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Using Visual Design Experts in Critique-based

Evaluation of 2D Vector Visualization Methods
Daniel Acevedo, Cullen D. Jackson, Fritz Drury, and David H. Laidlaw

Abstract— We describe an experiment in which art and illus-
tration experts evaluated six 2D vector visualization methods. We
found that these expert critiques mirrored previously recorded
experimental results; these findings support that using artists,
visual designers and illustrators to critique scientific visual-
izations can be faster and more productive than quantitative
user studies. Our participants successfully evaluated how well
the given methods would let users complete a given set of
tasks. Our results show a statistically significant correlation
with a previous objective study: designers’ subjective predictions
of user performance by these methods match users measured
performance. The experts improved the evaluation by providing
insights into the reasons for the effectiveness of each visualization
method and suggesting specific improvements.

Index Terms— Scientific Visualization, Perception, Visual De-
sign, User Study, Two-dimensional Vector Fields, Critical Point,
Advection, Design Goals, Evaluation Tasks, Visual Dimensions.

I. INTRODUCTION

THE human visual system is a highly optimized pattern

detection and recognition system. Visualization methods

leverage this ability to allow efficient data exploration, discovery,

and analysis. One goal of exploratory scientific visualization is to

display measurements of physical quantities so that the underlying

physical phenomena can be interpreted accurately, quickly, and

without bias, prompting visual thinking and knowledge construc-

tion [13].

This paper addresses the question of how best to evaluate the

effectiveness of visualizations methods, and also asks whether a

good evaluation method suggests improvements in the visualiza-

tion methods. Visualization is used in data-intensive domains; data

mining, meteorology, geography, transportation sciences, envi-

ronmental studies, uncertainty analysis, and evolutionary biology

are a few examples. In these fields, a common problem for

visualization experts is: given a large set of multivalued data and

hypotheses scientists would like to address, what visualizations

best represent the data and how do we measure their effective-

ness?

We hypothesize that using visual design experts to perform

critique-based evaluations can let us quantify the expected per-

formance of visualization methods as well as elicit fixes for

visual design problems that are often difficult for a domain or

visualization expert to articulate. Evaluation of scientific visual-

ization methods is typically either anecdotal, via feedback from or

observation of scientific users, or quantitative, via measurement
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TABLE I

PROS AND CONS OF PARTICIPANT TYPES IN QUALITATIVE SCIENTIFIC

VISUALIZATION EVALUATIONS.

of the performance of relatively naı̈ve users on simple abstract

tasks. In this study we add visual design experts to the pool of

evaluators (see Table I).

Human-computer interaction (HCI) literature has established

that usability experts are more efficient participants in heuristic

evaluation studies than novices [14] (heuristic studies are per-

formed early in a project’s development to find both major and

minor problems in a design). Minor issues, however, are missed

by experts and can be uncovered only by end-user evaluation in

real situations.

Here we propose expertise in visual design as the basis of a vi-

sualization evaluation methodology that assesses the effectiveness

of scientific visualizations, providing reasons for that effectiveness

and suggesting improvements. Our participants, visual designers

and illustrators, are experts in evaluating visuals for targeted

communication goals; while their results are often appealing

and aesthetic, they first must satisfy the communication goals,

which in this case means presenting scientific data for effective

exploration.
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The purpose of this study is to evaluate whether these experts

can effectively evaluate scientific visualization methods as com-

pared to a quantitative study performed earlier [11]. I also hope to

learn more about how visual designers approach these evaluations.

Understanding this process should help us build better evaluation

methods, particularly ones that will both judge visualizations on

their scientific merits and provide insights into improving their

design.

In the present experiment, artists and visual designers graded

the vector visualization methods from a previous study [11] on the

basis of their subjective estimates of user performance and also

verbally critiqued each method’s effectiveness. Our hypothesis

was that designers would rank the methods similarly to the

objective task-performance measures in [11]. We also hoped that

the critiques would help us understand why methods work well

by identifying which visual attributes within each method worked

best for the given tasks. Our results are consistent with our

hypothesis.

