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Abstract We present and evaluate a bilateral filter for smoothing diffusion MRI
fiber orientations with preservation of anatomical boundaries and support for mul-
tiple fibers per voxel. Two challenges in the process are the geometric structure of
fiber orientations and the combinatorial problem of matching multiple fibers across
voxels. To address these issues, we define distances and local estimators of weighted
collections of multi-fiber models and show that these provide a basis for an efficient
bilateral filtering algorithm for orientation data. We evaluate our approach with ex-
periments testing the effect on tractography-based reconstruction of fiber bundles
and response to synthetic noise in computational phantoms and clinical human brain
data. We found this to significantly reduce the effects of noise and to avoid artifacts
introduced by linear filtering. This approach has potential applications to diffusion
MR tractography, brain connectivity mapping, and cardiac modeling.

1 Introduction

In this paper, we present and evaluate a method for smoothing orientation image
data that preserving edges and supports multiple orientations per voxel. We apply
this to diffusion MR imaging, a technique for measuring patterns of water molecule
diffusion with clinical applications to the in-vivo characterization of tissue. While
many of properties of tissue microstructure can be measured, we consider fiber ori-
entations, which are a feature of most diffusion models. In brain white matter imag-
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ing, fiber orientations provide the basis for the reconstruction of fiber bundles and
mapping of brain connectivity [2], and in cardiac imaging, fiber orientations aid the
understanding of myocardial structure and the electrical and mechanical function
of the heart [22]. A common issue with diffusion imaging is the presence of noise,
which can lead to errors in fiber orientation estimation. We examine a model-based
approach to regularization that extends the bilateral filter to single and multiple ori-
entation data.

Standard approaches for diffusion MR filtering either operate the diffusion-
weighted signal measured in each voxel and gradient encoding direction [27] or
incorporate robust statistics when fitting diffusion models [3]. Alternatively, model-
based image processing has the potential advantage of greater efficiency and the
ability to incorporate anatomical knowledge [17]. However, one challenge is that
the geometric structure of diffusion models must be incorporated. There has been
much success in developing such model-based frameworks with differential mani-
folds, such as with the tensor model [17] and orientation distribution functions [11].
For multi-compartment models, an additional combinatorial problem arises, where
correspondence must be made between fibers in different voxels. Local estimators
that incorporate clustering are one solution and have been applied to multi-tensors
[25] and orientations [6]. Other more global approaches for orientation regulariza-
tion have also been studied for single [19][28][8] and multi-fiber models [10][23].

In this paper, we derive a bilateral filter that extends previous work on local
linear filters for fiber orientations [6]. Such bilateral filters are well-studied for
scalar and vector images [26] and are closely related to normalized convolution
[14], anisotropic diffusion, and kernel regression [15]. Model-based bilateral filters
have been developed for the regularization of single diffusion tensor [12] and func-
tional [21] MR images. Related data-adaptive filters for 2D image orientations have
also been proposed for 2D smoothing [18] and hair modeling [16] applications. Our
work’s distinguishing features are the handling of 3D orientations, support for mul-
tiple fibers per voxel, and a computationally efficient formulation.

In the rest of the paper, we first discuss computational analysis of single and
multi-fiber orientations and derive the bilateral filter. We then evaluate our ap-
proach with computational phantoms and human brain data, measuring the effect
on tractography-based reconstruction of fiber bundles and the voxelwise response to
synthetic noise. We show that the proposed filter improves bundle reconstructions,
significantly reduces the effects of noise, and offers an improvement over linear
filtering at anatomical boundaries.

2 Methods

In this section, we first describe models of fiber orientations in diffusion MRI and
discuss the computation of distances and averages of single and multiple orienta-
tions. We then apply these results to derive the proposed bilateral filter.
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2.1 Fiber Orientation Modeling

Many methods exist for estimating fiber orientations. In this paper, we use the multi-
direction ball-and-stick compartment model to obtain both fiber orientations and
their volume fractions. This is a parametric mixture model consisting of an isotropic
ball compartment and multiple tensor sticks that are constrained to be completely
anisotropic [4]; our focus in this paper is on fiber orientations. These orientations
have no preferred direction, so they are typically considered axial or line data and
can be represented by unit vectors with no associated sign. For the case of multiple
fibers, we consider a model M to be a weighted combination of N fiber volume-
fraction and orientation pairs M = {( fi,vi)}N

i=1 that lie in a single voxel. To perform
analysis of these models, we need suitable distances, weighted averages, and related
efficient computational routines. In the following sections, we’ll discuss such ideas
for both individual fiber orientations and their weighted combinations.

