . . . ,C
n
j } that are represented as polylines

with m and n vertices respectively, we first find mean weighted distances di j and d ji,

and then determine the maximum of these two distances as the distanceDi j between

the two curves:

di j =
1

m

m

∑
k=1

αi
kdist(Ck

i ,C j) (1)

d ji =
1

n

n

∑
k=1

α j
kdist(Ck

j ,Ci) (2)

Di j = D ji = max(di j,d ji) (3)

The function dist(p,C) returns the shortest Euclidean distance between the point

p and curve C. Also, αk = 1
Z
e|k−(m+1)/2)|2/σ2

, where the normalizing factor Z =

∑
m
k=1 e

|k−(m+1)/2|2/σ2
. We set the parameter σ automatically, proportional to LC the

length of the fiber tract, such that σ = λLC, where λ ∈ (0,1]. We set λ = 0.5 for the
datasets used for this paper.

We compute distance between each pair of integral curves as we denoted and

assemble the measures to create a distance matrix. Note that our measure is sym-

metric and positive-definite but does not necessarily satisfy the triangle inequality,

therefore, it is not a metric. While our approach is independent of a particular simi-

larity measure, good results in practice require a good similarity measure – one that

reflects users’ understanding of the similarity between data points (i.e., tracts) and

works well for the task at hand.

3.3 Clustering

For a given tractography dataset we compute a clustering tree using an average-

linkage hierarchical clustering algorithm on the tract distance matrix (e.g., [10]). We

choose the average-linkage criterion because it is less sensitive than the minimum-

linkage to broken tracts due to tracking errors. The output of the clustering algorithm

is a hierarchical tree called dendrogram. The height of the tree can be thought as the

radius of the bounding ball of the dataset–in the units of the similarity measure used.

And any horizontal cut on this tree provides a clustering of the dataset. Therefore,

for example, the root node represents a clustering with a single cluster containing all

the data points. Conversely, the leaf nodes correspond to a clustering where every

data point is a cluster.



Exploring brain connectivity with two-dimensional maps 7

We obtain a clustering of tracts by manually setting a cut threshold on the den-

drogram. This threshold can be also interactively changed by user to control the

coarseness of the clustering. A constant cut at 60% of the clustering tree’s height

gave consistent results across the six datasets we experimented with.

3.4 Planar Projections of Fiber Tracts

3.4.1 Fiber Tracts as Embedded Points

We use a simple iterative force-directedmethod for embedding tracts in the plane [11].

Embedding refers to a one-to-one smooth mapping from fiber tracts to points in the

plane that preserves the “structure” of the fiber tracts. In this context, the distance

matrix computed can be considered as a manifestation of the structure in the fiber

tract space.

For a given dataset withM tracts, we start withM corresponding points, all placed

at the origin initially. We then iteratively adjust the positions of these points by mov-

ing the pairs of points closer to or further from each other to match with the corre-

spondingDi j entries in the similarity matrix. To achieve an interactive performance,

we use a stochastic sampling technique described in [6] for updating the “forces”

between data points. Briefly, instead of computing forces on a point xi from every

other point in the dataset, we limit the points acting on xi to x j ∈ F = {Ni ∪ Si},
where Ni and Si are disjoint sets with a constant size. We iterate over data points

and resample Si each time by uniformly randomly selecting points from the whole

dataset. For a randomly selected point xk, if Dik is smaller than maxxl∈Ni
Dil , the

maximum distance from xi to any member of Ni, then xk is assigned to Ni, otherwise

it is assigned to Si. Ni loosely represents the neighborhood of the point iterated.

3.4.2 How Embedding Can Be Used to Color Fiber Tracts

Given a similarity measure, a good coloring of fiber tracts should reflect the similar-

ities between the tracts such that similar tracts are assigned to similar colors and dif-

ferent tracts are assigned to different colors. Embedding fiber tracts in perceptually-

uniform color spaces, which are subsets of R
3 , provides a practical way to approx-

imately achieve this goal. A perceptually uniform color space is an empirically-

constructed color space where the Euclidean distances between color triplets are

approximately proportional to perceptual differences between them. L*a*b* and

Luv are two common examples of such color spaces [12].