II. STATE OF THE ART

Many researchers are trying to answer the question of what

the best ways to craft visualizations are and how to evaluate

their success. We summarize here several approaches found in

the literature.

One possible strategy is to use perceptually based rules that

let the user perceive data features efficiently without confusion

from conflicting visual cues. Among the perceptually based

cues proposed are preattentive visual cues such as color and

orientation [7] and Gestalt principles of grouping according to

proximity, similarity, or closure; even motion has been used to

disambiguate visual elements [23] or to animate time-varying

data.

Another possible strategy is to use design-based rules that

incorporate aesthetics and task-driven solutions [5], [17]. Some

of the design-based rules proposed use inspirations from art to

drive visualization solutions, for instance, using an Impressionist

style, or using brush strokes from a particular work of art [7],

[10], [22].

On the more practical topic of visualization synthesis, many

current systems provide environments for generating visualiza-

tions: AVS [21], Vis5D [8], VTK [16], IRIS Explorer [6] and

IBM’s Data Explorer [12] with PRAVDAcolor. None of these

systems, however, provide any visual design guidance or sugges-

tions for evaluating the resulting visualizations. They all provide

plenty of knobs to modify and adapt your visualization methods,

but rarely do they give any advice about how to turn the knobs

to create a more effective visualization. A notable exception is

PRAVDA, which was developed with perceptual principles in

mind to provide users the most effective color maps depending

upon the type of data being visualized [15].

In order to evaluate and compare visualizations, there must be

a way to classify their possible goals and analyze how different

methods fulfill those goals. Much research has been done in

this area [2], [3], [18], mostly in the information visualization

arena. In addition, in the expert systems field, Xu et al. [24]

have tried to capture the designer’s intent in order to customize

the visualization and design sketches and reach a valid solution

efficiently.

Once the goals of a scientific visualization are defined, two

evaluation methods are currently used: anecdotal and quantita-

GRID JIT

LIT LIC

OSTR GSTR

Fig. 1. The same vector field as visualized by the six visualization methods
critiqued by the designers.

tive studies. Anecdotal studies are usually conducted by asking

scientists to evaluate the visualizations on their scientific merits;

the feedback this method elicits is usually very specific to the

visualization and scientific problem at hand. Quantitative studies,

on the other hand, explore the performance of the visualization

methods on generic tasks, and their results may well be gen-

eralizable to other methods within the same scientific domain.

Neither evaluation method addresses visual design issues such as,

for example, possible confounding effects due to simultaneous

contrast, or the visual organization of the displays that might

unexpectedly create highlighted areas when even attention to the

whole display is intended.

As a possible solution to these issues, Tory and Möller [19]

recommend using both domain experts and quantitative studies.

We extend the state of the art for evaluation methodology by

exploring the use of visual design experts as our evaluators,

potentially reducing the reliance exclusively on quantitative task-

specific studies. Expert visual designers know from experience

the limitations of each visual dimension, and we hope to collect

and use that knowledge to guide the creation of new visualization

methods. In order to show that designers can contribute in this
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Fig. 2. Sample stimuli for the three experimental tasks. The solutions for each, marked in red, were provided to participants during the subjective critiques.
Their goal was to judge how accurately and quickly a real user of the visualizations would perform these tasks for each method. (a) Counting task with three
critical points visible, (b) Type ID task with a saddle-type point (marked in blue), and (c) Advection task in which a small red circle indicates the location
to which a particle in the center of the large blue circle would advect.

way, we designed the following experiment.

III. EVALUATION OF VECTOR FIELD VISUALIZATION

METHODS

A. Methodology

In order to evaluate the efficacy of our designer critiques, we

modeled our study on a previous quantitative user study [11] com-

paring six 2D vector field visualization methods on three different

tasks using expert and novice scientists. Having designers evaluate

the same six visualization methods, using the same tasks as in the

previous study, let us validate our designers’ ability to evaluate

scientific visualizations effectively.

