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We present a method of visualizing topological defects arising in numerical simulations of liquid crystals.
The method is based on scientific visualization techniques developed to visualize second-rank tensor fields,
yielding information not only on the local structure of the field but also on the continuity of these structures.
We show how these techniques can be used to first locate topological defects in fluid simulations of nematic
liquid crystals where the locations are not known a priori and then study the properties of these defects
including the core structure. We apply these techniques to simulation data obtained by previous authors who
studied a rapid quench and subsequent equilibration of a Gay-Berne nematic. The quench produces a large
number of disclination loops which we locate and track with the visualization methods. We show that the cores
of the disclination lines have a biaxial region and the loops themselves are of a hybrid wedge-twist variety.
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I. INTRODUCTION

Topological defects play an important role in condensed
matter physics as well as other branches of physics such as
particle physics and cosmology. In some systems, particu-
larly two-dimensional systems with continuous order param-
eter symmetry, topological defects can play an essential role
at the phase transition between the ordered �or quasiordered�
and disordered phases �1�. Defects also play important roles
away from phase transition points—e.g., in the equilibration
process following a quench from a disordered to an ordered
phase �“coarsening dynamics”� �2�. Defects also arise in
other physical situations. E.g., in the case of liquid crystals,
confinement of the material �3� or the synthesis of inverted
nematic emulsions �4� naturally leads to the formation of
defects given the interplay between surface anchoring and
bulk elastic energy. The dynamics of defects of liquid crys-
tals is also of technological importance—e.g., in displays
based on multidomain cells �5,6�.

Just as the phase structure of liquid crystals is particularly
rich, so is the range and nature of liquid-crystalline topologi-
cal defects. The stable topological defects of nematics �7�
include monopoles and disclination lines. The monopoles are
similar to the point defects of the ferromagnetic Heisenberg
model, though in the latter case, positive and negative topo-
logical charges of the same absolute value are distinct,
whereas they are equivalent in the nematic �8�. While defect
lines in the ferromagnetic XY model can have any integer

value with either positive or negative sign, one value of to-
pological charge, 1 /2, characterizes the entire class of stable
line defects in nematics �7�. All other half-integer-valued
lines, whether positive or negative, can be continuously de-
formed to a line with charge 1/2 and integer-valued lines can
“escape in the third dimension” �9�. As in the XY model the
disclination lines form closed loops or terminate on the sur-
face of the sample because of the prohibitive energy cost of
a free line end. While one value of topological charge char-
acterizes the entire class of nematic line defects the director
field structure surrounding a defect will depend on the ener-
getics of the system. Figure 1 shows schematic pictures of
disclination line segments, illustrating two types of director
field patterns, wedge and twist, which can in principle be
present. The wedge pattern corresponds to a rotation of the
director about an axis parallel to the local direction of the
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FIG. 1. Schematic drawing of ±1/2 disclination line segments.
The disclination cores are indicated by a “�,” and the disclination
line is locally perpendicular to the plane of the page. �a� +1/2
wedge defect, �b� −1/2 wedge defect, and �c� +1/2 twist defect.
The rotation of the director in �c� is about an axis lying in the plane
of the page perpendicular to the disclination line, and the nail head
representation indicates a projection of the director from below the
plane of the page. Note that all three defects shown here are topo-
logically equivalent and can be transformed into each other via
suitable continuous rotation of the director field.
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disclination line, while the twist case corresponds to a
rotation axis perpendicular to the disclination line direction.
Note that intermediate cases where the rotation axis
makes an angle with the disclination line not equal to
either 0° or 90° are possible. Pure wedge loops carry
monopole charge �10–13�. In general, the rotation axis
can vary along a disclination line as can the local topological
charge.

