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Figure 1: We present an experimental quantification of how factors such as icon size, spacing, layer order and color affect the relative saliency and
interference among five different 2D scalar visualization methods: saturation, lightness, orientation, size, and spacing.(a) Two linear scalar fields
used in the experiment. Images (b)-(d) are examples of the stimuli presented in the study: they all represent both linear fields simultaneously,
and participants were asked to judge which one they perceived first, i.e. which one is the more salient of the two. (b) Icon orientation on the
bottom layer and saturation on the top, (c) a single-layer example with size and spacing, (d) another two-layer display with size on the bottom
and lightness on top. Top-layer icons have a gray-valued border at half the lightness value of the inside circle, so as to minimizes simultaneous
contrast issues. Circles are used for all methods except orientation, which uses ellipses.

1 DEFINITIONS AND CONTRIBUTION

We define saliency as the perceived dominance of some visualiza-
tion method over another when representing scientific data. This
means that perception and correct understanding of the data must
be assessed, not just the realization that some property of the icons
is changing across the display (which a preattentiveness analysis
would asses.) For example, orientation changes are very preatten-
tive. Yet, as we will see, reading a scalar field from changes in
icon orientation is very difficult, making it, in our definition, not
very salient with respect to other methods. We measure saliency
as the difference in time that participants take to recognize each of
the datasets in our stimuli (see Figure 1). Saliency can be used to
visualize the importance of some variables over others: designers
may want some variables to dominate the composition while others
should recede to the background.

Our experiment also recovers the perceptual interference among
methods, which we define as the amount of distraction a method
creates when users are trying to read another method present in the
same display. We define these interferences as the time participants
take to recognize each method while the distractor method is si-
multaneously changed and all other factors of the final display are
controlled.

Our main contribution is a set of predictive models that, given
a particular combination of methods, approximates the expected
perceptual interference among them and the saliency level of the
combination. This is a useful tool in generating effective visual-
izations based on the perceptual characteristics of the methods in-
volved. Furthermore, with the derivatives of these models, we can
confidently guide the user towards higher or lower saliency and in-
terference by changing some or all of the factors involved. The
search for an effective solution can even include and optimization
process that weights the various factors involved.

2 SCOPE

One goal of visualization researchers is to maximize the bandwidth
of information successfully transmitted by a visualization, while
leveraging human competencies to understand its visual depiction.

In other words, we want to optimize visualization creation by uti-
lizing human visual resources efficiently. To achieve this we need
to quantify and model how human perception explores the types of
stimuli present in scientific visualizations.

A visualization method is an abstract function that transforms a
scientific dataset into a visual representation to facilitate data explo-
ration. In turn, a visualization display is the visual instantiation of a
method. Here, we are interested in studying visualization methods
for multivalued continuous scalar datasets in 2D, using multilay-
ered icon-based methods. Furthermore, the goal of our visualiza-
tions is exploratory. We assume our end users want all the data
displayed in an unbiased way: they have no preconceptions about
more or less interesting areas that should be highlighted or blurred.
In the multivalued case, their exploration seeks to understand the
relationships among data values.

3 EXPERIMENTAL METHODOLOGY

Our experimental methodology is inspired by psychophysical stud-
ies on visual search and cue interaction [1,2]. We developed an ex-
periment in which the stimuli resemble real visualization displays,
which are notably difficult to evaluate perceptually. While still ef-
fectively controlling the experimental factors, this methodology al-
lows us to generalize our results, and our predictive model, to real
applications with complex multivalued datasets.

In order to control the saliency of a method we use a set of knobs
that we will call our visual dimensions. Here, we analyze and model
how the independent variables icon size, spacing, color, and layer
order affect the saliency of five scalar visualization methods: icon
saturation, lightness, orientation, size, and spacing. The indepen-
dent variables are not tied to data and remain constant across the
display, while data variables are mapped to methods.

We measure saliency through a visual-attention experiment. Us-
ing displays that show a two-valued scalar dataset (see Figure 1)
and measuring the time participants take to recognize each of the
values, we obtain a model of saliency in terms of how much the
two times differ.

We presented our stimuli on a 1280x1024 CRT monitor. Visu-
alization displays were images of 900x900 pixels on a black back-



—BOTTOM
—ToP

—SINGLE

Normalized Times
N
.

i

1 T T
SATURATION LIGHTNESS ORIENTATION SIZE SPACING

Figure 2: Mean normalized times and standard errors for one- and
two-layer cases. Within each method, all differences are significant
(p < 0.05). Orientation times are also significantly longer than all
other methods for each case.

ground. The illumination of the room was kept low to avoid dis-
traction when the changing images flashed on the screen, and we
gamma-corrected both brightness and saturation ranges for approx-
imate visual linearity. We used circular icons for all our methods.
Size levels were fixed at 2, 6, and 10 pixels in diameter, and spac-
ing levels (the distance between icons) were fixed at 0, 5, and 10
pixels. These values were chosen to obtain a characterization of
method saliency with sufficient spatial feature resolution and data
resolution[3].