In [11], users were asked to evaluate the merits of the six

visualization methods shown in Fig. 1:

• GRID: icons on a regular grid.

• JIT: icons on a jittered grid [4].

• LIT: icons using one layer of a visualization method that

borrows concepts from oil painting [10].

• LIC: line-integral convolution [1].

• OSTR: image-guided streamlines (integral curves) [20].

• GSTR: streamlines seeded on a regular grid [20].

With these methods, users were asked to perform three tasks

designed to mimic generic tasks fluid-flow experts would use to

investigate a vector field (Figure 2):

• Counting Task: Choosing the number and location of all

critical points (CP) in an image.

• Type ID Task: Identifying the type of a CP at a specified

location.

• Advection Task: Predicting where a particle starting at a

specified point will advect.

Seventeen users were run through the 90-minute computer-

controlled experiment [11]: five were fluid-flow experts and 12

were first- or second-year applied math graduate students with

little previous experience in computational fluid dynamics. Details

of the results are given in [11].

In the present study, visual designers were asked to judge the

six visualization methods on their ability to convey the informa-

tion necessary for a user to complete the three tasks accurately and

quickly. Figure 3 shows one of our visual designers critiquing the

Fig. 3. During the study, designers rated the different methods subjectively,
based on accuracy and time to perform the task. They could also appraise how
the visual dimensions used in each method would affect their performance.

six methods. The experiment took an average of 60 minutes. Six

experts, who were compensated for their participation, judged all

six methods for all tasks (within-subjects design). As a training

exercise, all designers took the objective computer-based study

first. Participants could ask the experimenter for any necessary

clarification during the experiment.

Designers evaluated the methods using printed images from

three different datasets simultaneously. This allowed them to

critique a visualization method on its own expressive capabilities

and not on its specific instantiation for a dataset. (The training on

the computer helped here.) The methods for each task were rated

separately using letter grades (GPA-style: F, F+, D-, D, D+, C-,

C, C+, B-, B, B+, A-, A, A+) according to two measures:

• How well the method would let a user perform the given

task accurately.

• How well the method would let a user perform the given

task quickly.

Finally, after the critique was completed, designers were asked to

create a new visualization of a given data set that would enable



IEEE TVCG 4

TABLE II

LINEAR REGRESSION RESULTS BETWEEN DESIGNER GRADES AND

NUMERICAL RESULTS FROM [11].

users to perform all three tasks quickly and accurately.

B. Numerical Results and Discussion

We posed two hypotheses at the onset of this study: first, that

designer ratings would be similar to the quantitative performance

measures for each task in the previous study [11], and second,

that the designer critiques would provide additional insight into

the merits of each method and how to improve them. Table II

summarizes the linear regression results between the designer

grades from the current study and the numerical results from [11].

In order to perform the correlation analysis, the letter grades

correspond to the following numerical values: F (0), F+ (0.33), D-

(0.66), D (1), D+ (1.33), C- (1.66), C (2), C+ (2.33), B- (2.66), B

(3), B+ (3.33), A- (3.66), A (4),and A+ (4.33). Our results show a

good correlation across methods and tasks between the subjective

evaluations of the designers and the performance measures of

the previous study. Although some discrepancies are present, we

consider that these results validate our hypotheses.

We look first at the critical-point-counting task. Apart from

their response time rating, designers could give only one rating

for the other two accuracy variables measured: accuracy of finding

the correct number of critical points and accuracy of placing the

critical-point markers precisely on their locations. Participants in

the objective study performed these last two tasks simultaneously.