2.2 Single Fiber Analysis

We measure the distance d f (a,b) between single fiber orientations a and b by the
sine of their angle. Although the angle between axes may seem more natural, the
sine angle distance allows for a desirable representation and offers robustness to
outliers [5]. This distance can be found by considering the representation φ(v) =
vvT , known as the Veronese-Whitney embedding, the dyadic product, or Knutsson
mapping [13][20]. This representation induces the sine angle fiber distance d2

f via
the Euclidean distance d2

e in the embedding φ :

d2
f (a,b) = d2

e (φ(a),φ(b)) = ‖φ(a)−φ(b)‖2 (1)

= Tr((φ(a)−φ(b))T (φ(a)−φ(b)) (2)

= 2(1− (a ·b)2) = 2sin2(θ) (3)

Weighted averages can then be computed with respect to this distance by µ =

∑i wiφ(vi). As this is an extrinsic mean, the result may no longer lie in the em-
bedding, so it must be projected to the nearest point argminv d2

e (φ(v),µ). A closed
form expression for this is given by the principal eigenvector of the matrix µ [5].
This formulation also has a statistical interpretation, as the fiber distance is equiva-
lent to the Bregman divergence between Watson distributions [7], and the weighted
average of fibers is the maximum likelihood estimate of the direction of a Watson
distribution [24]. We also note that both the fiber distance and the embedding pro-
vide a computationally efficient approach for optimization with orientations.
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2.3 Multi-fiber Analysis

In addition to measuring distances between fibers, we also wish to measure a dis-
tance dm(M,M̂) between weighted combinations of fibers:

d2
m(M,M̂) = min

π
∑

j
f jd2

f (v j, v̂π( j)) (4)

which is selected across all possible mappings π from left to right fibers. Intuitively,
this finds the weighted sum of squared fiber distances from each of the left fibers to
its nearest right fiber. Similar combinatorial distances have been applied to multi-
fiber analyses by [25] [23]. We note that d2

m is asymmetric with respect to its inputs
and invariant to the specific order of fiber compartments in M. Of course, when one
fiber per voxel is present, this distance reduces to the single fiber distance d2

f . We
also need to compute the weighted average M̂ under this distance, which can be
defined and simplified as follows:

M̂ = argmin
M

C

∑
i

wid2
m(Mi,M) = argmax

M,π

C

∑
i

Ni

∑
j

wi fi j(vi j · vπ(i j))
2 (5)

For a fixed number of fibers in M̂, this objective can be minimized by an iterative
Expectation Maximization procedure similar to k-means clustering. In fact, this is
equivalent to the procedure for hard Mixture of Watsons clustering of Sra et al [24].
With this in mind, we now move to the task of defining bilateral filtering for multi-
fiber models.

2.4 Bilateral Filtering

Perhaps one of the most basic smoothing filters is the Gaussian blur, where a
weighted average of pixel intensities is found based on spatial proximity to a given
voxel. While this approach can remove noise, it also tends to smooth features that
we’d rather preserve. In contrast, bilateral filtering is a non-linear technique that
has been found to smooth images while preserving edges [26]. This is achieved
by computing weights based on both spatial proximity and intensity similarity. For
multi-fiber models, we can make a similar extension to the linear multi-fiber filter
proposed in [6] by including weights for directional similarity of fiber models. We
define such a filter on a per-voxel basis with a local estimation framework [15] as
follows. Given an input voxel position and model (p0,M0) and local neighborhood
{(pi,Mi)}Ci=1, with Mi = {( fi j,vi j)}Ni

j=1, the filtered model M̂ is:
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Fig. 1: An example of bilateral filter weights computed for a single voxel p0 with
associated fiber model M0 (left), located near a boundary in a noisy phantom. For
each voxel pi and associated model Mi in a neighborhood of p0, the bilateral weights
(right) are given by the product of the linear Gaussian weights K(pi, p0) (top) and
data-adaptive weights K(Mi,M0) (bottom).

M̂ = argmin
M

C

∑
i=0

K

(
d2

e (pi, p0)

h2
p

)
K
(

d2
m(Mi,M0)

h2
m

)
d2

m(Mi,M) (6)

given bandwidth parameters hp and hm and a kernel functions K, which we take
to be the exponential K(x) = exp(−x). This defines non-linear filter weights that
depend on M0, as illustrated in Fig. 1. Each voxel may be processed separately by
recomputing weights and solving Eq. 5 with the related Expectation Maximization
procedure [24]. Two additional concerns are the number of fibers and the resulting
volume fractions, which we estimate with standard bilateral filtering. The number
of fibers is then a weighted average, which is rounded to the nearest integer, and
the volume fractions are also weighted averages, but within groups defined by the
optimal fiber correspondences π . Multiple passes through the volume may have
some benefit, but we only consider a single pass.

3 Experiments

We performed evaluation with two experiments: the first applies tractography-based
fiber bundle reconstructions in the human brain data, and the second measures the
response to noise in computational phantoms and human brain data. We compared
to the linear filtering approach [6] in both experiments.
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3.1 Datasets

3.1.1 Computational Phantom Data

Two computational phantoms were constructed with single and double fiber mod-
els. The first represents the interface between two bundles, such as the corpus cal-
losum/cingulum boundary. The second represents a similar interface with an ad-
ditional bundle crossing both, such as the corpus callosum/corona radiata/superior
longitudinal fasciculus juncture. These are represented by single and double fiber
models, respectively, and both include fanning and curving to represent features of
real data.

