
Charm: A charming network coordinate system

Çağatay Demiralp

December 5, 2007

Abstract

We present a new network coordinate system, Charm, embedding
round-trip time latencies into the Euclidean space. Charm is based on a
particle system model with two spatial force interactions: attraction and
repulsion. The update algorithm (Charming) that Charm uses is simple
and lightweight: For each latency sample, the algorithm either brings the
communicating nodes closer (attraction) or moves them farther (repul-
sion). We evaluate Charm by comparing with Vivaldi algorithm using
simulations. Preliminary results suggests that Charm is fast and stable,
and has a good converging rate.

1 Introduction

Methods that allow hosts to predict round-trip times (RTT) to other hosts in
a distributed network can be useful in reducing communication overhead and
increasing the utility of the network resources (i.e., bandwidth). There have
been several schemes proposed for embedding the measured latencies into a
metric space 1 in order to create synthetic coordinates. Unfortunately most of
these schemes do not produce stable and accurate coordinates under live network
conditions. There are two reasons for this under-performance. First, RTT
measurements are prone to random noise which makes modeling the variations
between among RTT measurements very difficult. The second reason is more
fundamental: While most of the existing network coordinate (NC) systems rely
on metric embedding techniques, RTT measurements may not satisfy triangular
inequality due to routing policies. This situation exacerbates with the presence
of random noise. One of the approaches proposed to mitigate these problems is
to use filters on the histories of measurements and coordinates [5, 3].

Charm should be seen as an attempt to develop a simple and stable NC
system. Our algorithm considers two basic force interactions between hosts.
At each latency sample, the algorithm either attracts the communicating nodes
to each other or repels them from each other. In the following sections, we
first give an overview of related work (section 2) and move on to discussing the

1A metric space is a pair of a point set X and a distance function d defined over X such
that for all xi, xj , xk ∈ X, d(xi, xj) = d(xj , xi) (symmetry), d(xi, xj) = 0 ↔ xi = xj (positive
definiteness) and d(xi, xk) ≤ d(xi, xj) + d(xj , xk) (triangle inequality), are all true.

details of Charm system (section 3). We report the results from our simulations
in section 4. And finally, we offer our conclusions and point some future work
directions in section 5.

2 Previous Work

Our method can be considered a simulation-based technique in a sense that we
assume a model of a physical system and its equilibrium as the energy mini-
mizing state. There have been several such methods proposed. For example,
Vivaldi [2] is based on a simulation of springs, which we use as the baseline algo-
rithm in our experiments to evaluate Charm. Similarly, Big-Bang Simulation [9]
uses particle explosion interactions to determine network coordinates. At the
other end of the spectrum of NC research, there are landmark-based systems. In
landmark-based systems, distance between two nodes are computed indirectly
via predetermined, fixed nodes. For example, GNP determines the coordinates
of a node by measuring its latency to a fixed set of landmarks and then solving
a nonlinear minimization problem iteratively [7]. To address some of the com-
putational issues (i.e, being expensive) related to GNP, Virtual Landmarks [6]
and ICS [10] propose using PCA for linear approximation to the minimization
problem. One of the potential drawbacks of using fixed landmarks is that it is
not clear what happens in case of failure of these fixed nodes. In addition, there
is a need to optimize the number and spatial configuration of the landmarks
to avoid unbalanced workload. Concerned with these issues, PCoord [11] and
PIC [1] use a hybrid approach, where landmarks are used only for bootstrap-
ping; After bootstrapping, nodes adjust their coordinates with respect to the
coordinates of peers. In a somewhat different approach, Lighthouse [8] assumes
that shape of the network is a manifold and uses local coordinates on locally flat
patches to create a global coordinate system. Not all NC systems use RTT mea-
surements as their “distance metric”. For example, landmark-based IDMaps [4]
use dissimilarities between the IP addresses of the hosts as the metric to be
predicted. Note that all the methods we discussed here embed nodes into a
Euclidean coordinate space.