The far-field structures of nematic defects have been
studied within the context of Frank elastic theory �14� and
the core structure within the context of the Landau-de
Gennes theory �15,16� which uses the complete tensorial
nematic order parameter. Numerical simulations of disclina-
tion line cores in systems of hard spherocylinders �17–19�
have been carried out where the defects were produced
by confining the system to a cylinder with homeotropic
boundary conditions. In these simulations the position of
the defect was known a priori. However, it is also of interest
to consider situations where the positions of the defects
are not known initially or in a situation where the defect
moves. E.g., if a liquid crystal system is initialized in the
isotropic state and then rapidly quenched below the
isotropic-nematic transition temperature, a dense tangle of
disclination lines will form and subsequently coarsen over
time, a process that has been studied both experimentally
�20� and numerically �21�. Locating topological defects in
fluid simulations where the defect locations have not been
predetermined by boundary conditions is a challenging prob-
lem. Locating defects in lattice simulations is relatively
straightforward. Point defects in two dimensions and line
defects in three dimensions can be located by traversing a
loop around a primitive square of the lattice. For ferromag-
netic spins one measures the rotation of the spin around the
square, while for nematics one checks whether the last direc-
tor traversed is closer to the first director �no half-integer
defect� or its antipode �in which case there will be a defect�
�22�. Point defects in three-dimensional Heisenberg ferro-
magnets can be found using the prescription introduced by
Berg and Lüscher �23� for the two-dimensional Heisenberg
model which was subsequently extended by Lau and
Dasgupta �24� to three dimensions.

Several approaches have been taken to track defects in
fluid liquid-crystal simulations. In Ref. �21� a thermal
quench of a Gay-Berne nematic �25� consisting of 65 536
molecules in a box with periodic boundary conditions was
carried out. To track the disclination loops which coarsen
and annihilate after the quench, a cubic lattice of bins of
molecules was created with the bin size chosen to be
approximately equal to the defect core size. This procedure
allowed the use of the lattice-defect-finding algorithms
described above once an average director for each bin
was computed. This method was found to be reliable in lo-
cating disclination lines: the lines always formed closed
loops and a physically reasonable coarsening sequence
emerged after the quench. However, there are many limita-
tions inherent in this approach. First, the defect loops consist
of discrete line segments on the dual lattice associated
with the bins, so the loops are composed of straight segments
joined by 90° corners and the dynamics of the loops is
inherently not smooth. Furthermore, all information about

the defect core is lost when the bins are created. Another
approach �26� that has been used to track defects in simula-
tions of nematic fluids uses Müller matrices to simulate
schlieren textures. Like the binning method, the schlieren
textures do not show any information about the defect
core. Both methods also do not show any information
about the nature of the director pattern around the defect:
namely, the topological charge of the defect and its
wedgelike or twistlike nature.

In this paper we show that scientific visualization methods
�27,28� originally developed to study diffusion tensor mag-
netic resonance imaging of the brain can be modified and
then utilized to locate and study disclination lines in simula-
tions of nematic liquid crystals �29,30�. These visualization
techniques which were developed to visualize in principle
any second-rank tensor field in three-dimensional space yield
not only the location of the defect lines but also information
about the structure of the defect core and of the director field
surrounding the core. These methods can be used with any
nematic simulation data, irrespective of the underlying
model. In this paper we illustrate the utility of these methods
by applying them to the Gay-Berne coarsening dynamics
data of Ref. �21�.

This paper is organized as follows. In the next section we
describe the visualization techniques developed to study ten-
sor fields �27,28� and apply them to a nematic liquid crystal.
In the following section we show how these techniques when
used to analyze the simulation data of Ref. �21� yield the
locations and properties of disclination lines. We offer some
concluding remarks in the final section.

II. TENSOR FIELD VISUALIZATION

The principal features of the tensor visualization tech-
niques developed in Refs. �27,28� are as follows.

�i� The tensor field must be defined so that its eigenvalues
are positive or zero everywhere. The non-negativity of the
eigenvalues allows the tensor at a point in space to be viewed
as a spheroid whose principal axes and lengths are given by
the tensor’s eigenvectors and eigenvalues, respectively. The
use of spheroids to visualize nematic ordering has been used
previously by Andrienko and Allen �18,31�. Uniaxial nematic
order corresponds to an ellipsoid whose long axis is parallel
to the local nematic director field.

�ii� As obtained from a numerical simulation the tensor
field is defined at the location of each molecule. A quasicon-
tinuous tensor field is obtained by introducing a weighting
function �see Sec. III below� which yields an interpolated
field defined at all points in the simulation volume.

�iii� Three scalar metrics �usually referred to as the Westin
metrics �32�� which characterize the tensor field are intro-
duced. As we show below these metrics conveniently pro-
vide information on the nature of the nematic order �includ-
ing biaxiality� and thus can be used to locate disclination
lines and characterize their core structure.

