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Abstract. Diffusion MRI is a valuable tool for mapping tissue mi-
crostructure; however, multi-fiber models present challenges to image
analysis operations. In this paper, we present a method for estimating
models for such operations by clustering fiber orientations. Our approach
is applied to ball-and-stick diffusion models, which include an isotropic
tensor and multiple sticks encoding fiber volume and orientation. We
consider operations which can be generalized to a weighted combina-
tion of fibers and present a method for representing such combinations
with a mixture-of-Watsons model, learning its parameters by Expecta-
tion Maximization. We evaluate this approach with two experiments.
First, we show it is effective for filtering in the presence of synthetic
noise. Second, we demonstrate interpolation and averaging by construc-
tion of a tractography atlas, showing improved reconstruction of white
matter pathways. These experiments indicate that our method is useful
in estimating multi-fiber ball-and-stick diffusion volumes resulting from
a range of image analysis operations.
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1 Introduction

Diffusion magnetic resonance imaging enables quantitative mapping of tissue mi-
crostructure properties. This modality is especially valuable for studying white
matter in the human brain, as water molecule diffusion models enable both local
measurement of fiber integrity as well as more global reconstruction of white
matter structure through tractography. While these are rich sources of informa-
tion, multi-direction diffusion models pose a challenge for common operations,
such as filtering, interpolation, and averaging. This is due to the directional
nature of fiber models and the correspondence problem of matching fibers be-
tween voxels [1]. This is a major concern for atlas-based neuroimaging studies,
where these operations are used to spatially normalize a population and perform
statistical analysis.

Our contribution is the presentation and evaluation of an approach for filter-
ing, interpolating, and averaging ball-and-stick fiber models, a multi-compartment



water diffusion model that has relatively few parameters and is commonly used
for tractography [2]. Our approach bears most similarity to a method for interpo-
lating multi-tensor models by Taquet, et al. [3]. While the ball-and-stick model
consists of tensor compartments, they are not positive definite, so the Gaussian
mixture simplification approach proposed in that work is not well defined for this
constrained model. Instead, we employ the mixture-of-Watsons model proposed
for fiber modeling by Rathi el al [4], present an efficient Expectation Maximiza-
tion algorithm for learning its parameters from weighted samples, and evaluate
its applications with two experiments. The Watson distribution has been notably
used to model fibers in several other works, including characterizing orientation
error [5], performing filtered tractography [6], statistical testing [7], and atlas
space averaging [8].

In the following section, we first review the ball-and-stick diffusion model,
then show how mixture-of-Watsons clustering can be used to estimate multi-fiber
volumes, followed by a description of an Expectation Maximization algorithm
to efficiently learn the model parameters. We then present results from two ex-
periments: the first tests the performance of mixture-of-Watsons filtering in the
presence of synthetic noise, comparing to the heuristic discussed by Taquet, et
al. [3]; the second demonstrates the construction and virtual dissection of a trac-
tography atlas, comparing it to the single tensor and heuristic reconstructions.
We end with a discussion and concluding remarks.

2 Methods

2.1 Diffusion Model

A common multi-fiber model consists of a linear combination of tensors. The
predicted signal Si of the i-th volume for such a model is:

Si = S0

M∑
j=0

fj exp
(
−bigTi Djgi

)
(1)

given M fiber compartments, gradient encoding direction gi, b-value bi, un-
weighted signal S0, fiber volume fraction 0 ≤ fj ≤ 1, and

∑M
j=0 fk = 1. In this

paper, we consider the ball-and-stick variety of this model, which is constrained
to have a completely isotropic first component D0 = diag(d, d, d) and completely
anisotropic subsequent components Dj = dvjv

T
j , given diffusivity d and fiber

orientation vj . The anisotropic tensor is given by the outer-product of the fiber
orientation vector, whose eigenvalues are {1, 0, 0}. It should be noted that this
tensor is not positive definite, thus Riemannian tensor manifold methods and
the Burg matrix divergence [3] are not well defined.

2.2 Mixture-of-Watson Estimation

In this section, we describe our method for estimating ball-and-stick models
with mixture-of-Watson clustering. We take an approach similar to [3] and con-



sider operations which can be generalized as weighted combinations of fiber
compartments. Examples include per-voxel averaging across a population, tri-
linear interpolation, and Gaussian filtering. For simplicity, we use set notation
to represent combinations of fibers. A single voxel model can be described by
a volume-weighted combination Si =

⋃Ni

j (fij ,vij), and a weighted combina-
tion of all grouped voxel models G can then be defined by the combination of
those voxel-wise models, where each resulting weight is the product of the voxel
volume fraction fij and the per-model weight si:

G =

M⋃
i

(si, Si) =

M⋃
i

Ni⋃
j

(sifij ,vij) =

K⋃
k

(wk,vk) (2)

where K =
∑M
i Ni, and k indexes (i, j), i.e. wk = sifij and vk = vij .