3 Charm

Charm is an NC coordinate system where nodes are modeled as particles with
spatial force interactions: attraction and repulsion. Charm uses the same single
algorithm, Charming, for continuously updating node coordinates both central-
ized and distributed settings. The algorithm corrects a constant fraction of the
error between the measured and the current distance by either repelling or at-
tracting the nodes. Algorithm 1 shows Charming algorithm which takes new
latency measurement ℓij and the node j coordinates xj as parameters and com-
putes the new xi and xj . There is only one constant (a correction fraction) c,
which we set to 0.1 for all the experiments that we show results for.

2

Algorithm 1

Charming(ℓij , xj)

1. e = ℓij −||xi−xj ||2 {difference between the current and measured distance}
2. d = 1

2
× e × c {length of repulsion/attraction}

3. xi = xi + d ×
xj−xi

||xj−xi||2
{repel/attract xi}

4. xj = xj + d ×
xi−xj

||xi−xj||2
{repel/attract xj}

Since we compare Charming algorithm to both centralized and adaptive Vi-
valdi algorithms we give them here for completeness (see Algorithms 3 and 2).
Further details for these algorithms can be found in [2]. The main difference
between Charming and Vivaldi is that Charming adjusts the node coordinates
bi-directionally. Note that mass-spring model used by Vivaldi is a particle sys-
tem as well. We set the adaptive Vivaldi constants ce and cc to 0.1 and 0.25
throughout our comparisons.

Algorithm 2

Centralized Vivaldi(ℓ, x)

1. while error(ℓ, x) > ǫ do

2. for all i do

3. F = ~0
4. for all j do

5. e = ℓij − ||xi − xj ||2
6. F = F + e ×

xi−xj

||xi−xj ||2

7. xi = xi + t × F
||F ||2

8. end for

9. end for

10. end while

Algorithm 3

Vivaldi(ℓij, xi, xj , ej)

1. w = ei

ei+ej

2. es =
|||xi−xj||2−ℓij

ℓij

3. ei = es × ce × w + ei × (1 − ce × w)
4. δ = cc × w

5. xi = xi + δ × (ℓij − ||xi − xj ||2) ×
xj−xi

||xj−xi||2
{adjust xi}

3

4 Experiments

We evaluate the performance of Charming using about 300 nodes with RTT
measurements sampled on a 2D regular grid. The spatial configuration of the
nodes according to the latencies is shown in Figure 2a (a 3D view is given for
better view of the layout). Initial values for coordinates are determined by
sampling from a multivariate normal distribution (X ∼ N(µ, Σ) where µ =
[0 0]T and Σ = diag([1 1]T). In our experiments, we consider three cases:
centralized embedding, new node accommodation, and distributed embedding.
For each of the three cases Charming performs the best.

Figure 1 shows the evolution of the nodes for the centralized and adaptive
Vivaldi (where δ constant changes adaptively), and Charming algorithms for
a centralized coordinate update scenario. Figure 2b show the change of mean
square error for each algorithm.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30
10.1406 secs

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30
30.0781 secs

−50 −40 −30 −20 −10 0 10 20 30 40 50
−60

−40

−20

0

20

40

60
60.0156 secs

−250 −200 −150 −100 −50 0 50 100 150 200 250
−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50
10.125 secs

−300 −200 −100 0 100 200 300
−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50
30.0313 secs

−500 −400 −300 −200 −100 0 100 200 300 400 500
−500

−400

−300

−200

−100

0

100

200

300

400
60.1094 secs

−250 −200 −150 −100 −50 0 50 100 150 200 250
−300

−250

−200

−150

−100

−50

0

50

100

150
10.0469 secs

−250 −200 −150 −100 −50 0 50 100 150 200 250
−300

−200

−100

0

100

200

300
30.125 secs

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

250
60.0469 secs

Figure 1: Evolution of the nodes (for the toy network layout see Figure 2a when
centralized Vivaldi (1st row), adaptive Vivaldi (2nd row) and Charming (3rd
row) algorithms are used in a centralized fashion. See Figure 2b for convergence
and mean square error rates.