�iv� The director field is visualized by the introduction of
streamtubes which show the continuity of the local direction
of alignment. Stream surfaces are introduced to visualize re-
gions of local planar order. The streamtubes and streamsur-
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faces help one visualize the continuity of the spheroids in-
troduced in the first item above.

We now discuss the implementation of these techniques in
the case of a nematic liquid crystal. The local nematic order
parameter tensor Q�r� is defined in terms of the unit vector
ûi which is parallel to the long axis of molecule i:

Q���r� =
1

N�V� �i�V
�u�

i u�
i −

1

3
����, �,� = x,y,z , �1�

where V is a coarse-graining volume centered on position
r and N�V� is the number of molecules in this volume.
The tensor is defined to be traceless so that in a disordered
region it will be identically zero. In diagonal form Q is given
by

Qdiag =�
2

3
S 0 0

0 −
1

3
S + � 0

0 0 −
1

3
S − �

	 , �2�

where S is the magnitude of the uniaxial nematic order pa-
rameter and � is the biaxiality parameter. With no loss of
generality, the rows and columns of Qdiag can be ordered so
that

� � S � − 3� + 1, �3�

0 � � � 1/4. �4�

In the isotropic phase, S=�=0. In the uniaxial nematic
phase, S
1, �=0. A planar arrangement of otherwise disor-
dered molecules corresponds to S=� and an eigenvalue
spectrum: 2S /3, 2S /3, −4S /3. Regions of maximal biaxial-
ity, where the eigenvalues of Q have the largest possible
spread consistent with the traceless constraint, correspond to
an eigenvalue spectrum: 2S /3, 0, −2S /3.

To implement the visualization techniques we define
a modified nematic order parameter tensor D with
non-negative eigenvalues by eliminating the last term in
Eq. �1�:

Ddiag = Qdiag +
1

3
I = ��1 0 0

0 �2 0

0 0 �3
	 , �5�

where I is the identity matrix and the eigenvalues of D have
been labeled so that

�1 � �2 � �3. �6�

Because the vectors ûi appearing in Eq. �1� are of unit length,
we have the condition

Tr D = �1 + �2 + �3 = 1. �7�

.
Next, we introduce the three Westin metrics �32�

cl = �1 − �2, �8�

cp = 2��2 − �3� , �9�

cs = 3�3, �10�

which have the properties

0 � cl,cp,cs � 1 �11�

and

cl + cp + cs = 1. �12�

.
The condition, Eq. �12�, allows a barycentric coordinate

representation of the local tensor space, as shown in Fig. 2.
Regions of well-ordered unaxial nematic correspond to
�1��2
�3—i.e., cl
1; planar ordering corresponds to
�1
�2��3—i.e., cp
1; and no order �“isotropy”� corre-
sponds to �1
�2
�3—i.e., cs
1. Regions to the right of
the dashed line in the figure correspond to values of cl less
than a small threshold value. The threshold is chosen by
looking at the visualized cl isosurfaces: starting at cl=0,
where there are no isosurfaces, as cl is gradually increased
isosurfaces begin to emerge which resemble the defect dis-
tribution as determined by the method of Ref. �21�. The
threshold value is obtained when the isosurfaces are no
longer jagged, disconnected pieces, but rather smooth sur-
faces enclosing the disclination cores. We have chosen
cl=0.12 for this threshold. The spheroids in the figure are
drawn so that the principal axis directions and lengths are
given by the eigenvectors and corresponding eigenvalues of
the tensor D �31�, providing a visual signature of the local
ordering.

FIG. 2. �Color online� A barycentric coordinate representation of
the Westin metrics based on condition, Eq. �12�. The dashed line
corresponds to cl=0.12 and separates ordered uniaxial regions out-
side disclination cores �to the left of the line� from the core regions
�to the right of the line�. This choice of the numerical value for cl on
the dashed line is explained in the text. The spheroids shown are
drawn so that the principal axis directions and lengths are given by
the eigenvectors and corresponding eigenvalues of the tensor D
�31�.
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The Westin metrics are related to the uniaxial and biaxial
nematic order parameters S and � by

cl = S − � , �13�

cp = 4� , �14�

cs = 1 − S − 3� , �15�

indicating, as one might expect, that uniaxial nematic order
with S
1,�
0 corresponds to cl
1 and a prolate ellipsoid
in Fig. 2, while S
1/4 ,�
1/4 corresponds to an oblate
ellipsoid and cp
1; S
0,�
0 corresponds to a sphere and
cs
1. Regions of maximal biaxality correspond in the case
of the D tensor to

�2 =
1

3
, �16�

and cs	1, to rule out the isotropic case where all three ei-
genvalues are degenerate.