Figure 4(a) shows the regression analysis for mean percentage

correct in counting the critical points, and also the mean designer

grades. It is clear that the designers’ pattern of performance

matches the quantitatively collected performance measure for this

task very well (R2
= 0.941,F = 63.9, p = 0.001). Figure 4(b)

shows the regression analysis for mean critical-point-location

error and the mean designer grades. Again, the designers’ pattern

of performance matches the quantitatively collected performance

measure (R2
= 0.956,F = 87.6, p = 0.001). Last, Fig. 4(c) shows

the regression analysis for the mean time to complete the critical-

point-location task and the mean designer grades. Once again,

the designers’ pattern of performance matches the quantitatively

collected performance measure (R2
= 0.676,F = 8.3, p = 0.045).

As can be seen from the graphs in Fig. 5, the designer grades

closely matched the pattern of performance in the original quan-

titative user study for the critical-point-type identification task,

both accuracy (R2
= 0.722,F = 10.4, p = 0.032) and response

time (R2
= 0.679,F = 8.5, p = 0.044).

a)

b)

c)

Fig. 4. Regression analyses for the critical-point-counting task, with plots for
counting accuracy (a), location accuracy (b), and response time (c). Standard
error bars are plotted. Regression test results are also shown. All regressions
are significant at α = 0.05.

However, for the advection task, the designer grades did

not quite match the previous experiment’s pattern for accuracy

(R2
= 0.615,F = 6.4, p = 0.065). Also, no regression model fit

the designer ratings to the quantitative response time measure

(R2
= 0.249,F = 1.3, p = 0.314).

This last discrepancy can be explained by looking at one

visualization method in particular: line integral convolution (LIC).

As seen in Fig. 1, LIC shows no information about the vector

field direction, and this is detrimental in performing the advection

task. In order to compensate for this known problem, a direction

icon was placed at the lower-left corner of the image to let users

extrapolate the field’s direction across the entire image. The time

needed for this extrapolation contributed to the large increase in

completion time for this method in the previous user study. Most

designers viewing this method for the advection task suggested
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a)

b)

Fig. 5. Regression analyses for the critical-point-type identification task,
with plots for type accuracy (a), and response time (b). Standard error bars are
plotted. Regression test results are also shown. Both regressions are significant
at α = 0.05.

adding direction icons sparsely throughout the image; having seen

this easy fix, they tended to grade the completion time for this

method leniently, resulting in the poor correlation between the

two sets of data for this task. Removing this polemic method

from the regression analysis yields significant results for accuracy

(R2
= 0.852,F = 17.2, p = 0.025), but does not improve the

response time regression results (R2
= 0.389,F = 1.9, p = 0.261).

Figure 6 shows the linear regression plots for this task with and

without LIC.

This mismatch between designers’ opinions and the original

performance measures illustrates the fact that we cannot expect

this methodology to yield perfect correlations with objective

studies. The nature of subjective evaluations is such that we rely

on the expertise of our participants to be as consistent as possible,

but not perfect. Overall, we obtained good correlations across

methods and tasks between both experiments.

C. Design Issues and the Development of a New Method

Apart from those numerically significant results that validate

their evaluations, participants provided additional design insights

into how to improve the visualization methods to potentially yield

quick and accurate information on the vector fields in the three

given tasks.

JIT was rated as the “worst” method because its elements were

“too small.” OSTR, on the other hand, was possibly the “best”

method, although sometimes “very sharp turns don’t give a sense

of movement as well as others.” GRID, like JIT, has elements

that are “too small to be effective,” and “the regularity of the grid

a)

b)

Fig. 6. Regression analyses for the advection task, with plots for accuracy
(a), and response time (b). Standard error bars are plotted. LIC results were
removed for the “LIC excluded” regression. Test results are also shown, and
only the “LIC excluded” regression for accuracy is significant at α = 0.05.

induces a false sense of structure that is difficult to ignore.” LIC is

“OK” but is perceptually “too even” with “not enough contrast,”

and its elements “don’t provide a good sense of flow direction,”

which is key for some tasks. “Its good sense of tactility connects

the user with the concept of flow,” but this aesthetic appreciation

did not affect the participants’ scores, which concentrated on task

performance. LIT and GSTR were both “good representations for

doing the advection task,” but LIT had elements that were “a little

small” and GSTR was a bit “scary” to look at, since the visual

elements seemed to “pass over each other.” Comments about the

size were also common, indicating this dimension as the first

candidate for modification in order to increase the effectiveness

of most methods.