We presented the experimental task as a question to the partici-
pants: “Which of the two linear gradients do you perceive and un-
derstand first? Once you understand one of the gradients, hit a key
(H or V) to indicate whether it is the horizontal or the vertical gra-
dient. After that, continue exploring the image until you either un-
derstand the second gradient, in which case you hit the other key,
or the image times out after 10 seconds”. A one-second distrac-
tor image was placed between stimuli so as to minimize carry-over
effects from the previous choice.

We perform a full factorial design for all factors in the one-layer
cases, and for the two-layer cases, we use a blocked randomized
fractional factorial design using an orthogonal array[4] for the size
and spacing factors of both layers. This is still a balanced design,
since each level of each of the variables occurs equally often. For all
other independent variables we used a full factorial. A total of six
paid participants ran through the experiment, taking approximately
one hour to complete the study with short breaks between sections.

4 RESULTS

As is clear from the normalized time results for each method in
Figure 2, mean times to recognize orientation as a scalar field are
significantly higher than the rest. All participants declared diffi-
culty understanding orientation as a scalar value. The pseudo-flow
effect was so distracting as to prevent them from understanding the
linear scalar datasets. For this reason, all further analyses of the ex-
perimental data exclude orientation cases. Interesting to note is how
size and spacing methods are recognized faster when they are on the
top layer of two-layer cases than for single-layer cases. This con-
firms the known preattentive precedence of the other three methods
over these two for the single-layer cases.

Given the distributions of timing data for the two key presses for
each pair, we obtain the following saliency measures based on the
time differences:

® Relative Saliency, S(v;,v;) € (—1,1): Here v; and v; are two

of our visualization methods. § = —1 indicates that v; is much
more salient than v;, and S = 1 indicates the opposite. Differ-
ences are normalized with respect to the maximum and min-
imum observed time differences throughout the experiment.

o Interference, 1(vi|[v;) € (0,1): This measures how much v;

interferes with the reading of v;. To measure this, we set

I(vilv;) = %, where T'(x) is the time par-
ticipants took to recognize method x. To obtain the extreme
values we must look across blocks for all instances where v;
was presented. We assume that the minimum time is how long
a participant would take to recognize a dataset using v; when

presented by itself.

With these definitions we tried to generate models for each pair,
with separate models for the single- and two-layer cases. For ex-
ample, for the two-layer case for the pair saturation-lightness (t,1),
we obtained the expected normalized time difference D(z,/) and the
relative saliency S(¢,1):

D(t,1) = —7.24 1.1p, —0.1p? +1.85; — 0.1s? — 1.7p; +0.2p7 — 2.4r
ID(t,1)| —min(D) _ D(t,)

S0 = (D) —min(D) ~ D]
Where p is spacing in pixels, s is size in pixels, and r € {0,1} in-
dicates whether the saturation layer is on top (r = 1) or not ( = 0).
This model significantly captures the variance from our experi-
mental data (R2 =0.64, F =38.2, p < 0.0001), and we have ob-
tained similar models, with comparable R? and (F, p) values, for all
other pairs. For interference, we model the times to recognize each
method for each pair, as opposed to the difference. For the same
pair as before, the expected time to recognize lightness 7' (|t) and
the expected interference of saturation over lightness 1(/|r) are:

T(I]t) = 10.9 — 0.3s, — 0.8p, +0.03p? — 135
+0.157 4 1.0p; — 0.1p7 +1.0r

160 = T(t,1) 7mi;.1(T)
max(T) — min(T)

This model also fits the variance well (R2 =0.61, F = 29.5,
p < 0.0001). We did not find models for the single-layer cases that
would fit the data well. We believe the experiment is not powerful
enough for those cases, since the number of single-layer stimuli is
significantly smaller than the two-layer cases. We are running more
participants to solve this issue.

It is important to note that the relationships among parame-
ters and their meaning are the main contributions of these mod-
els, more than the exact coefficients. These were experimentally
found through our analysis of the study results, but we are currently
evaluating the hypothesis that these models apply in practical situa-
tions with more general datasets. A preliminary study using expert
visual designers confirmed the models accurately predict expected
saliency and interference, although a scale factor might be required
based on the particular characteristics of the datasets depicted, such
as value ranges and spatial feature sizes.

5 CONCLUSION

Our experimental data let us generate a set of predictive models
that can be used to design effective visualization methods tailored
to particular design goals. We can now confidently modify the
parameters of our visualization methods to increase or decrease
saliency and interference among them. We have also described
some methodologies for gathering and combining the perceptual
knowledge needed to create such models. We hope our success en-
courages further research in this field to create a full model of the
space of visualizations.

6 REFERENCES

[1] Callaghan. Dimensional Interaction of Hue and Brightness in
Preattentive Field Segregation. Percep.&Psych., 36(1), 1984.

[2] Bergen et al. Computational Modeling of Visual Texture Seg-
regation, in Comp. Models of Visual Processing, 1991.

[3] Acevedo et al. Subjective Quant. of Perceptual Interactions
Among Some 2D SciVis Methods, TVCG, 12(5), 2006.

[4] Heydayat et al. Orthogonal Arrays: Theory and Applications,
1999.