4

−200

−100

0

100

200 −200

−100

0

100

200

−1

−0.5

0

0.5

1

(a)

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
x 10

4 mean square error

time (s)

m
se

charming
adaptive vivaldi
centralized vivaldi

(b)

Figure 2: (a) shows the layout of our toy network where latencies (RTTs) are
sampled on a regular grid for simulation purposes. There are about 300 nodes
in the network. (b) Mean square error values from the simulation (shown in
Figure 1 comparing the centralized Vivaldi, adaptive Vivaldi, and Charming
algorithms for a centralized NC computation. Notice the oscillatory behavior
of adaptive Vivaldi algorithm.

In Figure 4, we compare how well the adaptive Vivaldi and Charming algo-
rithms accommodate the new nodes entering the network. The orange-colored
nodes in Figure 4a represent the new nodes (coordinates of which are initial-
ized from N(µ, Σ)) entering to a network with stabilized coordinates (shown
as blue-colored nodes in the same figure). As seen Figures 4and 4b, Charming
converges and stabilizes quick in this case as well. As the last case, we compare
Charming and adaptive Vivaldi in a simulation where nodes measure latencies
to every other node randomly (see Figure 4). While Charming still performs
significantly better than Vivaldi, Vivaldi performed better than it did in the
previous settings. This suggests that oscillations in Vivaldi could be due to
localized measurements.

5 Conclusions and Future Work

We presented Charm, a new network coordinate system using spatial force inter-
actions of attraction and repulsion to embed measured latencies into a Euclidean
space. The initial results show that the update algorithm (Charming) of this
system converges faster and it is more stable than Vivaldi algorithm. However,
without further evaluation on real and simulated network environments it would
be premature to claim that these would scale to large networks and real world
domains. In this study, we confirm that Vivaldi is very sensitive to parameter
setting, initial conditions and prone to oscillations. The fact that adaptive Vi-
valdi worked better with random measurements from the complete set of the
nodes could be important. This might suggest that oscillations in Vivaldi could
be due to localized measurements, which is the most likely situation, for ex-
ample, in the Internet. Combining Vivaldi with a landmark-based system (i.e.,

5

−400 −350 −300 −250 −200 −150 −100 −50 0 50
−400

−300

−200

−100

0

100

200

300
10.0313 secs

−400 −350 −300 −250 −200 −150 −100 −50 0 50
−400

−300

−200

−100

0

100

200

300
30.0469 secs

−300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400
60.0781 secs

−300 −250 −200 −150 −100 −50 0 50 100 150
−250

−200

−150

−100

−50

0

50

100

150

200

250
10.125 secs

−300 −250 −200 −150 −100 −50 0 50 100 150 200
−250

−200

−150

−100

−50

0

50

100

150

200

250
30.0156 secs

−300 −250 −200 −150 −100 −50 0 50 100 150 200
−250

−200

−150

−100

−50

0

50

100

150

200

250
60.0469 secs

Figure 3: Evolution of nodes after new nodes enter the system (for the config-
uration of the stable and entering nodes see Figure 4a) when adaptive Vivaldi
(1st row) and Charming (2nd row) algorithms are used. See Figure 4b for
convergence and mean square error rates.

GNP) could mitigate the problems related to oscillations. In the future, we
would like to explore the behavior of Charming in distributed settings further.
Since it will be easy to modify existing simulation-based NC algorithms to apply
Charming-like interactions, we would like to experiment with hybrid algorithms
similar to the one shown in Algorithm 4.

Algorithm 4

Charming Vivaldi(ℓij, xi, xj , ej)

1. w = ei

ei+ej

2. es =
|||xi−xj||2−ℓij

ℓij

3. ei = es × ce × w + ei × (1 − ce × w)
4. δ = cc × w

5. xi = xi + δ × (ℓij − ||xi − xj ||2) ×
xj−xi

||xj−xi||2
{repel/attract xi}

6. xj = xj + δ × (ℓij − ||xi − xj ||2) ×
xi−xj

||xi−xj||2
{repel/attract xj}

6

−200

−100

0

100

200 −200

−100

0

100

200

−1

−0.5

0

0.5

1

(a)

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

time (s)

m
se

mean square error

Charming
adaptive Vivaldi

(b)

Figure 4: (a) shows the stable nodes (in blue) and the nodes that are about to
join the network (in orange). Latencies (RTTs) for the new nodes are sampled
on a regular grid extended from the stable grid embedding of the existing nodes
for simulation purposes. There are about 150 existing and 150 new nodes in the
network. (b) Mean square error values from the simulation (shown in Figure 4
comparing adaptive Vivaldi and Charming algorithms in how well the new nodes
are accommodated. Notice again the oscillatory behavior of adaptive Vivaldi
algorithm.