Embedding fiber tracts in the L*a*b* space is the general coloring scheme used

in the interactive tools presented here. For this, we compute an approximation of

the L*a*b* color gamut, as visible on the right panels of Figure 6, and use it as a

container for force directed embedding. To avoid having to adjust a repulsive con-

tainer force, which would likely need a hard-to-control, steep gradient, we perform
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a physically accurate simulation with container contact detection. The embedding

begins in the center of the gamut and is gradually expanded until most of the space

is filled. During implementation we observed that the largest distances are often

embedded along the luminance axis, the vertical (in paper coordinate frame) axis,

of the color gamut. This is problematic because luminance offers little resolution

and can be interpreted as a lighting effect. We therefore apply a “flattening” force at

the beginning of a simulation cycle to force large distances to lie in the horizontal

plane (a*b*-plane). These force components, acting on the luminance axis towards

the center of the gamut, wear off as the embedding moves towards a steady state.

The force computation used is the same as for the 2D embedding, with straightfor-

ward 3D modifications. In terms of interaction, the color embedder only supports

collapsing and color grabbing.

3.4.3 Fiber Tracts as Planar Curves

For a given tractography dataset, we create schematic views of fiber tracts projected

on the sagittal, coronal, and transverse planes.

We start with obtaining a clustering of the dataset by picking a cut on the hierar-

chical clustering tree computed earlier.We then create simple orthogonal projections

of tracts on each plane. Suppose the sagittal plane is aligned with the xy-plane. And

let v = (x,y,z) ∈ R
n×3 be a vertex of a tract. Then the projection onto the sagittal is

given by this simple equation π(v) = (x,y). We cull out tracts that do not contribute

significantly to the projection. If the ratio of projected tract length to true tract length

is under a threshold value, we remove the tract from the corresponding cluster. We

set the culling threshold to 0.65 for the projections used in our experiments. Finally,

we compute a centroid for each cluster by choosing the tract with the smallest maxi-

mum distance to any other tract in the cluster. We found that for illustration purposes

it is desirable to avoid broken tracts. We therefore weigh the centroid selection to

favor longer tracts by dividing the maximum distance from each tract to any other

tract by the tract’s length.

We opted for a non-photorealistic rendering of brain projections to avoid their in-

terpretation as 3D views and to harness user’s intuition about 2D maps. The render-

ing assumes a given clustering with assigned centroid tracts, which can be computed

as described in the previous section. The centroid tracts will define a schematic neu-

ral skeleton on top of which the non-centroid tracts are scaffolded. Projections of

centroid curves are smoothed prior to rendering to achieve a schematic representa-

tion and to reduce clutter. This is done by sampling a number of evenly distributed

control points (5 in our implementation) along the tract projection and using them

as control points for a a piecewise cubic spline with 30 segments. The thickness of

a centroid curve is proportional to the square root of the number of tracts in the bun-

dle. Once centroid tracts are represented as 2D splines, endpoints of non-centroid

curves are linked to their cluster’s centroid spline following the procedure illustrated

in Figure 3a. First, the end-points of non-centroid curves in a bundle are clustered

based on the end-points’ initial 3D coordinates. Two endpoints are placed in the
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(a) (b)

Fig. 3: (a) Schematic tract-cluster representation. (Top) 2D projections of a tract-bundle, with an

associated centroid curve (orange), are determined from a hierarchical clustering of initial 3D

tracts. (Middle) The centroid curve is smoothed by a spline and the endpoints of non-centroid

curves are clustered using their initial 3D coordinates (four clusters); for each cluster, three control

points linking the center of the cluster to the centroid spline are computed. (Bottom) Splines are

run from each curve endpoint through the control points of its corresponding cluster. (b) Depth

ordering of 2D paths. For each segment of a 2D spline, we locate a corresponding segment on the

3D curve from which the spline was derived by traveling the same fractional distance along both

curves. The depth of the 2D segment is the same as the depth of the middle of its corresponding

3D segment.

same cluster if the distance between them is less than 2 mm. Then, for each such

endpoint cluster we compute three control points that link the geometrical center

of the endpoint cluster to the centroid spline: the first point is the center itself, the

second is a point on the centroid spline closest to the center point, and the third is de-

termined by traveling from the second point down the centroid spline, towards each

curve’s other endpoint, for a predefined distance (e.g., half of the distance between

the first two points). Ultimately, splines are run from each tract endpoint through its

cluster’s three control points, thus linking each endpoint to the centroid path. The

thickness of these endpoint linkage splines gradually increases from unit thickness

(i.e., single-tract thickness) at the tract endpoint to a thickness proportional to the

square root of the endpoint cluster size, where it merges with the centroid spline.