Stream tubes and streamsurfaces provide a complemen-
tary view to the Westin metrics of the nature of the ordering.
In particular, they provide a sense of the continuity of
the order beyond what would be obtained by drawing sphe-
roids alone. Stream tubes, analogous to stream lines in fluid
dynamics, give a representation of the director field in
uniaxial regions of the simulation volumes, where cl is
greater than some threshold. The trajectory of a stream
tube sweeps along the eigenvector field corresponding to the
largest eigenvalue �1, and the cross-sectional shape is an
ellipse representing the ratio of the other two eigenvalues as
shown in Fig. 3. Stream tube seed points are chosen so that
streamtubes pass through all regions of cl greater than the
chosen threshold and a selection algorithm culls most of the
trajectories and keeps only a representative set �27�. Stream
surfaces indicate the local ordering plane in regions where cp
is greater than some threshold. The streamsurface is the ap-
proximation of the surface that extends along the eigenvec-
tors corresponding to the two largest and nearly degenerate
eigenvalues, �1 and �2. At any point on a streamsurface, the

two eigenvectors lie in the tangent plane to the surface. The
integrability of the streamsurfaces can be determined by cal-
culating the Lie bracket of the two eigenvector fields corre-
sponding to the two largest eigenvalues �33�. Additional de-
tails about the specific algorithms used to generate the
streamtubes and streamsurfaces shown here can be found in
Ref. �27�.

III. RESULTS FOR THE QUENCHED GAY-BERNE
NEMATIC

We now show how the visualization techniques outlined
in the previous section can be used to obtain physical results
from the simulation data of a quenched Gay-Berne nematic
�21�. We first smoothed the data by introducing a weighting
function w��ri−r��:

D���r� =
1

N�VS� �
i�VS

w��ri − r��u�
i u�

i , �17�

where N�VS� is the number of molecules in the sampling
volume VS, a sphere of radius rK centered at point r, and
w��ri−r�� is the sampling weight of a molecule located at ri,
such that

�
i�VS

w��ri − r�� = 1. �18�

We sampled D at points on a cubic lattice separated by a
distance 
0, the width of a Gay-Berne molecule. We chose
the weighting function to be a cubic b-spline �34�, a piece-
wise continuous cubic polynomial approximation to a Gauss-
ian function �Fig. 4�, which we scaled so that Eq. �18� is
obeyed. The function w�ri−r� is zero for �rr−r��rK, where
rK is the kernel radius. We chose rK=7.3, corresponding to
the approximate radius of one coherence volume of the nem-
atic order parameter S �21� �we measure lengths in units of

0, the width of the Gay-Berne molecule�.

FIG. 3. �Color online� Illustration of a streamtube generated
from the trajectory of the major eigenvector corresponding to the
largest eigenvalue �1. The remaining two eigenvalues �2 and �3

determine the relative shape of the cross section of the streamtube.
The orientation of the cross section is determined by the corre-
sponding eigenvectors. The semiminor axis r along the direction of
the medium eigenvector is chosen for visual clarity.

FIG. 4. Illustration of the cubic b-spline weighting function
w��ri−r�� with kernel radius rK=7.3. The function is constructed in
a piecewise continuous fashion such that it is zero outside the ker-
nel radius. Within the kernel w�x�= 1

6 �3�x�3−6x2+4� ,0� �x�
�1;w�x�= 1

6 �2− �x��3 ,1� �x��2, where x=2�ri−r� /rK.
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A. Locations of disclination lines