This weighted combination alone offers one solution to operations such as
averaging and interpolating, but the result is overly complex. Taquet, et al.
[3] have proposed Gaussian mixture simplification as an approach to reduce
this complexity for the case of multi-tensor models; however, this method is
not well-defined for the stick models, as previously explained. Our approach
offers a similar clustering-based solution by modeling the distribution of fibers
by a mixture-of-Watsons, which was suggested for multi-fiber modeling [4]. The
Watson distribution [9] is a model for directional statistics that was proposed
for single fiber modeling by Cook, et al. [5] and bears similarity to a Gaussian
distribution. The space of directions can be modeled as points on the S2 with
antipodal equivalence, i.e. {v ∈ R3 : ||v|| = 1 and v ∼ −v}. Its probability
density, given concentration κ is then:

W (v; θ) = A(κ) exp
(
κ
(
µTv

)2)
(3)

for model parameters θ = (µ, κ) and normalization constantA(κ) = M( 1
2 ,

3
2 , κ)−1

given by the confluent hyper-geometric function, sometimes known as 1F1 or the
Kummer function. The density of the set of fibers G can then be modeled by a
mixture of C Watson distributions:

p(v;Θ) =

C∑
c=1

αcW (v; θc) (4)

given mixture model parameters Θ = (α1, θ1, ..., αC , θC) and
∑
αc = 1. The

number of components C controls the resulting complexity and may be chosen
by some method of model selection, which is not explored here. We use a weighted
samples version of the Expectation Maximization algorithm presented by Sra, et
al. [10] to learn the parameters. The assignment and update steps are described
as follows.



E-Step: Assign responsibility of each component c for each fiber k

πkc = p(c|vk, Θ) =
αcW (vk|θc)∑C
c αcW (vk|θc)

(5)

M-Step: Update the model parameters for each component c

αc =

∑K
k wkπkc∑K
k wk

(6)

µc =

∑K
k wkπkcvkv

T
kµc

||
∑K
k wkπkcvkv

T
kµc||

(7)

κc =

∑K
k wkπkc∑K

k wkπkc (1− (µTc vk)2)
(8)

where κ and A(κ) = κ
π exp(κ) are found similarly to Schwartzman, et al. [7]. This

process can also be adapted to a “k-means” algorithm, similar to diametrical
clustering, with hard assignment in the E-step and fixed parameters in the M-
step. The k-means approach is initialized from a set of randomly selected fibers,
and the Expectation Maxmization-approach is initialized with the k-means so-
lution. The resulting clustering is then used to estimate a simpler fiber model
Ĝ =

⋃C
c (αc,µc), by assigning the mixing parameters to volume fractions and

component means to fiber orientations. We compare to a “heuristic” method
described in [3]. This heuristic makes a simplifying assumption that fiber com-
partments are matched across voxels by volume-fraction rank, as opposed to
the proposed matching defined by clustering. For example, when averaging two-
direction models, the smaller volume compartments would be averaged sepa-
rately from the larger volume compartments.

3 Experiments and Results

3.1 Data Acquisition and Processing

Diffusion volumes were acquired from 80 healthy volunteers uniformly distributed
in age from 25 to 64 years with 39 male subjects following an IRB-approved pro-
tocol. Imaging was conducted on a GE 1.5T scanner with a voxel size of 2mm
x 2mm x 2mm, matrix size 128x128, and 72 contiguous axial slices. For each
subject, a total of 71 volumes were acquired, with seven T2-weighted volumes
(b-value 0 s/mm2) and 64 diffusion-weighted volumes (b-value 1000s/mm2) and
distinct gradient encoding directions. All diffusion MRI data were corrected for
motion and eddy current artifacts by affine registration to the first T2-weighted
volume using FSL Flirt (http://www.fmrib.ox.ac.uk) with a mutual information
cost function. The gradient encoding directions were rotated to account for the
alignment, and non-brain tissue was removed using FSL Bet. Single tensor mod-
els were fit using FSL DTIfit, and two-direction ball-and-stick diffusion models
were fit using FSL Xfibres. All subjects were mapped to a population-specific
template by tensor registration using DTI-TK [11].



(a) Source (b) Noised

(c) Heuristic filtered (d) Mixture-of-Watson filtered

Fig. 1: Gaussian filtering of noisy fibers and the results of the heuristic and mixture-of-
Watson filtering. Voxels with particularly poor heuristic performance are highlighted
in yellow.