We depth-order spline segments so that 2D centroid splines crossings can indi-

cate the depth ordering of their corresponding 3D shapes. The depth ordering is done

differently for centroid splines and non-centroid splines, since while centroid curves
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Fig. 4: Coordinated DTI tractogram model exploration in lower dimensional visualizations: 2D

embedding (upper-right), hierarchical clustering (lower-left), and L*a*b* color embedder (lower-

right). A selection of a fiber-bundle (red) in the hierarchical clustering is mirrored in the other

views.

are close representations of actual 3D tracts, non-centroid curves are abstract rep-

resentations obtained through the process described above. Furthermore, the depth

ordering is approximate (as discussed in the following paragraph) and may produce

artifacts. For centroid splines, the depth of a spline segment is computed by finding

a matching segment on the 3D tract from which the spline was derived, and taking

the depth of that segment’s center (see Figure 3b). The matching segment on the

3D tract has its endpoints at the same fractional distance from the start of the 3D

tract as the 2D segment’s distance from the start of the 2D spline. The depth of any

non-centroid spline is determined by averaging the depth of the corresponding 3D

tract.

In the following two sections, we give details on how we use 2D neural path

representations as part of an interactive application and as standalone digital maps.

3.5 Linked Multi-view Interaction

We expect a typical use of low-dimensional representations to be as part of interac-

tive applications where views and interactions of conventional representations are

linked with that of low-dimensional representations.We have developed two interac-



Exploring brain connectivity with two-dimensional maps 11

Fig. 5: An interactive analysis system using linked views and planar tract-bundle projections. Three

planar representations, along the coronal, transverse and sagittal planes (bottom panels), are linked

to a 3D streamtube model (upper left) and a 2D point embedding of tract similarities (upper right).

Selections in the projection views can be performed by clicking or cutting across cluster curves and

are mirrored in the 3D view. Points corresponding to the selected tracts are interactively embedded

into the plane and used to refine selections at tract level.

tive visualization systems using the 2D point and path representations, respectively,

to demonstrate this mode of use (see Figures 3.5 and 3.5).

Both applications have a view of tractography data visualized using 3D stream-

tubes. Coloring generated through the embedding of tract similarity into the L*a*b*

color space. In addition to the standard 3D viewing interactions, we have two basic

3D selection/deselection interactions on streamtube models: sphere-selection and

brushing. Sphere-selection, like box-selection, enables user to select the intersect-

ing tracts by moving a sphere of desired radius. Brushing lets user draw 2D curve

on the viewing plane and select the intersecting tracts.

Both sphere-selection and brushing can be used to further prune the current se-

lection but they cannot be used to grow it. For that purpose, we provide a selection

growing interaction that gradually adds tracts closest to the current selection. Prox-

imity is determined again by the distance measure discussed above.

On the 2D point representation, we provide point selection, point collapsing. Se-

lection is performed by clicking and dragging; multiple selection can be performed

to select points from non-adjacent regions. Collapsing groups a set of points into a

single clustered representation. This can be used either for easier tract bundle selec-

tion or as a mechanism for manually refining embeddings–points belonging to the

same tract bundle can be grouped together if the embedding algorithm places them

apart. The centroid of the grouping will be used in subsequent embedding iterations.
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Fig. 6: A clustering cut in the dendrogram view (top row) is applied to the linked 2D embedding

and 3D colorer (middle row). Points belonging to the same cluster are collapsed to their centroids

(bottom row).

The hierarchical clustering tree provides a filtration of the dataset via cuts. Figure 6

shows how a cut on the dendrogram,which results in a clustering, provides a coarser

representation. Both the 2D embedding and the 3D colorer clusterings can be fur-

ther refined interactively after a cluster cut, by expanding or collapsing individual

clusters.

In the 2D path tool, we link projective views on the sagittal, coronal, and trans-

verse planes to a standard 3D streamtube model. The clustering cut threshold that

defines the specificity of the projected bundles can be altered interactively during

visualization. Tract clusters in the planar projections can be selected by drawing

line segments that select intersecting bundles. A selection in any of the planar views

is mirrored in the 3D model view as well as all other 2D projections.
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3.6 Digital Map Interface

Brain mapping is one of the quintessential problems in neurosciences. We believe

that a geographical map metaphor is well-suited to the visualization and analysis

of results obtained in that direction. Therefore, having a representation of the brain

that is viewed, interacted, queried, and enriched like an online geographical map

was one of the motivations behind our creation of 2D path representation.