Figure 5 shows a visualization of the disclination lines in
the Gay-Berne nematic �21� 33 000 time steps after a thermal
quench from the isotropic to the nematic phase. The discli-
nation lines are identified based on the criterion that the core
of a line must be characterized by a very small value of the
uniaxial nematic order parameter S or equivalently the Wes-
tin metric cl even if the core is biaxial. The main figure
shows isosurfaces of the Westin metric cl and the intermedi-
ate eigenvalue �2 using the Advanced Visualization System
�AVS� software package �35�. The green-yellow-blue sur-
faces in the main figure are cl=0.12 isosurfaces; the
color variation on these isosurfaces from blue to green to

red indicates an increasing value of cp, a measure of the
planar order in the defect core which we discuss further in
the next section. Within these isosurfaces cl	0.12 and
thus the isosurfaces identify the disclination lines. The inset
shows for comparison the same data visualized using
the method of Ref. �21� where a cubic lattice of bins was
created and disclinations were found using standard lattice
techniques �22�. The general locations of the disclination
lines in the two figures are the same aside from the
data padding added to all three directions in the main figure.
The gray isosurfaces surrounding the predominantly green
ones correspond to �2=1/3, demonstrating that the disclina-
tion cores include a tube of maximal biaxiality, in agreement
with the Landau-Ginzburg theory results of Ref. �15�.

FIG. 5. �Color online� �a� Vi-
sualization of the disclinations in
the simulation data of Ref. �21�
35 000 molecular dynamics time
steps after an instantaneous ther-
mal quench. The isosurfaces cor-
respond to cl=0.12. The color
variation on the cl isosurfaces in-
dicates variation of cp, ranging
from blue �cp
0� to red �cp


0.7�. The inset shows for com-
parison the disclinations found at
the same time step using the
method of Ref. �21� which was
based on standard lattice tech-
niques. The general locations of
the disclinations in the two figures
are the same aside from the data
padding added to all three direc-
tions in the main figure which was
done to emphasize the spatial con-
tinuity of the disclinations due to
periodic boundary conditions. �b�
Isosurfaces corresponding to �2

=1/3, where �2 is the intermedi-
ate eigenvalue of the tensor D, Eq.
�5�. This value of �2 corresponds
to maximal biaxiality of the nem-
atic order parameter tensor.
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B. Director structure around dislinations

Stream tubes are particularly helpful in determining the
topological charge of a disclination line segment and whether
the segment is wedge like or twist like. The latter property is
an indication of the direction of the rotation axis of the di-
rector �parallel to the disclination line in the wedge case,
perpendicular in the twist case, with intermediate possibilites
as well� as one encircles the disclination line segment, while
the charge is determined by the sense of rotation of the di-
rector. Both properties can vary along a disclination loop.
Figure 6 demonstrates how streamtubes can help determine
the local topological charge and the rotation axis of the di-
rector. The time step shown is 148 000 after the thermal
quench. The streamtubes wrapping through the loop and
around the top of the loop indicate that the top is wedge like
with charge +1/2 �recall Fig. 1�a��, whereas the streamtubes
near the bottom of the loop indicate that this portion is
wedge like of charge −1/2 �recall Fig. 1�b��. It is also clear
that the disclination loop is twist like on the left side, as the
streamtubes have a component parallel to the disclination
loop. In fact, this loop is an example of the hybrid type
discussed in Ref. �36�, where if one encircles any segment of
the loop the director n̂ rotates about a spatially uniform axis

�̂, shown in Fig. 6. Far enough away from the loop n̂ is

uniform and perpendicular to �̂ and therefore the loop has
no monopole charge.

Figure 7 indicates how using streamsurfaces as well as
streamsurfaces provides various clues to determine the topo-

logical charge and director rotation axis �̂ of a disclination
that would otherwise be very diffcult to do. From Fig. 7�a�
which shows a top view of two relatively straight disclina-
tion line segments it might be tempting to conclude that the
two disclinations are simply +1/2 and −1/2 wedge lines.
However, examination of the streamtubes and streamsurfaces
in a side view of these defects �Fig. 7�b�� shows a more
complicated picture. While the disclinations are on average

parallel to the z axis, the director field outside the core re-
gions and the planar ordering of the director indicated by the
streamsurfaces is considerably tilted out of the x-y plane. A
closer view of the −1/2 disclination along the line y=x in
Fig. 7�c� confirms that this line has twist as well as wedge
character. This does not come as a surprise as the twist Frank
elastic constant is less than the splay and bend constants in
the Gay-Berne nematic �37�.