In addition to these critiques, we asked the designers to design

a new visualization method for a sample vector field data set

that would address all three tasks. Figure 7 shows one of these

designer-created visualizations; this image was created by hand

using tempera paint, charcoal, and pencil. As you can see, this

designer added direction icons, used streamlines to suggest field

structure and thus aid in identifying particle advection, placed

icons around the critical points for easy identification, and put dots

on the critical points to make them easy to locate. It is interesting

to see how some of the comments above are exploited in this

particular solution. The tactility of LIC, for example, is retained,

while its directional ambiguity is solved through small additions.

We found that participants designed to the tasks presented and

missed the implicit task of understanding the overall vector field

structure and features.
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Fig. 7. After the experiment, designers were asked to create a new
visualization design that would outperform the six methods presented. This
image shows one of the results. Black field lines help in the advection task,
and white marks indicate direction of the vector field. Critical points are
clearly marked by large white dots and critical point type is indicated by the
surrounding arrows.

IV. GENERAL DISCUSSION

Our results validate our initial hypotheses, but they leave some

open questions. In this study, designers were asked to replicate

tasks that were quantitatively posed, because we were comparing

with earlier quantitative results. As can be seen from Fig. 7, a

task-oriented design query yields, naturally, a highly explanatory

visualization method in which answers to all three tasks are

explicitly depicted. We surmise that assigning a task that requires

a more holistic understanding of the datasets will bring out the

best in the designers, and that the results will be more effective

the greater the designers’ expertise.

While the initial study [11] found no differences between

experts and non-experts in performing the quantitative tasks, our

subjective tasks may elicit some differences among participants

with different levels of expertise, as suggested in the HCI liter-

ature [14]. In particular, we believe that the participants’ visual

design expertise is key to providing the types of comments they

did during our experiment. Our characterization of vector field

visualization methods acknowledges that the input we get from

the designers is directly targeted at the needs of scientists, and

does not concern artistic qualities, visual appeal, or aesthetics.

However, different experience levels on the designers’ part may

lead to very different critiques of the same visual displays. We

believe our next step should be to use experienced educators who

teach design concepts. They are used to concentrating on the

problem at hand, abstracting from aesthetic considerations when

they must focus on the final goal of the design; while their results

are often aesthetically appealing, they first must satisfy the given

communication goals and teach their students how to do so.

Finally, since the ratings obtained from designers are largely

qualitative and do not provide the numeric values necessary to

design a visualization method, it seems clear that combining

objective and subjective experiments using designers will lead

to better, more directly usable results, confirming the hypothesis

from Tory and Möller [19]. This combination of quantitative

and qualitative studies would yield both numeric performance

estimates and guidance on what aspects of different visualization

methods help or impede performance on certain tasks.

The experiment presented here lays out a way of using expert

visual designers as evaluators of mappings between the data and

the visual dimensions that form our visualization methods. This

methodology is limited to the specific tasks presented and is

difficult to extrapolate to more exploratory visualization goals.

Although this is a common issue in any type of user study, we

believe the use of visual designers can help us bridge that gap. In

particular, by concentrating on improving the overall readability

of the data and suggesting improvements, visual designers are

providing us general guidelines to ultimately use our visualization

methods effectively. It is clear that much more research is needed

and that methodological questions, along with the mathematical

basis of the eventual model for this design space, must be explored

and studied further.