For this, we use the Google Maps API, an Ajax framework used to render large

maps, to interactively display our tractogram maps on the web. The Google Maps

API receives input image data in the form of a set of small images, called tiles, that

when assembled together form the different zoom levels of the map. Each zoom

level, z, consists of a rectangular grid of tiles of size 2z × 2z. The API decodes

the zoom level and coordinates of the currently viewed map region to retrieve and

display the visible tiles. The developer can load a custom set of tiles in the API

by implementing a callback function that translates numerical tile coordinates and

zoom level into unique paths to the custom tiles.

The API provides basic functionality such as zooming and panning and allows

programmatic extension or customization with markers and polyline overlays, in-

formation pop-ups and event management. The API can easily be integrated into

any webpage supporting Javascripts.

Our visualization system can render our 2D projections into a set of image tiles

instead of the screen. For each cluster, including both tract-bundled and endpoint

clusters, we export information required for interaction and browsing. Selection in-

formation consisting of evenly spaced points along splines and thickness radii for

splines contained in a cluster is exported. In line with the tile paradigm, instead of

exporting this information to a single large file, we divide it geometrically across

corresponding tiles and write it as multiple tile-content text files. Upon user selec-

tion, the content file of a clicked tile is fetched from the server and its data analyzed

for an intersection. This approach avoids loading and searching through large files.

A valid cluster selection is marked on the map with polyline overlays running over

tract splines contained in the selected cluster (see Figure 7). For this purpose, spline

coordinates for each cluster are exported to files indexed by a unique cluster identi-

fier.

Finally, for each tract cluster we export a variety of metadata accessible during

map browsing in information boxes, as shown in Figure 7. A short description and

links to the most relevant publications or research can be manually added for major

tracts. A few 3D poses of each tract bundle are prerendered and exported as ani-

mated GIF images, indexed by the cluster identifier. Statistical data, in both textual

and graphical form, are computed for each cluster and written as HTML content to

cluster indexed files. This information is loaded and displayed in tabbed information

boxes at the user’s request.
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Fig. 7: DTI tractography data projected onto the sagittal, coronal and transverse planes. Major

tract bundles are represented schematically by their centroid tract; individual tracts in bundles are

linked from the centroid bundle to their projected end points. Zooming in allows access to smaller

clusters of tracts. Bundles can be selected and pre-computed statistical data along with 3D views

of the tract bundle (“brain view”) can be displayed.

3.7 Implementation

We implemented both interactive systems in C++ using G3D and Qt libraries [13,

23]. We created the web interface for the neural path representation using the Google

Maps API [14]. It can be accessed via the url link [29].

4 User Evaluation

We compared the two representations both anecdotally and quantitatively.

4.1 Anecdotal Study: Methods and Results

In the anecdotal study we showed a prototype that implements both 2D point and

neural path representations to 3 neuropsychologists. They were all interested in the

relationship between fiber tracts and cognitive and behavioral function in the brain.

Similarly, all have used computational tools for analyzing DTI data, though only

one of them has used fiber-tract visualization tools in his clinical research. The par-

ticipants had research interests in vascular cognitive impairment, early Alzheimer’s

disease, and HIV, focusing on specific tracts and regions such as the corpus callosum
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(CC), frontal lobe, basal ganglia, cingulate bundle, superior and inferior longitudinal

fasciculi, anterior internal capsule, and the uncinate fasciculus.

Our anecdotal evaluation protocol was straightforward: we demonstrated the pro-

totype while asking questions and collecting participant’s feedback. Two of the ex-

perts also tried both interfaces themselves by selecting a set of major TOIs, the

CC, cingulate bundle, uncinate anterior internal capsule, and the corticospinal tract.

There was agreement that the 2D neural path representation was more intuitive and

easier to use and learn than the 2D point representation.

Our experts also found the web interface with the digital map interaction useful.

Although they believed that the standalone application with linked representations

would remain necessary for quantitative analyses that require interactive fine selec-

tion, they thought the web accessibility opened up interesting possibilities. They

were particularly excited about browsing through datasets while commuting or at

home, of quickly inspecting unfamiliar datasets, and of sharing such visualizations

with collaborators.

4.2 Quantitative Study

In the quantitative evaluation, we compared the point and path representations by

measuring user performance on a bundle selection task.