The +1/2 and −1/2 disclinations shown in Fig. 7�a� re-
main pinned indefinitely as the simulation progresses as a
result of the constraints of the periodic boundary conditions
and do not annihilate each other. In the absence of these
constraints the annihilation takes place to reduce the elastic
energy by achieving a final uniformly ordered state; instead,
here the constraints lead to director distortions if the discli-
nations approach each other too closely. Though this equilib-
rium is artificially imposed by the periodic boundary condi-
tions, it nevertheless allows us to study properties of
disclinations, such as core structure, in greater quantitative
detail as we do in the next subsection.

C. Core structure

Figure 8 shows the Westin metrics cl, cp, and cs and the
eigenvalue �2 scanned along y at fixed x and z for the −1/2
and 1/2 disclinations of Fig. 7�a�. The value of x in each
case was chosen so that for the fixed value of z �which was
chosen to be approximately one-third of the z dimension of
the simulation box�, the scan along y passes through a global
minimum of cl—i.e., through the center of the defect. Taken
together with the appearance of the streamtubes and stream-
surfaces in Figs. 7�b� and 7�c�, Fig. 8 indicates that the cores
of both disclinations become biaxial as the center of the de-
fects is approached from outside �recall that maximum biaxi-
ality corresponds to �2=1/3, Eq. �16�� and at the very center
there is strong planar order �cp�cs� in a plane perpendicular
to the direction of uniaxial order outside the core. In the
language of the original Q tensor, Eq. �2�, this planar order

FIG. 6. �Color online� Wedge-twist loop visualized from the data of Ref. �21� 70 000 time steps after the quench into the nematic phase.
The green tubelike surface is an isosurface corresponding to cl=0.12 and the red streamtubes �the thin lines� are along the director field. The
variation in color along the streamtube indicates the relative value of cl, with redder corresponding to larger values of this metric �stream-

tubes were selected so that cl�0.2�. If one encircles any segment of the loop, the director n̂ rotates about the axis �̂.
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corresponds to S=� and the largest eigenvalue �in absolute
value� of Q equals −4S /3. The region of biaxiality surround-
ing a central core of planar order is precisely what was found
in Ref. �15� where the Landau-de Gennes free energy �in a
single Frank elastic constant approximation� was minimized
as a function of the order parameter tensor Q assuming the
presence of a wedgelike disclination line. Figure 8 shows
good agreement between our estimate of where maximal bi-
axiality occurs �

0 away from the defect center� and that of
Ref. �15�. Both in our case and Ref. �15�, maximal biaxiality
occurs at approximately one-tenth the distance between the
center of the defect and where the uniaxial nematic order
reaches its saturated value outside the core. On the other
hand, the degree of planarity in the core of both disclinations
shown in Fig. 8 is considerably greater than that predicted
analytically in Ref. �15�, who found cp
0.2 at the center of
their disclination �cp is given by 2/3 of the difference be-
tween the two smallest eigenvalues of the Q tensor�. This
difference can probably be attributed to the temperature dif-
ference between the simulation of Ref. �21� and the analysis

of Ref. �15�. The latter analysis was done at a temperature
much closer to TNI, the transition temperature between the
nematic and isotropic phases, making planar regions less en-
ergetically favorable than comparatively more isotropic ones.

In Fig. 8�a� we see that the ordering in the center of the
−1/2 defect is more planar than in the center of the 1/2
defect. It is not completely clear if this is a real equilibrium
feature or a fluctuation, as we have found that in exploring
other times in the simulation data portions of the core of the
−1/2 line become more isotropic and portions of the core of
the 1/2 line become more planar. To address this question,
Fig. 9 shows cp at the center of the +1/2 and −1/2 disclina-
tions, averaged over the entire length of each line, as a
function of time. As before we determine the center of the
disclination line at height z by finding the minimum value of
cl. We averaged over a time period of 26 500 time steps
starting at 70 000 time steps after the quench, keeping data
from every 500th time step. By comparison, the coherence
time—i.e., the relaxation time for director disturbances to
diffuse over a distance 
0—is approximately 250 time steps