3.2 Filtering Experiment

In our first experiment, we tested the effect of Gaussian filtering in the presence
of noise for a single subject. We introduced varying levels of Gaussian noise in
the volume fractions and orientations (∆σf = 0.01 and ∆σv = 0.05), followed
by renormalization. We then filtered with weights defined by a Gaussian kernel
(σ = 2mm, 5 voxel support) with the heuristic, k-means, and Expectation Max-
imization approaches. We computed the error E between the source and each of
the noised and filtered volumes at each noise level:

E(A,B) = min (D(A0, B0) +D(A1, B1), D(A0, B1) +D(A1, B0)) (9)

D(x, y) =
(fx + fy)

2

180

π
arccos

(
|vTx vy|

)
(10)

given a pair of two fiber voxel models A = {A0, A1} and B = {B0, B1}, where
D is the volume-weighted angular difference between a pair of compartments.
Fig. 1 shows an example slice accompanied by the noised and filtered fibers. We
found the heuristic approach failed to restore some crossings where fibers had
roughly equal volume, as highlighted in Fig. 1. We found the proposed approach
to have lower error than the heuristic approach across all noise levels, with the
Expectation Maximization approach outperforming the k-means approach, as
shown in Fig. 2. Our serial implementation ran in five minutes on an Intel i5
2.6 GHz machine with 8GB of RAM and typically converged in fewer than 10
iterations.
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Fig. 2: The mean error as a function of noise level and type of filtering. Shown is the
error for unfiltered (red square), heuristic (green circle), k-means (blue triangle), and
full Expectation Maximization mixture-of-Watsons (orange cross) filtered volumes.

3.3 Atlasing Experiment

In our second experiment, we constructed a tractography atlas from the 80 sub-
ject population. Volumes were resampled into atlas space using both heuristic
and mixture-of-Watsons interpolation with reorientation by finite strain rotation
J/
√

JJT [11]. Both cases used the same spatial transform computed with DTI-
TK. Following this, the co-registered fibers were averaged using each method.
Results are shown in Fig. 3. In our implementation, the interpolation took five
minutes per subject, and population averaging took five minutes in total.

Deterministic streamline tractography was performed with both interpolation
approaches with weights chosen by trilinear interpolation. Single tensor tracking
was also performed for comparison. Multiple directions were included similarly
to [1]. Termination criteria were a volume fraction of 0.10 and angle of 35o.
Other tracking parameters include step size of 1.5mm, one seed per voxel, and
Runge-Kutta integration. Our serial tracking implementation took 10 minutes
for the given parameters.

Major bundles were manually segmented using slice-based masks in TrackVis
(www.trackvis.org), and included the corpus callosum, corona radiata, interior
fronto-occipital fasciculus (IFOF), uncinate fasciculus, interior longitudinal fas-
ciculus, and several portions of the superior longitudinal fasciculs (SLF). We
compared the mean length and number of curves in each tract. We found close
agreement among methods except the following. The two dorsal portions of the
SLF were not present in the single tensor atlas, and the heuristic SLF had 50%
fewer curves and 40% shorter length than the mixture-of-Watsons SLF. The
mixture-of-Watsons IFOF had 50% fewer curves but equal length to both other
methods. The corpus callosum in the single tensor was similar to the heuristic
reconstruction, but the mixture-of-Watsons reconstruction contained numerous
anatomically plausible crossing fibers. These results are illustrated in Fig. 3.



(a) Registered population fibers (b) Mixture-of-Watsons average fibers

(c) Single tensor atlas (d) Heuristic atlas

(e) Mixture-of-Watsons atlas (f) Mixture-of-Watsons SLF tracts

Fig. 3: Construction and virtual dissection of atlas space tractography using the single
tensor, heuristic, and mixture-of-Watsons estimation methods. Shown are examples of
co-registered multi-fiber models (a) and their mixture-of-Watsons average (b). Also
shown are tracks derived from a single tensor model (c), multi-fiber heuristic (d), and
multi-fiber mixture-of-Watsons (e) approaches. The most significant strengths of the
proposed method were in the superior longitudinal fasciculus, shown in (f), and corpus
callosum (not shown). All cases used spatial transforms computed with DTI-TK from
an 80 subject normal population.



4 Discussion and Conclusions

We presented a method for performing filtering, interpolation, and averaging
of multi-fiber ball-and-stick diffusion models using mixture-of-Watsons cluster-
ing. We found the presented Expectation Maximization algorithm to efficiently
learn the mixture model parameters, and our experiments to demonstrate the
value of the approach in several common volume analysis applications. Our first
experiment suggests that the filtering method reduces error introduced by orien-
tation noise. Our second experiment showed that our approach allows the recon-
struction of white matter pathways across a large population, and the method
improved the reconstruction of several major bundles, including the superior
longitudinal fasciculus and corpus callosum. Notable limitations are that the
diffusivity is not handled, the number of mixture components must be specified
explicitly, and other reorientation strategies have not been explored. In con-
clusion, we find our approach to be an efficient and effective way to estimate
multi-fiber ball-and-stick diffusion volumes resulting from a number of image
analysis operations.
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