4.2.1 Applications

We used our interactive path representation system (Section 3.5) and the 2D point

representation tool presented in [7] for running the comparative study. The reason

that we used this tool instead of ours is that it was already compared to other known

tractography tools such as CINCH, MedINRIA, and BrainApp, and reported to be

preferable over them. Using it would give us some idea about, if any, relative merits

of the 2D path representation tool over not only the 2D point representation but also

these other tractography applications compared before. Chen et al.’s application

offers a brush tool that works similarly to ours in 3D and as a lasso tool on the

2D point representation. Users can select tracts or points and then remove them or,

conversely, remove everything else from a current selection.

4.2.2 Participant Pool

We had 4 subjects all familiar with neuroanatomy and tractography. They also had

experience with one or more tractography visualization tools. Our first subject was a

neuroscience graduate student, working on tracing white-matter tracts from frontal

subregions to basal ganglia and the medial temporal lobe. Our second user was a

postdoc in neuropsychology and had five years of experience with DWI in clin-
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ical research. This user, who participated in the anecdotal study as well, studied

white matter variation with neurodegenerative diseases as specified above. Our third

subject was a biomedical engineering graduate student and had significant tract-

selection experience working as a rater for a neuroscientist. Our last subject was

a computer-science graduate student doing research on computational DWI algo-

rithms. Two of the users were male and two female.

4.2.3 Task

We measured user performance on bundle selection, a typical real world task in

tractography tools. Users were asked to select three major bundles, the cingulate

bundle (cb), corticospinal tract (cst), and right superior longitudinal fasciculus (slf),

in two different brain datasets. We choose these bundles because they represent the

easy-to-hard selection-difficulty range well and were used for evaluation in [7].

For each system, we explained to users the underlying visualization concepts and

demonstrated the basic interactions, mainly involving brushing on 2D and stream-

tube representations. After this introduction, users were asked to select the bundles

(cb, cst, and slf) on two different training datasets. Following training, the users

performed the task on two different test datasets while we collected their task-

completion times. After each selection they provided subjective confidence estimate

in the range 1-5 (1: not confident, 5: very confident) for their selection. They could

give fractional estimates. After completing the task on both systems, users were

asked to complete a post-questionnaire giving qualitative feedback on their experi-

ence. Half the users performed the task first on the 2D point-representation tool and

the other half on the 2D path tool.

4.2.4 Factors and Measures

The sole factor considered in our quantitative experiment was the type of low-

dimensional representation: 2D point and 2D path. All subjects used both types of

representation. We recorded the users’ bundle-selection times and subjective confi-

dence values as measures of performance.

4.2.5 Results

In order to understand if the differences between user performances on the two tools

were significant, we ran the paired t-test on our measurements. Results show that

users were significantly faster on the 2D path tool than the 2D point tool (p= 0.02).
Users were also significantly more confident with using the 2D path representation

than the 2D point representation (p = 0.01). Table 1 summarizes users’ overall and

per-bundle mean performances on each tool. Figure 4.2.5 shows the difference be-

tween the means of performance measures per user (2D-path-performance values
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Fig. 8: Per-user differences between (a) time and (b) confidence measurements with the two tools.

Differences are obtained by subtracting 2D-point-tool performance values from 2D-path-tool per-

formance values. Red squares show the mean performance difference between the tools. Errors bar

around the red squares indicate the standard error of per-user differences.

time (secs) confidence

cb cs slf mean cb cst slf mean

2D point 227 361 234 274 4.1 3.3 3.1 3.5

2D path 136 165 215 172 4.1 3.8 3.7 3.9

Table 1: User performance on bundle selection task.

are subtracted from 2D-point-performance values) and the mean over users. Errors

bars indicate the standard error of per-user differences.

We observed some interaction patterns worth reporting. We noticed two distinct

selection strategies used with the 2D path tool. Two of the users consistently brushed

over large areas of the projection to ensure that the targeted bundle was selected and

then relied on the 3D view to clean up the selection. The other two users aimed for

fine selections in the 2D projections and then inspected the 3D view to determined

whether any fibers the selection. They added the missing tracts using short, targeted

brush strokes and then removed tubes that were erroneously added during this op-

eration. These users seemed to have a better understanding of the mapping between

the 3D view and the 2D projections, perhaps explaining the difference in strategies.

All subjects used the 2D point representation relatively rarely. The most common

operation was to remove points they were completely confident were not part of the

selection (e.g., half of the brain, or peripheral U-shaped bundles). However, in the
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absence of a clear contextual mapping between the 2D point and streamtube views,

subjects were hesitant to perform bold operations in 2D, at least in the short run.