FIG. 7. �Color online� Discli-
nation lines �which form closed
loops given periodic boundary
conditions� remaining near the
end of the simulation of Ref. �21�,
70 000 time steps after the
quench. In �a� the two lines which
are roughly parallel to the z axis
are viewed from above and appear
to be purely wedge like, with
charge +1/2 on top and −1/2 on
the bottom. However, �b� �where
the lines are viewed along the x
axis� and �c� �where the lines are
viewed along the line x=y� indi-
cate that the lines have a twistlike
character as well. The red stream-
tubes �the thin lines� show the di-
rector field, while the blue stream-
surfaces �the flat surfaces� show
the planarity of the director field
lines near the central portions of
the defects indicated by the
yellow-green tubelike isosurfaces
corresponding to cl=0.12. The
color variation on the cl isosur-
faces indicates variation of cp,
ranging from blue �cp
0� to red
�cp
0.7�. The streamsurfaces,
corresponding to cp�0.2, inter-
sect the defect lines at regions of
relatively high values of cp. �For
conciseness, parts �b� and �c� dis-
play only the −1/2 line; the 1/2
line, apart from the sign difference
in the topological charge, has a
similar twistlike structure.�
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in the Gay-Berne system. The initial time corresponds to
when the two disclinations have equilibrated with respect to
each other; i.e., their separation becomes approximately con-
stant.

The time averages of cp, indicated by the solid and dashed
horizontal lines in Fig. 9, are

�cp
+ = 0.461 ± 0.007, �19�

�cp
− = 0.478 ± 0.006, �20�

where Eqs. �19� and �20� refer to the 1/2 and −1/2 lines,
respectively.

These numbers suggest that the core of the −1/2 defect
is slightly more planar than the core of the +1/2 one.
References �15� which uses a single Frank elastic constant
approximation for the Landau-Ginzburg energy predicts
identical core structure for +1/2 and −1/2 disclinations,
since in this case the elastic free energy is invariant under the
rotation of the Q which changes the sign of the charge �38�.
It would thus be interesting to extend the analysis of Ref.
�15� to study the effect of unequal elastic constants and non-
zero far-field twist in the director pattern on the structure of
+1/2 and −1/2 disclination cores.

IV. CONCLUSIONS

In this paper we have presented a method for visualizing
topological defects arising in simulations of nematic liquid
crystals. The method utilizes scientific visualization tech-
niques originally developed to study the anisotropic diffusion
of water in brain tissue. As both anisotropic diffusion and
nematic ordering are quantified using second-rank tensor
fields, both phenomena can be explored using similar visu-
alization techniques. The visualization method presented
here is based on characterizing both the local symmetry of
the tensor field �in terms of the Westin metrics� and the con-
tinuity of these local properties as one moves through three-
dimensional space �in terms of streamtubes and streamsur-
faces�. These techniques have allowed us to readily elucidate
many properties of topological defects that have been up to
now difficult, if not impossible, to study using numerical
simulation data. The techniques presented here can be used
not only to determine the location of defects �as earlier visu-
alization methods could also do� but also to assess the core
structure of the defect and director field structure outside the
core. It can be readily determined by visual means whether
the core is biaxial and whether a disclination line segment is

FIG. 8. �Color online� The Westin metrics cl �red�, cp �green�,
and cs �blue� as functions of the coordinate y �in units of 
0� for the
two disclination lines �−1/2 in �a�, +1/2 in �b�� shown in Fig. 7�a�.
The coordinate system is shown in Figs. 5 and 7�a�. The y axis is
parallel to one edge of the simulation cell, and the two disclination
lines are roughly parallel to the z axis. The value of the x coordinate
in the present figure has been chosen to coincide with the center of
each line. The fixed value of z is the same in �a� and �b� and is
approximately one-third of the z dimension of the simulation box.

FIG. 9. �Color online� Averages of cp at center of the disclina-
tions of Figs. 7 and 8 over the entire lengths of the disclination
lines, plotted over 26 500 time steps starting at 70 000 time steps
after the quench. The value of cp along the 1/2 and −1/2 disclina-
tion lines is indicated by the solid and dashed curves, respectively.
The time averages are indicated by the corresponding horizontal
lines; the numerical values of these averages are given in Eqs. �19�
and �20�.
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wedge like or twist like and the sign of its topological
charge. Once the visualization methods have identified an
interesting region of a simulation cell, it is straightforward to
obtain quantitative data as we have illustrated here. While we

have illustrated the utility of these visualization techniques
using data from a Gay-Berne simulation �21�, we emphasize
that these techniques can be used with any nematic simula-
tion data, irrespective of the underlying model.
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