−300 −200 −100 0 100 200 300 400
−300

−200

−100

0

100

200

300

400
10.0313 secs

−400 −300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300
30.0156 secs

−400 −300 −200 −100 0 100 200
−300

−200

−100

0

100

200

300
60.0156 secs

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

250

300
10.1094 secs

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300
30.0469 secs

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300
60.1406 secs

Figure 5: Evolution of the nodes (see the network layout in Figure 2a when the
adaptive Vivaldi (1st row) and Charming (2nd row) algorithms are used in a
distributed setting. See Figure 4 for convergence and mean square error rates.

7

References

[1] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. Pic: Prac-
tical internet coordinates for distance estimation. In ICDCS ’04: Pro-
ceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’04), pages 178–187, Washington, DC, USA, 2004. IEEE
Computer Society.

[2] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A decentralized network coordinate system. In Proceedings of the ACM
SIGCOMM ’04 Conference, Portland, Oregon, August 2004.

[3] C. de Launois, S. Uhlig, and O. Bonaventure. A stable and distributed
network coordinate system. Technical report, Universite Catholique de
Louvain, December 2004.

[4] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval
Shavitt, and Lixia Zhang. Idmaps: a global internet host distance esti-
mation service. IEEE/ACM Trans. Netw., 9(5):525–540, 2001.

[5] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Stable and accurate
network coordinates. In ICDCS ’06: Proceedings of the 26th IEEE Interna-
tional Conference on Distributed Computing Systems, page 74, Washington,
DC, USA, 2006. IEEE Computer Society.

[6] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi. Constructing internet
coordinate system based on delay measurement. In IMC ’03: Proceedings

0 20 40 60 80 100 120
0

1

2

3

4

5

6
x 10

4 mean square error

time (s)

m
se

Charming
adaptive Vivaldi

Figure 6: Mean square error values from the simulation (shown in Figure 4 com-
paring adaptive Vivaldi and Charming algorithms for a distributed NC compu-
tation. Note that, although it is still significantly slower than Charming, adap-
tive Vivaldi converges much faster than it did in the centralized computation.
This result with the randomized nature of our distributed network simulation
suggests that oscillations caused by Vivaldi could be due to localized measure-
ments. This might also explain the relatively poor performance of Vivaldi in
the Internet where most of the measurements are likely to come from a close
neighbor instead of a random node of the complete network.

8

of the 3rd ACM SIGCOMM conference on Internet measurement, pages
129–142, New York, NY, USA, 2003. ACM Press.

[7] T. S. Eugene Ng and Hui Zhang. Predicting internet network distance with
coordinates-based approaches. In INFOCOM, 2002.

[8] Marcelo Pias, Jon Crowcroft, Steve R. Wilbur, Tim Harris, and Saleem N.
Bhatti. Lighthouses for scalable distributed location. In IPTPS, pages
278–291, 2003.

[9] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding net-
work distances in euclidean space. IEEE/ACM Trans. Netw., 12(6):993–
1006, 2004.

[10] Liying Tang and Mark Crovella. Virtual landmarks for the internet. In
IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 143–152, New York, NY, USA, 2003. ACM Press.

[11] Li wei Lehman and Steven Lerman. Pcoord: Network position estimation
using peer-to-peer measurements. In NCA ’04: Proceedings of the Net-
work Computing and Applications, Third IEEE International Symposium
on (NCA’04), pages 15–24, Washington, DC, USA, 2004. IEEE Computer
Society.

9