The cost of training designers in the scientific goals of the

visualization methods is more than recovered by their ultimate

contributions. In this experiment we had participants perform

first the computer-based study from [11] to train them on the

tasks and methods they were going to critique later. This train-

ing step increased the overall time they took in performing

the full experiment. However, we believe a much shorter and

informal explanation of the tasks and scientific goals would

be sufficient to engage these experts and have them effectively

critique visualization methods. As with any other interdisciplinary

endeavor, care must be taken about the language used to explain

those goals to ensure a correct understanding, but the experience

visual designers have in effectively communicating information

visually allows them to quickly grasp the more general goals and

concentrate on clarifying the details of the particular scientific

problem.

V. NOTES ON VISUAL DESIGN EXPERTS AS EVALUATORS

From our experience performing this study and other collab-

orations with visual designers, we can provide some specific

guidelines to conduct this type of evaluation. Although the results

we have presented are statistically sound, these guidelines are

gathered from our own experiences and should not be taken

as proven rules. We provide them to help readers develop their

own studies and learn, on their own, the difficulties and nuances

of including these subjective evaluations as part of their testing

pipelines.

• Experience is good: A big part of learning “good” visual

design is creating many solutions to a problem and critiquing

them. The skill set of a experienced designer is much more

broad, in general, than that of a design student. This helps us

because they are able to foresee problems with visualization

methods for datasets that are not directly shown to them.

As we mentioned before, we further believe that educators

would be better at critiquing scientific displays than just

highly experienced professionals, if only for their ability to

explain what they do to others.

• Illustrators learn new problems quickly: During our col-

laborations, we have worked together with illustrators, in-

dustrial designers, painters, sculptors, and 3D artists. We

have found that illustrators are more easily engaged in

critiquing scientific displays than any other type of visual

designer. It could be that their attention is focused on the

individual pieces of information that could be extracted from
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a display and optimizing the visual elements to combine

those pieces effectively. Although this might sound like a

general definition for visual design, we believe illustrators

have a much more broad spectrum for their subject matter.

In other words, their minds are much more open to any kind

of information communication task, instead of focusing on

specific types of it.

• How many experts are needed? We have found that just

bringing one expert visual designer to evaluate our methods,

improves tremendously our efficiency and effectiveness in

creating a useful tool for scientists to use. For the current

study we were able to recruit six designers and that allowed

us to perform statistical analysis on their results. However,

the goals of this particular experiment were very specific.

As with any collaboration, the more familiar each side of the

team is with the other field, the better the results are. It takes

time to develop this familiarity and confidence and, if one

expert visual designer is engaged in multiple evaluations of

scientific visualization methods, his or her effectiveness will

increase over time. The differences among experts illustrated

by the horizontal standard error bars in our graphs show their

level of discrepancy for the different tasks. This experiment

was the first time most of the designers critiqued this type

of displays. We believe further experiences like this would

narrow those error bars without having participants fall into

the biases posed in Table I.

• Do not abandon quantitative evaluations: As mentioned in

the last point, we put both types of evaluation in series

with each other. Most of the time with a loop around the

subjective evaluation with designers first. This improves the

chances of success of the quantitative study, not in terms of

just validating its hypothesis, but in terms of engaging the

end-users to utilize the tool and being effective at their job

with it.

• Non-experts can detect minor issues easily: This is clearly

acknowledged in the HCI community [14] and we have not

performed the present study using lay people as participants.

Our sense is that they would recognize obvious flaws and,

sometimes, pick up minor issues that experts would overlook

but, in general, they would probably not provide suggestions

for fixing design issues.

Another upcoming paper from our group develops the details

of these collaborations in more detail [9].

VI. CONCLUSION

The number of options available to solve a visualization

problem is far too great for a full analysis of the design space,

and expert visual designers can help us explore this space more

efficiently.

The main result of this study is that designers can evaluate sci-

entific visualizations effectively: they provide extra information,

such as reasons for the good or bad performance of visualization

methods, that participants knowledgeable in the specific scientific

field cannot give us. We successfully correlated their subjective

critiques with previous studies and we obtained new insights into

how different methods work, which will need to be evaluated in

subsequent studies.
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