3.1.2 Human Brain Data

Diffusion MRIs were acquired from a healthy volunteer with a GE 1.5T scanner
with a voxel size of 2mm3, dimensions 128x128x72, seven T2-weighted volumes,
and 64 gradient encoding directions with b-value 1000 s/mm2. Three repeated ac-
quisitions of a single subject were concatenated to produce a high signal-to-noise
volume. The repeated scans (high SNR) and a single acquisition (low SNR) were
each processed with FSL to correct for motion, extract the brain, and fit single and
multi-fiber models with Xfibres [4].

3.2 Design

The first experiment tested the effect of filtering on streamline tractography of the
superior longitudinal fasciulus I [9], as shown in Fig. 2. We compared bundles with
the Dice coefficient, fiber count, and volume, taking the high SNR acquisition as a
reference and applying filtering to the low SNR scan. The second experiment tested
the response to noise by randomly perturbing fiber orientations in the phantom and
real data, as shown in Fig. 3. We measured error by the volume-fraction weighted
minimum angular difference in degrees between models across all one-to-one pair-
ings (the same metric used in [6]) and estimated the error rates by a Monte Carlo
simulation with 1000 noise iterations with hp = 3.0 and hm = 0.75. We tested for
a reduction in error by a one-sided paired t-test at each voxel, where samples were
paired by noise iteration. We measured the per-voxel effect size by a paired Cohen’s
d-score. In both experiments, we compared linear and bilateral filtering.
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3.3 Results

In the first experiment, we found bilateral filtering to produce more similar bundles
to the reference than either the source or linear filtered volumes, as shown by an
increased Dice score and similar fiber counts and volumes. In the second experi-
ment, we found bilateral filtering to significantly reduce noise-induced error in all
voxels (d > 1.0, p < 0.05) and found linear filtering to reduce noise in most areas,
though not near some boundaries. Near these boundaries, the bilateral error was
significantly lower with a large effect size (d > 1.0, p < 0.05). We also measured
error as a function of adaptive bandwidth hm and found a nonlinear trend that varied
between high error as hm→ 0 and the linear filtering error as hm→ ∞ with a single
global minimum between. On a 1.3 GHz Intel Core i5, our implementation ran in
two minutes for a full brain volume.

Reference Unfiltered Linear Filtered Bilateral Filtered
3x64 directions 64 directions 64 directions 64 directions

Dice 1.0 0.32 0.47 0.53
Count 130 36 312 125
Volume 2320 mm3 608 mm3 5288 mm3 2432 mm3

Fig. 2: Filtering effects on tractography of the left superior longitudinal fasciculus I,
which runs anterior-posterior through dorsal frontal and parietal white matter. The
high SNR (3x64 dir) taken as a reference, the low SNR scan (64 dir) was taken
as a test case, and linear and bilateral filtering were applied to the test case. Using
TrackVis, two spherical regions were manually chosen to delineate the bundle con-
sistently across cases, and agreement of bundles with the reference was computed
with the Dice coefficient, fiber count, and volume. We found bilateral filtering to be
most similar to the reference, while linear filtering inflated both volume and count.
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Original Noised Linear Bilateral Effect Size

e=14.36 e=4.77 e=3.51 d=8.30

e=14.38 e=3.50 e=3.10 d=3.00

e=6.86 e=4.22 e=3.50 d=2.06

e=9.07 e=6.24 e=5.35 d=1.90

Fig. 3: Filter response to synthetic noise in two phantoms and two human brain
cases. Orientation color-coded fiber models are superimposed on grayscale render-
ings of estimated voxel-wise error (e) and effect size (d) of the error reduction of
bilateral vs. linear filtering (described in Section 2). Rows show (top to bottom): sin-
gle and double fiber phantom, and coronal slices of single and double human brain
data. Columns show (left to right): original fibers, noisy fibers, linear filtering error,
bilateral filtering error, and significant improvements over linear filtering. We found
both filters to significantly reduce noise-induced error, with linear filtering having
higher error near junctions and boundaries but bilateral filtering showing reduced
errors in these regions.
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4 Conclusion

In this paper, we presented a bilateral filter for fiber orientation data. Our experi-
ments suggest this approach is valuable for regularization and improving fiber bun-
dle reconstruction. Other practical applications include brain connectivity mapping
[2], heart modeling [22], and texture analysis [1]. Open problems include incorpora-
tion of microstructure properities, testing performance with partial volume effects,
comparison with diffusion-weighted image smoothing techniques, and evaluation
for clinical study. In conclusion, we found this approach to offer an efficient way
to improve fiber-based modeling in diffusion MR images, as demonstrated with our
experiments on synthetic phantom and real human brain datasets.
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