5 Discussion

It is important to note that our representations rely on the anatomical fidelity of the

intermediate results at each step. For example, broken trajectories due to fiber track-

ing errors can reduce the effectiveness of the representation. Similarly, our method

expects the clustering algorithm and similarity measure to provide anatomically

plausible results. However, it is difficult for a single distance measure to capture the

anatomical similarity completely. Furthermore, on the same data, a good similarity

measure for one purpose can be entirely irrelevant for another. While the choice of

similarity measure makes clustering a subjective task, clustering algorithms them-

selves also have intrinsic limitations [20].

One potential limitation of the planar path representation is that bundles sur-

rounded by the other bundles similar in orientation and shape may not be clearly

visible. While we have not found this to be an issue in practice, moving projec-

tion planes along major axes while restricting the projecting tracts to a volumetric

window moving with the projection plane can help solve potential problems. Also,

results of user studies should be taken with a grain of salt. In general, it is dif-

ficult to run experiments that vary one factor while keeping all the other factors

constant. For example, an earlier study [7] compared the 2D point representation

tool with other tractography applications and reported that users were faster with

the former. However, in our user evaluation, we observed that users rarely used the

2D point representation and the brush tool dominated their interaction. This brings

up an open question of whether the performance difference in the reported evalu-

ation was due mainly to the brush tool or to the 2D point representation. An ex-

periment that replaced the brush tool with a more standard box-selection tool, say,

might resolve this question. In either case, we believe that abstract representations,

including the 2D point representation, are useful in the long run, as users gain more

experience with the mapping between brain tractograms and low-dimensional rep-

resentation primitives. In general, however, it is not realistic to expect practitioners

to learn the correspondence between the new representation and the actual fiber-

tract collection quickly, unless the tools are easily interpretable using a conventional

anatomical framework. Furthermore, in order any tool using a new representation of

tractograms to have a clinical relevance, it should provide anatomical context and

intuitive functionality for region of interest (ROI) analysis on both conventional and

new representations.

While we have focused on planar spatial representations here, it is possible to

create abstract representations of tractograms. For example, the hierarchical cluster-

ing tree itself can be considered as a representation of the tractogram. Or consider

the circular map of connectivities (or dependencies) shown in Figure 9. We obtain

this dependency graph representation by first clustering tract end points using hi-
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Fig. 9: Low-dimensional representations can have varying degree of abstractions. The internal

capsule represented with (a) streamtubes, (b) a circular connectivity map, (c) a set of embedded

points in the plane, and (d) a hierarchical clustering tree.

erarchical clustering and setting an implicit dependency between the end points of

each tract. We then visualize the resulting hierarchical tree with pair-wise connec-

tivities using hierarchical edge bundling [15]. Feedback from a neuropsychologist

suggest that it might be useful for understanding connectivity densities and profiles.

Although DWI is the only imaging protocol to estimate the brain neural archi-

tecture in vivo, there are in vitro imaging techniques, such as the three-dimensional

electron microscopy particularly used in the emerging field of connectomics, with

which it is possible to extract neural structures on much smaller scales (e.g., in-

dividual axon bodies) [16]. We believe that the general ideas as well as specific

techniques presented in this paper can extend to the visualization and analysis of

visually complex axonal structures originating from these high-throughput imaging

techniques.

6 Conclusions

Combining traditional 3D model viewing with intuitive low-dimensional represen-

tations with anatomical context can ease navigation through the complex fiber tract

models, improving exploration of the connectivity in the brain. We have presented

two planar maps, point and path representations of tractograms, that facilitate explo-

ration and analysis of brain connectivity. Both representations are essentially appli-
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cations of abstraction and filtration concepts to tractograms. We achieve abstraction

by simplifying and generalizing, both geometrically and topologically, fiber tracts

with points and schematic curves in the plane. We create filtrations of tractograms

by computing hierarchical clustering trees. These help create better abstractions as

well as provide a multiscale view of data, which is important in reducing visual

complexity and noise. We compare the two representations both qualitatively and

quantitatively with help of experts. Results suggest that the 2D path representation

is more intuitive and easier to use and learn than 2D point representation.

We also introduced a novel way of making tractography data accessible by pub-

lishing neural maps online through a digital map framework. Our representation is

conducive to such a geographic map interface by construction. This interface leads

to new possibilities for enriching tractography datasets using the mass knowledge

base available on the web. User feedback indicates that our web interface can be

particularly useful for browsing unfamiliar datasets quickly, for analysis tasks that

do not require fine selection and for sharing data in collaborative settings.
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